Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information
dc.citation.epage | 765 | |
dc.citation.issue | 4 | |
dc.citation.spage | 758 | |
dc.contributor.affiliation | Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University | |
dc.contributor.affiliation | Ivane Javakhishvili Tbilisi State University | |
dc.contributor.author | Petriashvili, Gia | |
dc.contributor.author | Chanishvili, Andro | |
dc.contributor.author | Ponjavidze, Nino | |
dc.contributor.author | Chubinidze, Ketevan | |
dc.contributor.author | Tatrishvili, Tamara | |
dc.contributor.author | Kalandia, Elene | |
dc.contributor.author | Petriashvili, Ana | |
dc.contributor.author | Makharadze, Tamar | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T08:54:18Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Виготовлено та досліджено новий фазовий сповільнювач на основі рідкісної та маловивченої рідкокристалічної фази – кристалічноїсмектичної G-фази, отриманої змішуванням двох сертифікованих нематичних сумішей. Фазовий сповільнювач прозорий у видимій і ближній інфрачервоній частинах оптичного спектру. Температурна стабільність у широкому діапазоні температур, високе двозаломлення та висока міцність дають змогу виготовляти різні типи сповільнювачів фаз, які можна використовувати в оптиці, оптико-хімічному аналізі та поляриметрії. | |
dc.description.abstract | We have manufactured and investigated a novel phase retarder based on a rare and less studied liquid crystal phase, such as the Crystal Smectic G-phase prepared by mixing two certified nematic mixtures. The phase retarder is transparent in the visible and near-infrared parts of the optical spectrum. The temperature stability over a wide temperature range, high birefringence, and high strength, allow the production of various types of phase retarders that can be used in optics, optical chemical analysis,and polarimetry. | |
dc.format.extent | 758-765 | |
dc.format.pages | 8 | |
dc.identifier.citation | Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information / Gia Petriashvili, Andro Chanishvili, Nino Ponjavidze, Ketevan Chubinidze, Tamara Tatrishvili, Elene Kalandia, Ana Petriashvili, Tamar Makharadze // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 758–765. | |
dc.identifier.citationen | Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information / Gia Petriashvili, Andro Chanishvili, Nino Ponjavidze, Ketevan Chubinidze, Tamara Tatrishvili, Elene Kalandia, Ana Petriashvili, Tamar Makharadze // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 758–765. | |
dc.identifier.doi | doi.org/10.23939/chcht17.04.758 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63710 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 4 (17), 2023 | |
dc.relation.references | [1] Vargas, J.; Uribe-Patarroyo, N.; Quiroga, J.A.; Alvarez-Herrero, A.; Belenguer T. Optical inspection of liquid Crystal Variable Retarder Inhomogeneities. Appl. Opt. 2010, 49, 568–574. http://dx.doi.org/10.1364/AO.49.000568 | |
dc.relation.references | [2] Kemp, J.C.; Piezo-Optical Birefringence Modulators: New Use for a Long-Known Effect. J. Opt. Soc. Am. 1969, 59, 950–953. https://doi.org/10.1364/JOSA.59.000950 | |
dc.relation.references | [3] Saleh, B.E.A.;Teich,M.C.Fundamentals of Photonics. 2nd Edition;Wiley-Interscience, 2007. ISBN-10: 0471358320. | |
dc.relation.references | [4] Cao, W.; Yang, X.;Gao, J. Broadband Polarization Conversion with Anisotropic PlasmonicMetasurfaces. Sci. Rep. 2017,7, 8841. https://doi.org/10.1038/s41598-017-09476-8 | |
dc.relation.references | [5] Lavrentovich, M.D.; Sergan, T.A.; Kelly, J.R. Switchable Broadband Achromatic Half-Wave Plate with Nematic Liquid Crystals. Opt. Lett. 2004, 29, 1411–1413. https://doi.org/10.1364/OL.29.001411 | |
dc.relation.references | [6] Zhuang, Z.; Kim, Y.J.; Patel, J.S. Achromatic Linear Polarization Rotator Using Twisted Nematic Liquid Crystals. Appl. Phys. Lett. 2000, 76, 3995–3997. https://doi.org/10.1063/1.126846 | |
dc.relation.references | [7] Wu, Th. X.; Huang, Y.; Wu, S.-T. Design Optimization of Broadband Linear Polarization Converter Using Twisted Nematic Liquid Crystal.Jpn. J. Appl. Phys. 2003, 42, L39. https://doi.org/10.1143/JJAP.42.L39 | |
dc.relation.references | [8] Bueno, J.M. Polarimetry Using Liquid-Crystal Variable Retarders: Theory and Calibration.J. Opt. A: Pure Appl. Opt. 2000, 2, 216–222. https://doi.org/10.1088/1464-4258/2/3/308 | |
dc.relation.references | [9] Ren, H.; Fan, Y.H.; Lin, Y.H.; Wu, S.T. Tunable-Focus Microlens Arrays Using NanosizedPolymerdispersed Liquid Crystal Droplets. Opt. Commun. 2005, 247, 101–106. https://doi.org/10.1016/j.optcom.2004.11.033 | |
dc.relation.references | [10] Liu, C.Y.; Chen, L.W. Tunable Photonic-Crystal Waveguide Mach-ZehnderInterferometer Achieved by Nematic Liquid-Crystal Phase Modulation. Opt. Express2004, 12, 2616–2624. https://doi.org/10.1364/OPEX.12.002616 | |
dc.relation.references | [11]Hahn, J.;Kim, H.; Lim, Y.; Park, G.; Lee, B. Wide Viewing Angle Dynamic Holographic Stereogram with a Curved Array of Spatial Light Modulators.Opt. Express2008, 16, 12372–12386. https://doi.org/10.1364/OE.16.012372 | |
dc.relation.references | [12]Apter, B.; Efron, U.; Bahat-Treidel, E. On the Fringing-Field Effect in Liquid-Crystal Beam-Steering Devices.Appl. Opt. 2004, 43, 11–19. https://doi.org/10.1364/AO.43.000011 | |
dc.relation.references | [13]Yang,D.K.; Wu, S.T.Fundamentals of Liquid Crystal Devices.John Wiley & Sons, Ltd. 2006. ISBN: 0-470-01542-X. | |
dc.relation.references | [14]Rajasekharan-Unnithan, R.; Butt H.; Wilkinson T.D. Optical Phase Modulation Using a Hybrid Carbon Nanotube-Liquid-Crystal Nanophotonic Device.Opt. Lett. 2009, 34, 1237–1239. https://doi.0146-9592/09/081237-3/$15.00 | |
dc.relation.references | [15] Nicolás, J.; Campos, J.; Yzuel, M.J. Phase and Amplitude Modulation of Elliptic Polarization States byNonabsorbing Anisotropic Elements: Application to Liquid-Crystal Devices.J. Opt. Soc. Am. A.2002, 19, 1013–1020. https://doi.org/10.1364/JOSAA.19.001013 | |
dc.relation.references | [16]Vargas, J.; Uribe-Patarroyo, N.;Quiroga, J.A.; Alvarez-Herrero, A.; Belenguer T. Optical Inspection of Liquid Crystal Variable Retarder Inhomogeneities.Appl. Opt. 2010, 49, 568–574. https://doi.org/10.1364/AO.49.000568 | |
dc.relation.references | [17]Fuh, A. Y.-G.; Chiang, J.-T.; Chien, Yu-Sh.; Chang, Ch.-J.; Lin, H.-Ch. Multistable Phase-Retardation Plate Based onGelator-Doped Liquid Crystals.Appl. Phys. Express2012, 5, 072503. http://dx.doi.org/10.1143/APEX.5.072503 | |
dc.relation.references | [18]Safrani,A.; Abdulhalim, I. Liquid-Crystal Polarization Rotator and a Tunable Polarizer.Opt. Lett. 2009, 34,1801–1803. https://doi.org/10.1364/OL.34.001801 | |
dc.relation.references | [19] Petriashvili, G.; Chanishvili,A.; Wardosanidze, Z. Cholesteric Liquid Crystal Mirror Based ImagingStokes Polarimeter.Appl. Opt. 2021, 60, 3187–3191. https://doi.org/10.1364/AO.422814 | |
dc.relation.references | [20] Schnoor, N.P.;Niemeier, R.C.; Woods, A.L.; Rogers, J.D. Calibration of Liquid Crystal Variable Retarders Using a Common-Path Interferometer and Fit of a Closed-Form Expression for the Retardance Curve.Appl. Opt. 2020,59, 10673–10679. https://doi.org/10.1364/AO.408383 | |
dc.relation.references | [21]Demchuk, Y.;Gunka, V.;Pyshyev, S.;Sidun, Y.;Hrynchuk, Y.;Kucinska-Lipka, J.;Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin.Chem. Chem. Technol. 2020, 14, 251–256. https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.references | [22]Mukbaniani, O.;Tatrishvili, T.;Kvinikadze, N.;Bukia, T.; Pachulia, Z.;Pirtskheliani, N.;Petriashvili, G.Friedel-Crafts Reaction of Vinyl Trimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol.2023, 17, 325–338. https://doi.org/10.23939/chcht17.02.325 | |
dc.relation.references | [23]Iatsyshyn, O.;Astakhova, O.;Shyshchak, O.; Lazorko O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol.2013, 7, 73–77. https://doi.10.23939/chcht07.01.073 | |
dc.relation.references | [24]Hanna, J.-I.;Ohno, A.;Iino, H. Charge Carrier Transport in Liquid Crystals. Thin Solid Films2014,554, 58–63. https://doi.10.1016/j.tsf.2013.10.051 | |
dc.relation.references | [25]Baron, M.;Stepto, R.F.T. Definitions of Basic Terms Relating to Low-Molar-Mass and Polymer Liquid Crystals.Pure Appl. Chem. 2002, 74, 493–509. https://doi.10.1351/pac200274030493 | |
dc.relation.references | [26]Espinet, P.; Esteruela, M.A.; Ore, L.A.; Serrano,J.L.; Sola, E. Transition Metal Liquid Crystals: Advanced Materials within the Reach of the Coordination Chemist.CoordChem Rev1992, 117, 215–274. https://doi.10.1016/0010-8545(92)80025-M | |
dc.relation.references | [27]Niezgoda, I.; Jaworska, J.; Pociecha,D.; Galewski, Z. The Kinetics of the E-Z-E Isomerisationand Liquid-Crystalline Properties of Selected Azobenzene Derivatives Investigated by the Prism of the Ester Group Inversion.LiqCryst2015,42, 1148–1158. https://doi.10.1080/02678292.2015.1031198 | |
dc.relation.references | [28]Obadovic, D.Z.; Stojanovic, M.;Bubnov, A.; Eber, N.; Cvetinov,M.; Vajda, A. Structural Studies on Different Types of Ferroelectric Liquid Crystalline Substances.Journal of Research in Physics2011, 35, 3–13. http://dx.doi.org/10.2478/v10242-012-0001-3 | |
dc.relation.referencesen | [1] Vargas, J.; Uribe-Patarroyo, N.; Quiroga, J.A.; Alvarez-Herrero, A.; Belenguer T. Optical inspection of liquid Crystal Variable Retarder Inhomogeneities. Appl. Opt. 2010, 49, 568–574. http://dx.doi.org/10.1364/AO.49.000568 | |
dc.relation.referencesen | [2] Kemp, J.C.; Piezo-Optical Birefringence Modulators: New Use for a Long-Known Effect. J. Opt. Soc. Am. 1969, 59, 950–953. https://doi.org/10.1364/JOSA.59.000950 | |
dc.relation.referencesen | [3] Saleh, B.E.A.;Teich,M.C.Fundamentals of Photonics. 2nd Edition;Wiley-Interscience, 2007. ISBN-10: 0471358320. | |
dc.relation.referencesen | [4] Cao, W.; Yang, X.;Gao, J. Broadband Polarization Conversion with Anisotropic PlasmonicMetasurfaces. Sci. Rep. 2017,7, 8841. https://doi.org/10.1038/s41598-017-09476-8 | |
dc.relation.referencesen | [5] Lavrentovich, M.D.; Sergan, T.A.; Kelly, J.R. Switchable Broadband Achromatic Half-Wave Plate with Nematic Liquid Crystals. Opt. Lett. 2004, 29, 1411–1413. https://doi.org/10.1364/OL.29.001411 | |
dc.relation.referencesen | [6] Zhuang, Z.; Kim, Y.J.; Patel, J.S. Achromatic Linear Polarization Rotator Using Twisted Nematic Liquid Crystals. Appl. Phys. Lett. 2000, 76, 3995–3997. https://doi.org/10.1063/1.126846 | |
dc.relation.referencesen | [7] Wu, Th. X.; Huang, Y.; Wu, S.-T. Design Optimization of Broadband Linear Polarization Converter Using Twisted Nematic Liquid Crystal.Jpn. J. Appl. Phys. 2003, 42, L39. https://doi.org/10.1143/JJAP.42.L39 | |
dc.relation.referencesen | [8] Bueno, J.M. Polarimetry Using Liquid-Crystal Variable Retarders: Theory and Calibration.J. Opt. A: Pure Appl. Opt. 2000, 2, 216–222. https://doi.org/10.1088/1464-4258/2/3/308 | |
dc.relation.referencesen | [9] Ren, H.; Fan, Y.H.; Lin, Y.H.; Wu, S.T. Tunable-Focus Microlens Arrays Using NanosizedPolymerdispersed Liquid Crystal Droplets. Opt. Commun. 2005, 247, 101–106. https://doi.org/10.1016/j.optcom.2004.11.033 | |
dc.relation.referencesen | [10] Liu, C.Y.; Chen, L.W. Tunable Photonic-Crystal Waveguide Mach-ZehnderInterferometer Achieved by Nematic Liquid-Crystal Phase Modulation. Opt. Express2004, 12, 2616–2624. https://doi.org/10.1364/OPEX.12.002616 | |
dc.relation.referencesen | [11]Hahn, J.;Kim, H.; Lim, Y.; Park, G.; Lee, B. Wide Viewing Angle Dynamic Holographic Stereogram with a Curved Array of Spatial Light Modulators.Opt. Express2008, 16, 12372–12386. https://doi.org/10.1364/OE.16.012372 | |
dc.relation.referencesen | [12]Apter, B.; Efron, U.; Bahat-Treidel, E. On the Fringing-Field Effect in Liquid-Crystal Beam-Steering Devices.Appl. Opt. 2004, 43, 11–19. https://doi.org/10.1364/AO.43.000011 | |
dc.relation.referencesen | [13]Yang,D.K.; Wu, S.T.Fundamentals of Liquid Crystal Devices.John Wiley & Sons, Ltd. 2006. ISBN: 0-470-01542-X. | |
dc.relation.referencesen | [14]Rajasekharan-Unnithan, R.; Butt H.; Wilkinson T.D. Optical Phase Modulation Using a Hybrid Carbon Nanotube-Liquid-Crystal Nanophotonic Device.Opt. Lett. 2009, 34, 1237–1239. https://doi.0146-9592/09/081237-3/$15.00 | |
dc.relation.referencesen | [15] Nicolás, J.; Campos, J.; Yzuel, M.J. Phase and Amplitude Modulation of Elliptic Polarization States byNonabsorbing Anisotropic Elements: Application to Liquid-Crystal Devices.J. Opt. Soc. Am. A.2002, 19, 1013–1020. https://doi.org/10.1364/JOSAA.19.001013 | |
dc.relation.referencesen | [16]Vargas, J.; Uribe-Patarroyo, N.;Quiroga, J.A.; Alvarez-Herrero, A.; Belenguer T. Optical Inspection of Liquid Crystal Variable Retarder Inhomogeneities.Appl. Opt. 2010, 49, 568–574. https://doi.org/10.1364/AO.49.000568 | |
dc.relation.referencesen | [17]Fuh, A. Y.-G.; Chiang, J.-T.; Chien, Yu-Sh.; Chang, Ch.-J.; Lin, H.-Ch. Multistable Phase-Retardation Plate Based onGelator-Doped Liquid Crystals.Appl. Phys. Express2012, 5, 072503. http://dx.doi.org/10.1143/APEX.5.072503 | |
dc.relation.referencesen | [18]Safrani,A.; Abdulhalim, I. Liquid-Crystal Polarization Rotator and a Tunable Polarizer.Opt. Lett. 2009, 34,1801–1803. https://doi.org/10.1364/OL.34.001801 | |
dc.relation.referencesen | [19] Petriashvili, G.; Chanishvili,A.; Wardosanidze, Z. Cholesteric Liquid Crystal Mirror Based ImagingStokes Polarimeter.Appl. Opt. 2021, 60, 3187–3191. https://doi.org/10.1364/AO.422814 | |
dc.relation.referencesen | [20] Schnoor, N.P.;Niemeier, R.C.; Woods, A.L.; Rogers, J.D. Calibration of Liquid Crystal Variable Retarders Using a Common-Path Interferometer and Fit of a Closed-Form Expression for the Retardance Curve.Appl. Opt. 2020,59, 10673–10679. https://doi.org/10.1364/AO.408383 | |
dc.relation.referencesen | [21]Demchuk, Y.;Gunka, V.;Pyshyev, S.;Sidun, Y.;Hrynchuk, Y.;Kucinska-Lipka, J.;Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin.Chem. Chem. Technol. 2020, 14, 251–256. https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.referencesen | [22]Mukbaniani, O.;Tatrishvili, T.;Kvinikadze, N.;Bukia, T.; Pachulia, Z.;Pirtskheliani, N.;Petriashvili, G.Friedel-Crafts Reaction of Vinyl Trimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol.2023, 17, 325–338. https://doi.org/10.23939/chcht17.02.325 | |
dc.relation.referencesen | [23]Iatsyshyn, O.;Astakhova, O.;Shyshchak, O.; Lazorko O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol.2013, 7, 73–77. https://doi.10.23939/chcht07.01.073 | |
dc.relation.referencesen | [24]Hanna, J.-I.;Ohno, A.;Iino, H. Charge Carrier Transport in Liquid Crystals. Thin Solid Films2014,554, 58–63. https://doi.10.1016/j.tsf.2013.10.051 | |
dc.relation.referencesen | [25]Baron, M.;Stepto, R.F.T. Definitions of Basic Terms Relating to Low-Molar-Mass and Polymer Liquid Crystals.Pure Appl. Chem. 2002, 74, 493–509. https://doi.10.1351/pac200274030493 | |
dc.relation.referencesen | [26]Espinet, P.; Esteruela, M.A.; Ore, L.A.; Serrano,J.L.; Sola, E. Transition Metal Liquid Crystals: Advanced Materials within the Reach of the Coordination Chemist.CoordChem Rev1992, 117, 215–274. https://doi.10.1016/0010-8545(92)80025-M | |
dc.relation.referencesen | [27]Niezgoda, I.; Jaworska, J.; Pociecha,D.; Galewski, Z. The Kinetics of the E-Z-E Isomerisationand Liquid-Crystalline Properties of Selected Azobenzene Derivatives Investigated by the Prism of the Ester Group Inversion.LiqCryst2015,42, 1148–1158. https://doi.10.1080/02678292.2015.1031198 | |
dc.relation.referencesen | [28]Obadovic, D.Z.; Stojanovic, M.;Bubnov, A.; Eber, N.; Cvetinov,M.; Vajda, A. Structural Studies on Different Types of Ferroelectric Liquid Crystalline Substances.Journal of Research in Physics2011, 35, 3–13. http://dx.doi.org/10.2478/v10242-012-0001-3 | |
dc.relation.uri | http://dx.doi.org/10.1364/AO.49.000568 | |
dc.relation.uri | https://doi.org/10.1364/JOSA.59.000950 | |
dc.relation.uri | https://doi.org/10.1038/s41598-017-09476-8 | |
dc.relation.uri | https://doi.org/10.1364/OL.29.001411 | |
dc.relation.uri | https://doi.org/10.1063/1.126846 | |
dc.relation.uri | https://doi.org/10.1143/JJAP.42.L39 | |
dc.relation.uri | https://doi.org/10.1088/1464-4258/2/3/308 | |
dc.relation.uri | https://doi.org/10.1016/j.optcom.2004.11.033 | |
dc.relation.uri | https://doi.org/10.1364/OPEX.12.002616 | |
dc.relation.uri | https://doi.org/10.1364/OE.16.012372 | |
dc.relation.uri | https://doi.org/10.1364/AO.43.000011 | |
dc.relation.uri | https://doi.0146-9592/09/081237-3/$15.00 | |
dc.relation.uri | https://doi.org/10.1364/JOSAA.19.001013 | |
dc.relation.uri | https://doi.org/10.1364/AO.49.000568 | |
dc.relation.uri | http://dx.doi.org/10.1143/APEX.5.072503 | |
dc.relation.uri | https://doi.org/10.1364/OL.34.001801 | |
dc.relation.uri | https://doi.org/10.1364/AO.422814 | |
dc.relation.uri | https://doi.org/10.1364/AO.408383 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.uri | https://doi.org/10.23939/chcht17.02.325 | |
dc.relation.uri | https://doi.10.23939/chcht07.01.073 | |
dc.relation.uri | https://doi.10.1016/j.tsf.2013.10.051 | |
dc.relation.uri | https://doi.10.1351/pac200274030493 | |
dc.relation.uri | https://doi.10.1016/0010-8545(92)80025-M | |
dc.relation.uri | https://doi.10.1080/02678292.2015.1031198 | |
dc.relation.uri | http://dx.doi.org/10.2478/v10242-012-0001-3 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Petriashvili G., Chanishvili A., Ponjavidze N., Chubinidze K., Tatrishvili T., Kalandia E., Petriashvili A., Makharadze T., 2023 | |
dc.subject | кристалічна смектична G-фаза | |
dc.subject | фазовий сповільнювач | |
dc.subject | оптична інформація | |
dc.subject | Crystal Smectic G phase | |
dc.subject | phase retarder | |
dc.subject | optical information | |
dc.title | Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information | |
dc.title.alternative | Кристалічний смектичний G-фазовий сповільнювач для просторово-часової модуляції оптичної інформації в реальному часі | |
dc.type | Article |
Files
License bundle
1 - 1 of 1