Methods of Active Light Modulation

dc.citation.epage5
dc.citation.issue2
dc.citation.journalTitleОбчислювальні проблеми електротехніки
dc.citation.spage1
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБженчаківський, Валентин
dc.contributor.authorBzhenchakivskyi, Valentyn
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-19T08:04:14Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractАктивна модуляція світла дає змогу точно контролювати такі властивості світла, як інтенсивність, фаза, частота та поляризація. У статті розглянуто електрооптичні (ЕО), акустооптичні (АО) та магнітооптичні (МО) методи модуляції, проаналізовано їх принципи, переваги та обмеження для високошвидкісних оптичних систем. EO модуляція, основана на змінах показника заломлення під дією електричного поля, забезпечує надшвидку модуляцію сигналу, але чутлива до електромагнітних перешкод. Модуляція AO використовує акустичні хвилі для періодичної зміни показника заломлення, що підтримує роботу на високій швидкості, але потребує значної енергії. МО-модуляція використовує намагнічені матеріали для ефективного перемикання добротності, але стикається з такими проблемами, як невідповідність ґратки та фотонна інтеграція. Порівняльний аналіз висвітлює EO модуляцію як оптимальну для високошвидкісних оптичних мереж, AO для спектроскопії та телекомунікацій, а MO для лазерів із модуляцією добротності та інтегрованої фотоніки. Отримані дані підтверджують прогрес в оптичних пристроях наступного покоління, підкреслюючи необхідність подальших досліджень з оптимізації матеріалів і системної інтеграції.
dc.description.abstractActive light modulation enables precise control over such light properties as intensity, phase, frequency, and polarization. This article examines electrooptic (EO), acousto-optic (AO), and magneto-optic (MO) modulation methods, analyzing their principles, advantages, and limitations for high-speed optical systems. The EO modulation, based on changes in the refractive index under the influence of an electric field, provides ultrafast signal modulation but is sensitive to electromagnetic interference. The AO modulation uses acoustic waves to periodically vary the refractive index, allowing high-speed operation but requiring significant energy. The MO modulation utilizes magnetized materials for efficient Q-switching, but faces challenges such as lattice mismatch and photon integration. A comparative analysis highlights the EO modulation as the optimal one for high-speed optical networks, AO being fit for spectroscopy and telecommunications, and MO for Qswitched lasers and integrated photonics. The results obtained support advances in next-generation optical devices, emphasizing the need for further research in material optimization and system integration.
dc.format.extent1-5
dc.format.pages5
dc.identifier.citationBzhenchakivskyi V. Methods of Active Light Modulation / Valentyn Bzhenchakivskyi // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 14. — No 2. — P. 1–5.
dc.identifier.citationenBzhenchakivskyi V. Methods of Active Light Modulation / Valentyn Bzhenchakivskyi // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 14. — No 2. — P. 1–5.
dc.identifier.doidoi.org/10.23939/jcpee2024.02.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/120410
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofОбчислювальні проблеми електротехніки, 2 (14), 2024
dc.relation.ispartofComputational Problems of Electrical Engineering, 2 (14), 2024
dc.relation.references[1] A. Korpel, Acousto-Optics, 2nd ed., Marcel Dekker, 1997.
dc.relation.references[2] J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications, Wiley, 1992.
dc.relation.references[3] N. Uchida and A. Ohmachi, “Elastic and Photoelastic Properties of Silicon and Their Application to the Brillouin Scattering”, Journal of the Physical Society of Japan, vol. 34, No. 2, pp. 651–655, 1973.
dc.relation.references[4] P. Yeh, Optical Waves in Layered Media, Wiley, 1988.
dc.relation.references[5] R. W. Boyd, Nonlinear Optics, 3rd ed., Academic Press, 2008.
dc.relation.references[6] S. E. Harris, “Modulation of Light”, in Quantum Electronics: A Treatise, vol. 1, H. Rabin and C. L. Tang, Eds., Academic Press, pp. 1–64, 1975.
dc.relation.references[7] B. Saleh and M. Teich, Fundamentals of Photonics, 2nd ed., Wiley, 2007.
dc.relation.references[8] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Hoboken, NJ, USA: Wiley, 2019.
dc.relation.references[9] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications. New York, NY, USA: Oxford University Press, 2007.
dc.relation.references[10] R. W. Boyd, Nonlinear Optics. San Diego, CA, USA: Academic Press, 2020.
dc.relation.references[11] E. Hecht, Optics. New York, NY, USA: Pearson, 2017.
dc.relation.references[12] G. P. Agrawal, Fiber-Optic Communication Systems. Hoboken, NJ, USA: Wiley, 2010. https://doi.org/10.1002/9780470918524
dc.relation.references[13] S. Kasap, Optoelectronics and Photonics: Principles and Practices. New York, NY, USA: Pearson, 2013.
dc.relation.references[14] V. Ristic, Principles of Acoustic Devices. Hoboken, NJ, USA: Wiley, 1994.
dc.relation.references[15] A. Yariv, Optical Electronics in Modern Communications. New York, NY, USA: Oxford University Press, 1997.
dc.relation.references[16] M. Born and E. Wolf, Principles of Optics. Cambridge, U.K.: Cambridge University Press, 1999.
dc.relation.references[17] A. Korpel, Acousto-Optics. New York, NY, USA: Marcel Dekker, 1988.
dc.relation.references[18] M. J. Weber, Handbook of Optical Materials. Boca Raton, FL, USA: CRC Press, 1991.
dc.relation.references[19] A. Ghatak and K. Thyagarajan, Optical Electronics. Cambridge, U. K.: Cambridge University Press, 2010.
dc.relation.references[20] T. C. Poon and P. P. Banerjee, Contemporary Optical Image Processing with MATLAB. Amsterdam, Netherlands: Elsevier, 2001. https://doi.org/10.1016/B978-008043788-0/50007-X
dc.relation.references[21] R. W. Dixon, “Acousto-optic devices and applications”, Proc. IEEE, vol. 55, No. 10, pp. 1681–1705, Oct. 1967.
dc.relation.references[22] R. K. Chang, “Acousto-optic tunable filters”, IEEE Trans. Sonics Ultrason., vol. 23, No. 1, pp. 2–6, Jan. 1976. https://doi.org/10.1109/T-SU.1976.30835
dc.relation.references[23] V. Ristic, Principles of Acoustic Devices. Hoboken, NJ, USA: Wiley, 1994.
dc.relation.references[24] A. Ballato, “Piezoelectric materials for acoustic wave applications”, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 32, No. 6, pp. 937–956, Nov. 1985.
dc.relation.references[25] M. V. Klein and T. E. Furtak, Optics. Hoboken, NJ, USA: Wiley, 1986.
dc.relation.references[26] K. Hinagawa, “Faraday and Kerr Effects in Ferromagnets”, in Magneto-Optics, S. Sugano and N. Kojima, Eds. Berlin/Heidelberg, Germany: Springer, 2000, pp. 137–178. https://doi.org/10.1007/978-3-662-04143-7_5
dc.relation.references[27] V. Zayets and K. Ando, “Magneto-optical devices for optical integrated circuits”, in Frontiers in Guided Wave Optics and Optoelectronics, 2010, p. 674. https://doi.org/10.5772/39543
dc.relation.references[28] T. Goto, R. Morimoto, J. W. Pritchard, M. Mina, H. Takagi, Y. Nakamura, et al., “Magneto-optical Qswitching using magnetic garnet film with micromagnetic domains”, Opt. Express, vol. 24, No. 16, pp. 17635–17643, Aug. 2016. https://doi.org/10.1364/OE.24.017635
dc.relation.references[29] F. Z. Zhou, W. T. Hu, Y. M. Chen, Z. S. Li, L. Q. Shen, X. Q. Fen, et al., “Compact, magneto-optic Qswitched, neodymium-doped bismuth germinate crystal (Nd: BGO) laser pumped by a laser diode”, Appl. Opt., vol. 34, No. 21, pp. 4266–4268, Jul. 1995. https://doi.org/10.1364/AO.34.004266
dc.relation.references[30] G. F. Dionne, Magnetic Oxides. Berlin, Germany: Springer, 2009. https://doi.org/10.1007/978-1-4419-0054-8
dc.relation.references[31] M. Shone, “The technology of YIG film growth”, Circuits, Syste ms Signal Process, vol. 4, pp. 89–103, 1985. https://doi.org/10.1007/BF01600074
dc.relation.references[32] P. W. Jang and J. Y. Kim, “New growth method of solid phase epitaxy in sputtered YIG films”, IEEE Trans. Magn., vol. 37, No. 4, pp. 2438–2440, Jul. 2001. https://doi.org/10.1109/20.951196
dc.relation.references[33] R. Morimoto, T. Goto, T. Taira, J. Pritchard, M. Mina, H. Takagi, et al., “Randomly polarised beam produced by magnetooptically Q-switched laser”, Sci. Rep., vol. 7, No. 1, p. 15398, Nov. 2017. https://doi.org/10.1038/s41598-017-15826-3
dc.relation.referencesen[1] A. Korpel, Acousto-Optics, 2nd ed., Marcel Dekker, 1997.
dc.relation.referencesen[2] J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications, Wiley, 1992.
dc.relation.referencesen[3] N. Uchida and A. Ohmachi, "Elastic and Photoelastic Properties of Silicon and Their Application to the Brillouin Scattering", Journal of the Physical Society of Japan, vol. 34, No. 2, pp. 651–655, 1973.
dc.relation.referencesen[4] P. Yeh, Optical Waves in Layered Media, Wiley, 1988.
dc.relation.referencesen[5] R. W. Boyd, Nonlinear Optics, 3rd ed., Academic Press, 2008.
dc.relation.referencesen[6] S. E. Harris, "Modulation of Light", in Quantum Electronics: A Treatise, vol. 1, H. Rabin and C. L. Tang, Eds., Academic Press, pp. 1–64, 1975.
dc.relation.referencesen[7] B. Saleh and M. Teich, Fundamentals of Photonics, 2nd ed., Wiley, 2007.
dc.relation.referencesen[8] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Hoboken, NJ, USA: Wiley, 2019.
dc.relation.referencesen[9] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications. New York, NY, USA: Oxford University Press, 2007.
dc.relation.referencesen[10] R. W. Boyd, Nonlinear Optics. San Diego, CA, USA: Academic Press, 2020.
dc.relation.referencesen[11] E. Hecht, Optics. New York, NY, USA: Pearson, 2017.
dc.relation.referencesen[12] G. P. Agrawal, Fiber-Optic Communication Systems. Hoboken, NJ, USA: Wiley, 2010. https://doi.org/10.1002/9780470918524
dc.relation.referencesen[13] S. Kasap, Optoelectronics and Photonics: Principles and Practices. New York, NY, USA: Pearson, 2013.
dc.relation.referencesen[14] V. Ristic, Principles of Acoustic Devices. Hoboken, NJ, USA: Wiley, 1994.
dc.relation.referencesen[15] A. Yariv, Optical Electronics in Modern Communications. New York, NY, USA: Oxford University Press, 1997.
dc.relation.referencesen[16] M. Born and E. Wolf, Principles of Optics. Cambridge, U.K., Cambridge University Press, 1999.
dc.relation.referencesen[17] A. Korpel, Acousto-Optics. New York, NY, USA: Marcel Dekker, 1988.
dc.relation.referencesen[18] M. J. Weber, Handbook of Optical Materials. Boca Raton, FL, USA: CRC Press, 1991.
dc.relation.referencesen[19] A. Ghatak and K. Thyagarajan, Optical Electronics. Cambridge, U. K., Cambridge University Press, 2010.
dc.relation.referencesen[20] T. C. Poon and P. P. Banerjee, Contemporary Optical Image Processing with MATLAB. Amsterdam, Netherlands: Elsevier, 2001. https://doi.org/10.1016/B978-008043788-0/50007-X
dc.relation.referencesen[21] R. W. Dixon, "Acousto-optic devices and applications", Proc. IEEE, vol. 55, No. 10, pp. 1681–1705, Oct. 1967.
dc.relation.referencesen[22] R. K. Chang, "Acousto-optic tunable filters", IEEE Trans. Sonics Ultrason., vol. 23, No. 1, pp. 2–6, Jan. 1976. https://doi.org/10.1109/T-SU.1976.30835
dc.relation.referencesen[23] V. Ristic, Principles of Acoustic Devices. Hoboken, NJ, USA: Wiley, 1994.
dc.relation.referencesen[24] A. Ballato, "Piezoelectric materials for acoustic wave applications", IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 32, No. 6, pp. 937–956, Nov. 1985.
dc.relation.referencesen[25] M. V. Klein and T. E. Furtak, Optics. Hoboken, NJ, USA: Wiley, 1986.
dc.relation.referencesen[26] K. Hinagawa, "Faraday and Kerr Effects in Ferromagnets", in Magneto-Optics, S. Sugano and N. Kojima, Eds. Berlin/Heidelberg, Germany: Springer, 2000, pp. 137–178. https://doi.org/10.1007/978-3-662-04143-7_5
dc.relation.referencesen[27] V. Zayets and K. Ando, "Magneto-optical devices for optical integrated circuits", in Frontiers in Guided Wave Optics and Optoelectronics, 2010, p. 674. https://doi.org/10.5772/39543
dc.relation.referencesen[28] T. Goto, R. Morimoto, J. W. Pritchard, M. Mina, H. Takagi, Y. Nakamura, et al., "Magneto-optical Qswitching using magnetic garnet film with micromagnetic domains", Opt. Express, vol. 24, No. 16, pp. 17635–17643, Aug. 2016. https://doi.org/10.1364/OE.24.017635
dc.relation.referencesen[29] F. Z. Zhou, W. T. Hu, Y. M. Chen, Z. S. Li, L. Q. Shen, X. Q. Fen, et al., "Compact, magneto-optic Qswitched, neodymium-doped bismuth germinate crystal (Nd: BGO) laser pumped by a laser diode", Appl. Opt., vol. 34, No. 21, pp. 4266–4268, Jul. 1995. https://doi.org/10.1364/AO.34.004266
dc.relation.referencesen[30] G. F. Dionne, Magnetic Oxides. Berlin, Germany: Springer, 2009. https://doi.org/10.1007/978-1-4419-0054-8
dc.relation.referencesen[31] M. Shone, "The technology of YIG film growth", Circuits, Syste ms Signal Process, vol. 4, pp. 89–103, 1985. https://doi.org/10.1007/BF01600074
dc.relation.referencesen[32] P. W. Jang and J. Y. Kim, "New growth method of solid phase epitaxy in sputtered YIG films", IEEE Trans. Magn., vol. 37, No. 4, pp. 2438–2440, Jul. 2001. https://doi.org/10.1109/20.951196
dc.relation.referencesen[33] R. Morimoto, T. Goto, T. Taira, J. Pritchard, M. Mina, H. Takagi, et al., "Randomly polarised beam produced by magnetooptically Q-switched laser", Sci. Rep., vol. 7, No. 1, p. 15398, Nov. 2017. https://doi.org/10.1038/s41598-017-15826-3
dc.relation.urihttps://doi.org/10.1002/9780470918524
dc.relation.urihttps://doi.org/10.1016/B978-008043788-0/50007-X
dc.relation.urihttps://doi.org/10.1109/T-SU.1976.30835
dc.relation.urihttps://doi.org/10.1007/978-3-662-04143-7_5
dc.relation.urihttps://doi.org/10.5772/39543
dc.relation.urihttps://doi.org/10.1364/OE.24.017635
dc.relation.urihttps://doi.org/10.1364/AO.34.004266
dc.relation.urihttps://doi.org/10.1007/978-1-4419-0054-8
dc.relation.urihttps://doi.org/10.1007/BF01600074
dc.relation.urihttps://doi.org/10.1109/20.951196
dc.relation.urihttps://doi.org/10.1038/s41598-017-15826-3
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectMagneto-optical modulation
dc.subjectQ-factor modulation
dc.subjectacousto-optical modulation
dc.subjectelectro-optical modulation
dc.subjectFaraday effect
dc.subjectlaser technology
dc.titleMethods of Active Light Modulation
dc.title.alternativeМетоди активної модуляції світла
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v14n2_Bzhenchakivskyi_V-Methods_of_Active_Light_1-5.pdf
Size:
202.4 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v14n2_Bzhenchakivskyi_V-Methods_of_Active_Light_1-5__COVER.png
Size:
1.32 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: