Activated Periodates and Sodium Percarbonate in Advanced Oxidation Processes of Organic Pollutants in Aqueous Media. A Review

dc.citation.epage130
dc.citation.issue2
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage119
dc.citation.volume18
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInstitute of Chemical Technology, Matunga
dc.contributor.authorSukhatskiy, Yuriy
dc.contributor.authorZnak, Zenovii
dc.contributor.authorSozanskyi, Martyn
dc.contributor.authorShepida, Mariana
dc.contributor.authorGogate, Parag R.
dc.contributor.authorTsymbaliuk, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:47:44Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractРозглянуто методи активації перйодатів і натрію перкарбонату для планування стратегічних підходів до підвищення ефективності й інтенсивності окиснювальної деградації органічних забруднювачів водних середовищ. Запропоновано класифікацію методів активації перйодатів на методи активації зовнішніми енергетичними впливами, методи каталітичної активації й інші методи активації (водню пероксидом, гідроксиламіном, у лужних умовах). Методи активації натрію перкарбонату поділено на методи гомогенної та гетерогенної активації.
dc.description.abstractThe methods of periodates and sodium percarbonate activation are considered for planning strategic approaches to increasing the efficiency and intensity of oxidative degradation of organic pollutants in aquatic environments. A classification of periodate activation methods is proposed, including activation methods by external energy effects, catalytic activation methods, and other activation methods (e.g., by hydrogen peroxide, by hydroxylamine, activation in alkaline medium). Activation methods for sodium percarbonate were divided into homogeneous and heterogeneous activation methods.
dc.format.extent119-130
dc.format.pages12
dc.identifier.citationActivated Periodates and Sodium Percarbonate in Advanced Oxidation Processes of Organic Pollutants in Aqueous Media. A Review / Yuriy Sukhatskiy, Zenovii Znak, Martyn Sozanskyi, Mariana Shepida, Parag R. Gogate, Volodymyr Tsymbaliuk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 119–130.
dc.identifier.citationenActivated Periodates and Sodium Percarbonate in Advanced Oxidation Processes of Organic Pollutants in Aqueous Media. A Review / Yuriy Sukhatskiy, Zenovii Znak, Martyn Sozanskyi, Mariana Shepida, Parag R. Gogate, Volodymyr Tsymbaliuk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 119–130.
dc.identifier.doidoi.org/10.23939/chcht18.02.119
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111786
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 2 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 2 (18), 2024
dc.relation.references[1] Zhang, X.; Yu, X.; Yu, X.; Kamali, M.; Appels, L.; Van der Bruggen, B.; Cabooter, D.; Dewil, R. Efficiency and mechanism of 2,4-dichlorophenol degradation by the UV/ process. Sci. Total Environ. 2021, 782, 146781. https://doi.org/10.1016/j.scitotenv.2021.146781
dc.relation.references[2] Sukhatskiy, Y.; Shepida, M.; Sozanskyi, M.; Znak, Z.; Gogate, P.R. Periodate-based advanced oxidation processes for wastewater treatment: A review. Sep. Purif. Technol. 2023, 304, 122305. https://doi.org/10.1016/j.seppur.2022.122305
dc.relation.references[3] Djaballah, M.L.; Merouani, S.; Bendjama, H.; Hamdaoui, O. Development of a free radical-based kinetics model for the oxidative degradation of chlorazol black in aqueous solution using periodate photoactivated process. J. Photochem. Photobiol. A: Chem. 2021, 408, 113102. https://doi.org/10.1016/j.jphotochem.2020.113102
dc.relation.references[4] Chen, L.; Duan, J.; Du, P.; Sun, W.; Lai, B.; Liu, W. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res. 2022, 221, 118747. https://doi.org/10.1016/j.watres.2022.118747
dc.relation.references[5] Nessaibia, M.; Ghodbane, H.; Ferkous, H.; Merouani, S.; Alam, M.; Balsamo, M.; Benguerba, Y.; Erto, A. Homogenous UV/periodate process for the treatment of acid orange 10 polluted water. Water 2023, 15, 758. https://doi.org/10.3390/w15040758
dc.relation.references[6] Niu, L.; Zhang, K.; Jiang, L.; Zhang, M.; Feng, M. Emerging periodate-based oxidation technologies for water decontamination: A state-of-the-art mechanistic review and future perspectives. J. Environ. Manag. 2022, 323, 116241. https://doi.org/10.1016/j.jenvman.2022.116241
dc.relation.references[7] Zhang, X.; Kamali, M.; Uleners, T.; Symus, J.; Zhang, S.; Liu, Z.; V. Costa, M.E.; Appels, L.; Cabooter, D.; Dewil, R. UV/TiO2/periodate system for the degradation of organic pollutants – Kinetics, mechanisms and toxicity study. Chem. Eng. J. 2022, 449, 137680. https://doi.org/10.1016/j.cej.2022.137680
dc.relation.references[8] Chamekh, H.; Chiha, M.; Ahmedchekkat, F.; Souames, N.E.H. Degradation of Orange G by UV/TiO2/ process: Effect of operational parameters and estimation of electrical energy consumption. Ind. J. Chem. Technol. 2023, 30, 293–307. https://doi.org/10.56042/ijct.v30i3.62814
dc.relation.references[9] Bendjama, M.; Hamdaoui, O.; Ferkous, H.; Alghyamah, A. Degradation of Safranin O in water by UV/TiO2/ process: Effect of operating conditions and mineralization. Catal. 2022, 12, 1460. https://doi.org/10.3390/catal12111460
dc.relation.references[10] Abdel-Aziz, R.; Ahmed, M.A.; Abdel Messih, M.F. A novel UV and visible light driven photocatalyst AgIO4/ZnO nanoparticles with highly enhanced photocatalytic performance for removal of rhodamine B and indigo carmine dyes. J. Photochem. Photobiol. A: Chem. 2020, 389, 112245. https://doi.org/10.1016/j.jphotochem.2019.112245
dc.relation.references[11] Ahmed, M.A.; Mahran, B.M.; Abbas, A.M.; Tarek, M.A.; Saed, A.M. Construction of direct Z-scheme AgIO4/TiO2 heterojunctions for exceptional photodegradation of rhodamine B dye. J. Dispers. Sci. Technol. 2020, 43, 349–363. https://doi.org/10.1080/01932691.2020.1841652
dc.relation.references[12] Lu, G.; Li, X.; Li, W.; Liu, Y.; Wang, N.; Pan, Z.; Zhang, G.; Zhang, Y.; Lai B. Thermo-activated periodate oxidation process for tetracycline degradation: Kinetics and byproducts transformation pathways. J. Hazard. Mater. 2024, 461, 132696. https://doi.org/10.1016/j.jhazmat.2023.132696
dc.relation.references[13] Zong, Y.; Shao, Y.; Zeng, Y.; Shao, B.; Xu, L.; Zhao, Z.; Liu, W.; Wu, D. Enhanced oxidation of organic contaminants by iron(II)-activated periodate: The significance of high-valent iron–oxo species. Environ. Sci. Technol. 2021, 55, 7634–7642. https://doi.org/10.1021/acs.est.1c00375
dc.relation.references[14] Seid-Mohammadi, A.; Asgari, G.; Shokoohi, R.; Baziar, M.; Mirzaei, N.; Adabi, S.; Partoei, K. Degradation of phenol using US/periodate/nZVI system from aqueous solutions. Glob. Nest. J. 2019, 21, 360–367. https://doi.org/10.30955/gnj.002990
dc.relation.references[15] Zong, Y.; Zhang, H.; Shao, Y.; Ji, W.; Zeng, Y.; Xu, L.; Wu, D. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants. J. Hazard. Mater. 2022, 423, 126991. https://doi.org/10.1016/j.jhazmat.2021.126991
dc.relation.references[16] Wu, Y.; Tan, X.; Zhao, J.; Ma, J. α-Fe2O3 mediated periodate activation for selective degradation of phenolic compounds via electron transfer pathway under visible irradiation. J. Hazard. Mater. 2023, 454, 131506. https://doi.org/10.1016/j.jhazmat.2023.131506
dc.relation.references[17] Wang, Q.; Zeng, H.; Liang, Y.; Cao, Ye.; Xiao, Y.; Ma, J. Degradation of bisphenol AF in water by periodate activation with FeS (mackinawite) and the role of sulfur species in the generation of sulfate radicals. Chem. Eng. J. 2021, 407, 126738. https://doi.org/10.1016/j.cej.2020.126738
dc.relation.references[18] He, L.; Yang, S.; Yang, L.; Shen, S.; Li, Y.; Kong, D.; Chen, Z.; Yang, S.; Wang, J.; Wu, L. et al. Ball milling-assisted preparation of sludge biochar as a novel periodate activator for nonradical degradation of sulfamethoxazole: Insight into the mechanism of enhanced electron transfer. Environ. Pollut. 2023, 316, 120620. https://doi.org/10.1016/j.envpol.2022.120620
dc.relation.references[19] Yang, B.; Ma, Q.; Hao, J.; Huang, J.; Wang, Q.; Wang, D.; Zhang, J. Periodate-based advanced oxidation processes: A review focusing on the overlooked role of high-valent iron and manganese species. Chemosphere 2023, 337, 139442. https://doi.org/10.1016/j.chemosphere.2023.139442
dc.relation.references[20] Xiang, L.; Almatrafi, E.; Yang, H.; Ye, H.; Qin, F.; Yi, H.; Fu, Y.; Huo, X.; Xia, W.; Li, H. et al. Coupled carbon structure and iron species for multiple periodate-based oxidation reaction. Chem. Eng. J. 2023, 455, 140560. https://doi.org/10.1016/j.cej.2022.140560
dc.relation.references[21] Zong, Y.; Shao, Y.; Ji, W.; Zeng, Y.; Xu, J.; Liu, W.; Xu, L.; Wu, D. Trace Mn(II)-catalyzed periodate oxidation of organic contaminants not relying on any transient reactive species: The substrate-dependent dual roles of in-situ formed colloidal MnO2. Chem. Eng. J. 2023, 451, 139106. https://doi.org/10.1016/j.cej.2022.139106
dc.relation.references[22] Yu, J.; Qiu, W.; Lin, X.; Wang, Y.; Lu, X.; Yu, Y.; Gu, H.; Heng, S.; Zhang, H.; Ma, J. Periodate activation with stable MgMn2O4 spinel for bisphenol A removal: Radical and non-radical pathways. Chem. Eng. J. 2023, 459, 141574. https://doi.org/10.1016/j.cej.2023.141574
dc.relation.references[23] Yang, T.; An, L.; Zeng, G.; Mai, J.; Li, Y.; Lian, J.; Zhang, H.; Li, J.; Cheng, X.; Jia, J. et al. Enhanced hydroxyl radical generation for micropollutant degradation in the In2O3/Vis-LED process through the addition of periodate. Water Res. 2023, 243, 120401. https://doi.org/10.1016/j.watres.2023.120401
dc.relation.references[24] Zhang, K.; Ye, C.; Lou, Y.; Yu, X.; Feng, M. Promoting selective water decontamination via boosting activation of periodate by nanostructured Ru-supported Co3O4 catalysts. J. Hazard. Mater. 2023, 442, 130058. https://doi.org/10.1016/j.jhazmat.2022.130058
dc.relation.references[25] Chen, W.; Dai, X.; Liu, Z.; Du, B.; Zheng, X.; Ma, D.; Huang, X. Sulfide-modified cobalt silicate activated periodate for nitenpyram degradation: Enhanced radical and non-radical pathway. Chem. Eng. J. 2023, 469, 143922. https://doi.org/10.1016/j.cej.2023.143922
dc.relation.references[26] Luo, K.; Shi, Y.; Huang, R.; Wei, X.; Wu, Z.; Zhou, P.; Zhang, H.; Wang, Y.; Xiong, Z.; Lai, B. Activation of periodate by N-doped iron-based porous carbon for degradation of sulfisoxazole: Significance of catalyst-mediated electron transfer mechanism. J. Hazard. Mater. 2023, 457, 131790. https://doi.org/10.1016/j.jhazmat.2023.131790
dc.relation.references[27] Long, Y.; Huang, S.; Zhao, S.; Xiao, G.; Sun, J.; Peng, D. Pyrolyzed iron-nitrogen-carbon hybrids for efficient contaminant decomposition via periodate activation: Active site and degradation mechanism. Sep. Purif. Technol. 2023, 317, 123945. https://doi.org/10.1016/j.seppur.2023.123945
dc.relation.references[28] Shen, S.; Jiang, W.; Zhao, Q.; He, L.; Ma, Y.; Zhou, X.; Wang, J.; Yang, L.; Chen, Z. Molten-salts assisted preparation of iron-nitrogen-carbon catalyst for efficient degradation of acetaminophen by periodate activation. Sci. Total Environ. 2023, 859, 160001. http://dx.doi.org/10.1016/j.scitotenv.2022.160001
dc.relation.references[29] Chen, Y.; Yuan, X.; Jiang, L.; Zhao, Y.; Chen, H.; Shangguan, Z.; Qin, C.; Wang, H. Insights into periodate oxidation of antibiotics mediated by visible-light-induced polymeric carbon nitride: Performance and mechanism. Chem. Eng. J. 2023, 457, 141147. https://doi.org/10.1016/j.cej.2022.141147
dc.relation.references[30] Long, Y.; Dai, J.; Zhao, S.; Su, Y.; Wang, Z.; Zhang, Z. Atomically dispersed cobalt sites on graphene as efficient periodate activators for selective organic pollutant degradation. Environ. Sci. Technol. 2021, 55, 5357–5370. https://doi.org/10.1021/acs.est.0c07794
dc.relation.references[31] Hu, J.; Zou, Y.; Li, Y.; Yu, Z.; Bao, Y.; Lin, L.; Li, B.; Li, X.-Y. Periodate activation by atomically dispersed Mn on carbon nanotubes for the production of iodate radicals and rapid degradation of sulfadiazine. Chem. Eng. J. 2023, 472, 144862. https://doi.org/10.1016/j.cej.2023.144862
dc.relation.references[32] He, L.; Lv, L.; Pillai, S.C.; Wang, H.; Xue, J.; Ma, Y.; Liu, Y.; Chen, Y.; Wu, L.; Zhang, Z. et al. Efficient degradation of diclofenac sodium by periodate activation using Fe/Cu bimetallic modified sewage sludge biochar/UV system. Sci. Total Environ. 2021, 783, 146974. https://doi.org/10.1016/j.scitotenv.2021.146974
dc.relation.references[33] Xiao, P.; Yi, X.; Wu, M.; Wang, X.; Zhu, S.; Gao, B.; Liu, Y.; Zhou, H. Catalytic performance and periodate activation mechanism of anaerobic sewage sludge-derived biochar. J. Hazard. Mater. 2022, 424, 127692. https://doi.org/10.1016/j.jhazmat.2021.127692
dc.relation.references[34] Yang, H.; Liu, Y.; Zhang, Y.; Liu, L.; Xia, S.; Xue, Q. Secondary pyrolysis oil-based drill-cutting ash for peroxymonosulfate/ periodate activation to remove tetracycline: A comparative study. Sep. Purif. Technol. 2022, 294, 121264. https://doi.org/10.1016/j.seppur.2022.121264
dc.relation.references[35] He, L.; Shi, Y.; Chen, Y.; Shen, S.; Xue, J.; Ma, Y.; Zheng, L.; Wu, L.; Zhang, Z.; Yang, L. Iron-manganese oxide loaded sludge biochar as a novel periodate activator for thiacloprid efficient degradation over a wide pH range. Sep. Purif. Technol. 2022, 288, 120703. https://doi.org/10.1016/j.seppur.2022.120703
dc.relation.references[36] Fang, G.; Li, J.; Zhang, C.; Qin, F.; Luo, H.; Huang, C.; Qin, D.; Ouyang, Z. Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar. Environ. Pollut. 2022, 300, 118939. https://doi.org/10.1016/j.envpol.2022.118939
dc.relation.references[37] Dai, J.; Wang, Z.; Chen, K.; Ding, D.; Yang, S.; Cai, T. Applying a novel advanced oxidation process of biochar activated periodate for the efficient degradation of bisphenol A: Two nonradical pathways. Chem. Eng. J. 2023, 453, 139889. https://doi.org/10.1016/j.cej.2022.139889
dc.relation.references[38] Hu, J.; Gong, H.; Liu, X.; Luo, J.; Zhu, N. Target-prepared sludge biochar-derived synergistic Mn and N/O induces high-performance periodate activation for reactive iodine radicals generation towards ofloxacin degradation. J. Hazard. Mater. 2023, 460, 132362. https://doi.org/10.1016/j.jhazmat.2023.132362
dc.relation.references[39] Sukhatskiy, Y.; Sozanskyi, M.; Shepida, M.; Znak, Z.; Gogate, P.R. Decolorization of an aqueous solution of methylene blue using a combination of ultrasound and peroxate process. Sep. Purif. Technol. 2022, 288, 120651. https://doi.org/10.1016/j.seppur.2022.120651
dc.relation.references[40] Chadi, N.E.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.; Ashokkumar, M. H2O2/periodate ( ): a novel advanced oxidation technology for the degradation of refractory organic pollutants. Environ. Sci.: Water Res. Technol. 2019, 5, 1113–1123. https://doi.org/10.1016/j.seppur.2022.120651
dc.relation.references[41] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Khomyak, S.V.; Mnykh, R.V.; Lysenko, A.V. The decomposition of the benzene in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii 2018, 1, 72–77.
dc.relation.references[42] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Vyrsta, K.R. The intensification of the cavitation decomposition of benzene. Voprosy Khimii i Khimicheskoi Tekhnologii 2019, 4, 55–61. https://doi.org/10.32434/0321-4095-2019-125-4-55-61
dc.relation.references[43] Yavorskiy, V.; Sukhatskiy, Y.; Znak, Z.; Mnykh, R. Investigations of cavitation processes in different types of emitters using sonochemical analysis. Chem. Chem. Technol. 2016, 10, 507–513. https://doi.org/10.23939/chcht10.04.507
dc.relation.references[44] Yavors’kyi, V.Т.; Znak, Z.O.; Sukhats’kyi, Y.V.; Mnykh, R.V. Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Mater. Sci. 2017, 52, 595–600. https://doi.org/10.1007/s11003-017-9995-8
dc.relation.references[45] Znak, Z.; Sukhatskiy, Y. The brandon method in modelling the cavitation processing of aqueous media. East.-Eur. J. Enterp. Technol. 2016, 3, 37–42. https://doi.org/10.15587/1729-4061.2016.72539
dc.relation.references[46] Sun, H.; He, F.; Choi, W. Production of reactive oxygen species by the reaction of periodate and hydroxylamine for rapid removal of organic pollutants and waterborne bacteria. Environ. Sci. Technol. 2020, 54, 6427–6437. https://dx.doi.org/10.1021/acs.est.0c00817
dc.relation.references[47] Xie, Z.-H.; He, C.-S.; Pei, D.-N.; Dong, Y.; Yang, S.-R.; Xiong, Z.; Zhou, P.; Pan, Z.-C.; Yao, G.; Lai, B. Review of characteristics, generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes (AOPs). Chem. Eng. J. 2023, 468, 143778. https://doi.org/10.1016/j.cej.2023.143778
dc.relation.references[48] Yu, X.; Kamali, M.; Aken, P.V.; Appels, L.; Van der Bruggen, B.; Dewil, R. Synergistic effects of the combined use of ozone and sodium percarbonate for the oxidative degradation of dichlorvos. J. Water Process Eng. 2021, 39, 101721. https://doi.org/10.1016/j.jwpe.2020.101721
dc.relation.references[49] Ma, J.; Yang, X.; Jiang, X.; Wen, J.; Li, J.; Zhong, Y.; Chi, L.; Wang, Y. Percarbonate persistence under different water chemistry conditions. Chem. Eng. J. 2020, 389, 123422. https://doi.org/10.1016/j.cej.2019.123422
dc.relation.references[50] Hung, C.-M.; Chen, C.-W.; Huang, C.-P.; Tsai, M.-L.; Wu, C.-H.; Lin, Y.-L.; Cheng, Y.-R.; Dong, C.-D. Efficacy and cytotoxicity of engineered ferromanganese-bearing sludge-derived biochar for percarbonate-induced phthalate ester degradation. J. Hazard. Mater. 2022, 422, 126922. https://doi.org/10.1016/j.jhazmat.2021.126922
dc.relation.references[51] Pimentel, J.A.I.; Dong, C.-D.; Garcia-Segura, S.; Abarca, R.R.M.; Chen, C.-W.; de Luna, M.D.G. Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation. Sci. Total Environ. 2021, 781, 146411. https://doi.org/10.1016/j.scitotenv.2021.146411
dc.relation.references[52] Huang, J.; Zhou, Z.; Ali, M.; Gu, X.; Danish, M.; Sui, Q.; Lyu, S. Degradation of trichloroethene by citric acid chelated Fe(II) catalyzing sodium percarbonate in the environment of sodium dodecyl sulfate aqueous solution. Chemosphere 2021, 281, 130798. https://doi.org/10.1016/j.chemosphere.2021.130798
dc.relation.references[53] Sablas, M.M.; de Luna, M.D.G.; Garcia-Segura, S.; Chen, C.-W.; Chen, C.-F.; Dong, C.-D. Percarbonate mediated advanced oxidation completely degrades recalcitrant pesticide imidacloprid: Role of reactive oxygen species and transformation products. Sep. Purif. Technol. 2020, 250, 117269. https://doi.org/10.1016/j.seppur.2020.117269
dc.relation.references[54] Ling, X.; Deng, J.; Ye, C.; Cai, A.; Ruan, S.; Chen, M.; Li, X. Fe(II)-activated sodium percarbonate for improving sludge dewaterability: Experimental and theoretical investigation combined with the evaluation of subsequent utilization. Sci. Total Environ. 2021, 799, 149382. https://doi.org/10.1016/j.scitotenv.2021.149382
dc.relation.references[55] Li, Y.J.; Dong, H.R.; Xiao, J.Y.; Li, L.; Chu, D.D.; Hou, X.Z.; Xiang, S.X.; Dong, Q.X.; Zhang, H.X. Advanced oxidation processes for water purification using percarbonate: Insights into oxidation mechanisms, challenges, and enhancing strategies. J. Hazard. Mater. 2023, 442, 130014. https://doi.org/10.1016/j.jhazmat.2022.130014
dc.relation.references[56] Ma, J.; Xia, X.C.; Ma, Y.; Luo, Y.J.; Zhong, Y.J. Stability of dissolved percarbonate and its implications for groundwater remediation. Chemosph. 2018, 205, 41–44. https://doi.org/10.1016/j.chemosphere.2018.04.084
dc.relation.references[57] Zhang, B.T.; Kuang, L.L.; Teng, Y.G.; Fan, M.H.; Ma, Y. Application of percarbonate and peroxymonocarbonate in decontamination technologies. J. Environ. Sci. 2021, 105, 100–115. https://doi.org/10.1016/j.jes.2020.12.031
dc.relation.references[58] Thanekar, P.; Lakshmi, N.J.; Shah, M.; Gogate, P.R.; Znak, Z.; Sukhatskiy, Y.; Mnykh, R. Degradation of dimethoate using combined approaches based on hydrodynamic cavitation and advanced oxidation processes. Process Saf. Environ. Prot. 2020, 143, 222–230. https://doi.org/10.1016/j.psep.2020.07.002
dc.relation.references[59] Thanekar, P.; Gogate, P.R. Improved processes involving hydrodynamic cavitation and oxidants for treatment of real industrial effluent. Sep. Purif. Technol. 2020, 239, 116563. https://doi.org/10.1016/j.seppur.2020.116563
dc.relation.references[60] Odehnalová, K.; Přibilová, P.; Maršálková, E.; Zezulka, Š.; Pochylý, F.; Rudolf, P.; Maršálek, B. Hydrodynamic cavitation-enhanced activation of sodium percarbonate for estrogen removal. Water Sci. Technol. 2023, 88, 2905–2916. https://doi.org/10.2166/wst.2023.382
dc.relation.references[61] Dular, M.; Griessler-Bulc, T.; Gutierrez-Aguirre, I.; Heath, E.; Kosjek, T.; Klemenčič, A.K.; Oder, M.; Petkovšek, M.; Rački, N.; Ravnikar M. et al. Use of hydrodynamic cavitation in (waste)water treatment. Ultrason. Sonochem. 2016, 29, 577–588. https://doi.org/10.1016/j.ultsonch.2015.10.010
dc.relation.references[62] Maršalek, B.; Zezulka, S.; Maršalkova, E.; Pochyly, F; Rudolf, P. Synergistic effects of trace concentrations of hydrogen peroxide used in a novel hydrodynamic cavitation device allows for selective removal of cyanobacteria. Chem. Eng. J. 2020, 382, 122383. https://doi.org/10.1016/j.cej.2019.122383
dc.relation.references[63] Panda, D.; Saharan, V.K.; Manickam, S. Controlled hydrodynamic cavitation: A review of recent advances and perspectives for greener processing. Processes 2020, 8, 220. https://doi.org/10.3390/pr8020220
dc.relation.references[64] Badve, M.; Gogate, P.; Pandit, A.; Csoka, L. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep. Purif. Technol. 2013, 106, 15–21. https://doi.org/10.1016/j.seppur.2012.12.029
dc.relation.references[65] Zheng, H.X.; Zheng, Y.; Zhu, J.S. Recent developments in hydrodynamic cavitation reactors: Cavitation mechanism, reactor design, and applications. Eng. 2022, 19, 180–198. https://doi.org/10.1016/j.eng.2022.04.027
dc.relation.references[66] Amin, L.P.; Gogate, P.R.; Burgess, A.E.; Bremner, D.H. Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry. Chem. Eng. J. 2010, 156, 165–169. https://doi.org/10.1016/j.cej.2009.09.043
dc.relation.references[67] Kohno, M.; Mokudai, T.; Ozawa, T.; Niwano, Y. Free radical formation from sonolysis of water in the presence of different gases. J. Clin. Biochem. Nutr. 2011, 49, 96–101. https://doi.org/10.3164/jcbn.10-130
dc.relation.references[68] Thanekar, P.; Gogate, P.R.; Znak, Z.; Sukhatskiy, Y.; Mnykh, R. Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrason. Sonochem. 2021, 70, 105296. https://doi.org/10.1016/j.ultsonch.2020.105296
dc.relation.references[69] Sukhatskiy, Y.; Znak, Z.; Zin, O.; Chupinskyi, D. Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chem. Chem. Technol. 2021, 15, 284–290. https://doi.org/10.23939/chcht15.02.284
dc.relation.references[70] Torres, R.A.; Pétrier, C.; Combet, E.; Carrier, M.; Pulgarin, C. Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrason. Sonochem. 2008, 15, 605–611. https://doi.org/10.1016/j.ultsonch.2007.07.003
dc.relation.references[71] Lin, X.; He, J.; Xu, L.; Fang, Y.; Rao, G. Degradation of metronidazole by ultrasound-assisted sodium percarbonate activated by ferrous sulfate. Water Pollut. Treat. 2020, 8, 66–76. https://doi.org/10.12677/wpt.2020.83010
dc.relation.references[72] Eslami, A.; Mehdipour, F.; Lin, K.-Y.A.; Maleksari, H.S.; Mirzaei, F.; Ghanbari, F. Sono-photo activation of percarbonate for the degradation of organic dye: The effect of water matrix and identification of by-products. J. Water Process Eng. 2020, 33, 100998. https://doi.org/10.1016/j.jwpe.2019.100998
dc.relation.references[73] Wang, T.; Jia, H.; Guo, X.; Xia, T.; Qu, G.; Sun, Q.; Yin, X. Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma. Chem. Eng. J. 2018, 346, 65–76. https://doi.org/10.1016/j.cej.2018.04.024
dc.relation.references[74] Tang, S.; Yuan, D.; Rao, Y.; Li, M.; Shi, G.; Gu, J.; Zhang, T. Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. J. Hazard. Mater. 2019, 366, 669–676. https://doi.org/10.1016/j.jhazmat.2018.12.056
dc.relation.references[75] Geng, T.; Yi, C.; Yi, R.; Yang, L.; Nawaz, M.I. Mechanism and degradation pathways of bisphenol A in aqueous solution by strong ionization discharge. Water Air Soil Pollut. 2020, 231, 185. https://doi.org/10.1007/s11270-020-04563-5
dc.relation.references[76] Gao, J.; Duan, X.; O’Shea, K.; Dionysiou, D.D. Degradation and transformation of bisphenol A in UV/sodium percarbonate: Dual role of carbonate radical anion. Water Res. 2020, 171, 115394. https://doi.org/10.1016/j.watres.2019.115394
dc.relation.references[77] Qiu, Z.; Rao, G.; Wang, L.; Wang, L. Photo-assisted degradation of naphthalene by sodium percarbonate system. Adv. Environ. Prot. 2021, 11, 497–505. https://doi.org/10.12677/AEP.2021.113055
dc.relation.references[78] Ortiz-Marin, A.D.; Bandala, E.R.; Ramírez, K.; Moeller-Chávez, G.; Pérez-Estrada, L.; Ramírez-Pereda, B.; Amabilis-Sosa, L.E. Kinetic modeling of UV/H2O2, UV/sodium percarbonate, and UV/potassium peroxymonosulfate processes for albendazole degradation. Reac. Kinet. Mech. Catal. 2022, 135, 639–654. https://doi.org/10.1007/s11144-021-02152-z
dc.relation.references[79] Li, L.; Guo, R.; Zhang, S.; Yuan, Y. Sustainable and effective degradation of aniline by sodium percarbonate activated with UV in aqueous solution: Kinetics, mechanism and identification of reactive species. Environ. Res. 2022, 207, 112176. https://doi.org/10.1016/j.envres.2021.112176
dc.relation.references[80] Mohammadi, S.; Moussavi, G.; Yaghmaeian, K.; Giannakis, S. Development of a percarbonate-enhanced Vacuum UV process for simultaneous fluoroquinolone antibiotics removal and fecal bacteria inactivation under a continuous flow mode of operation. Chem. Eng. J. 2022, 431, 134064. https://doi.org/10.1016/j.cej.2021.134064
dc.relation.references[81] Kozak, J.; Włodarczyk-Makuła, M. The use of sodium percarbonate in the Fenton reaction for the PAHs oxidation. Civ. Environ. Eng. Rep. 2018, 28, 124–139. https://doi.org/10.2478/ceer-2018-0024
dc.relation.references[82] Kozak, J.; Włodarczyk-Makuła, M. The use of sodium carbonate-hydrogen peroxide (2/3) in the modified Fenton reaction to degradation PAHs in coke wastewater. Proc. 2019, 16, 44–48. https://doi.org/10.3390/proceedings2019016044
dc.relation.references[83] Pieczykolan, B.; Płonka, I.; Barbusiński, K. Discoloration of dye wastewater by modified UV-Fenton process with sodium percarbonate. Archit. Civ. Eng. Environ. 2016, 9, 135–140. https://doi.org/10.21307/acee-2016-060
dc.relation.references[84] Tang, P.; Jiang, W.; Lu, S.; Zhang, X.; Xue, Y.; Qiu, Z.; Sui, Q. Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol. Environ. Technol. 2019, 40, 356–364. https://doi.org/10.1080/09593330.2017.1393012
dc.relation.references[85] Farooq, U.; Sajid, M.; Shan, A.; Wang, X.; Lyu, S. Role of cysteine in enhanced degradation of trichloroethane under ferrous percarbonate system. Chem. Eng. J. 2021, 423, 130221. https://doi.org/10.1016/j.cej.2021.130221
dc.relation.references[86] Fu, X.; Wei, X.; Zhang, W.; Yan, W.; Wei, P.; Lyu, S. Enhanced effects of reducing agent on oxalate chelated Fe(II) catalyzed percarbonate system for benzene degradation. Water Supply 2022, 22, 208–219. https://doi.org/10.2166/ws.2021.278
dc.relation.references[87] Pan, S.; Zhao, T.; Liu, H.; Li, X.; Zhao, M.; Yuan, D.; Jiao, T.; Zhang, Q.; Tang, S. Enhancing ferric ion/sodium percarbonate Fenton-like reaction with tungsten disulfide cocatalyst for metronidazole decomposition over wide pH range. Chem. Eng. J. 2023, 452, 139245. https://doi.org/10.1016/j.cej.2022.139245
dc.relation.references[88] Zhou, Z.; Ye, G.; Zong, Y.; Zhao, Z.; Wu. D. Improvement of Fe(III)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism. J. Hazard. Mater. 2024, 464, 132924. https://doi.org/10.1016/j.jhazmat.2023.132924
dc.relation.references[89] Pang, K.; Fang, G.; Wang, Y.; Huang, Y.; Huang, D.; Liu, X. Synthesis of Mo based/carbon nanocomposistes for water decontamination via percarbonate activation. Catal. Lett. 2024, 154, 2999–3008. https://doi.org/10.1007/s10562-023-04517-6
dc.relation.references[90] Li, Y.; Dong, H.; Li, L.; Xiao, J.; Xiao, S.; Jin, Z. Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite. Water Res. 2021, 202, 117451. https://doi.org/10.1016/j.watres.2021.117451
dc.relation.references[91] Li, Y.; Dong, H.; Xiao, J.; Li, L.; Dong, J.; Huang, D.; Deng, J. Ascorbic acid-enhanced CuO/percarbonate oxidation: Insights into the pH-dependent mechanism. ACS ES&T Eng. 2023, 3, 798–810. https://doi.org/10.1021/acsestengg.2c00410
dc.relation.references[92] Liu, M.; Ye, Y.; Xu, L.; Gao, T.; Zhong, A.; Song, Z. Recent advances in nanoscale zero-valent iron (nZVI)-based advanced oxidation processes (AOPs): Applications, mechanisms, and future prospects. Nanomaterials 2023, 13, 2830. https://doi.org/10.3390/nano13212830
dc.relation.references[93] Makido, O.; Khovanets’, G.; Kochubei, V.; Yevchuk, I. Nanostructured magnetically sensitive catalysts for the Fenton system: Obtaining, research, application. Chem. Chem. Technol. 2022, 16, 227–236. https://doi.org/10.23939/chcht16.02.227
dc.relation.references[94] Che, M.; Xiao, J.; Shan, C.; Chen, S.; Huang, R.; Zhou, Y.; Cui, M.; Qi, W.; Su, R. Efficient removal of chloroform from groundwater using activated percarbonate by cellulose nanofiber-supported Fe/Cu nanocomposites. Water Res. 2023, 243, 120420. https://doi.org/10.1016/j.watres.2023.120420
dc.relation.references[95] Rashid, T.; Iqbal, D.; Hazafa, A.; Hussain, S.; Sher, F.; Sher, F. Formulation of zeolite supported nano-metallic catalyst and applications in textile effluent treatment. J. Environ. Chem. Eng. 2020, 8, 104023. https://doi.org/10.1016/j.jece.2020.104023
dc.relation.references[96] Xiao, Y.; Liu, X.; Huang, Y.; Kang, W.; Wang, Z.; Zheng, H. Roles of hydroxyl and carbonate radicals in bisphenol A degradation via a nanoscale zero-valent iron/percarbonate system: Influencing factors and mechanisms. RSC Adv. 2021, 11, 3636–3644. https://doi.org/10.1039/D0RA08395J
dc.relation.references[97] Rostami-Javanroudi, S.; Fattahi, N.; Sharafi, K.; Arfaeinia, H.; Moradi, M. Chalcopyrite as an oxidants activator for organic pollutant remediation: A review of mechanisms, parameters, and future perspectives. Heliyon 2023, 9, e19992. https://doi.org/10.1016/j.heliyon.2023.e19992
dc.relation.referencesen[1] Zhang, X.; Yu, X.; Yu, X.; Kamali, M.; Appels, L.; Van der Bruggen, B.; Cabooter, D.; Dewil, R. Efficiency and mechanism of 2,4-dichlorophenol degradation by the UV/ process. Sci. Total Environ. 2021, 782, 146781. https://doi.org/10.1016/j.scitotenv.2021.146781
dc.relation.referencesen[2] Sukhatskiy, Y.; Shepida, M.; Sozanskyi, M.; Znak, Z.; Gogate, P.R. Periodate-based advanced oxidation processes for wastewater treatment: A review. Sep. Purif. Technol. 2023, 304, 122305. https://doi.org/10.1016/j.seppur.2022.122305
dc.relation.referencesen[3] Djaballah, M.L.; Merouani, S.; Bendjama, H.; Hamdaoui, O. Development of a free radical-based kinetics model for the oxidative degradation of chlorazol black in aqueous solution using periodate photoactivated process. J. Photochem. Photobiol. A: Chem. 2021, 408, 113102. https://doi.org/10.1016/j.jphotochem.2020.113102
dc.relation.referencesen[4] Chen, L.; Duan, J.; Du, P.; Sun, W.; Lai, B.; Liu, W. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res. 2022, 221, 118747. https://doi.org/10.1016/j.watres.2022.118747
dc.relation.referencesen[5] Nessaibia, M.; Ghodbane, H.; Ferkous, H.; Merouani, S.; Alam, M.; Balsamo, M.; Benguerba, Y.; Erto, A. Homogenous UV/periodate process for the treatment of acid orange 10 polluted water. Water 2023, 15, 758. https://doi.org/10.3390/w15040758
dc.relation.referencesen[6] Niu, L.; Zhang, K.; Jiang, L.; Zhang, M.; Feng, M. Emerging periodate-based oxidation technologies for water decontamination: A state-of-the-art mechanistic review and future perspectives. J. Environ. Manag. 2022, 323, 116241. https://doi.org/10.1016/j.jenvman.2022.116241
dc.relation.referencesen[7] Zhang, X.; Kamali, M.; Uleners, T.; Symus, J.; Zhang, S.; Liu, Z.; V. Costa, M.E.; Appels, L.; Cabooter, D.; Dewil, R. UV/TiO2/periodate system for the degradation of organic pollutants – Kinetics, mechanisms and toxicity study. Chem. Eng. J. 2022, 449, 137680. https://doi.org/10.1016/j.cej.2022.137680
dc.relation.referencesen[8] Chamekh, H.; Chiha, M.; Ahmedchekkat, F.; Souames, N.E.H. Degradation of Orange G by UV/TiO2/ process: Effect of operational parameters and estimation of electrical energy consumption. Ind. J. Chem. Technol. 2023, 30, 293–307. https://doi.org/10.56042/ijct.v30i3.62814
dc.relation.referencesen[9] Bendjama, M.; Hamdaoui, O.; Ferkous, H.; Alghyamah, A. Degradation of Safranin O in water by UV/TiO2/ process: Effect of operating conditions and mineralization. Catal. 2022, 12, 1460. https://doi.org/10.3390/catal12111460
dc.relation.referencesen[10] Abdel-Aziz, R.; Ahmed, M.A.; Abdel Messih, M.F. A novel UV and visible light driven photocatalyst AgIO4/ZnO nanoparticles with highly enhanced photocatalytic performance for removal of rhodamine B and indigo carmine dyes. J. Photochem. Photobiol. A: Chem. 2020, 389, 112245. https://doi.org/10.1016/j.jphotochem.2019.112245
dc.relation.referencesen[11] Ahmed, M.A.; Mahran, B.M.; Abbas, A.M.; Tarek, M.A.; Saed, A.M. Construction of direct Z-scheme AgIO4/TiO2 heterojunctions for exceptional photodegradation of rhodamine B dye. J. Dispers. Sci. Technol. 2020, 43, 349–363. https://doi.org/10.1080/01932691.2020.1841652
dc.relation.referencesen[12] Lu, G.; Li, X.; Li, W.; Liu, Y.; Wang, N.; Pan, Z.; Zhang, G.; Zhang, Y.; Lai B. Thermo-activated periodate oxidation process for tetracycline degradation: Kinetics and byproducts transformation pathways. J. Hazard. Mater. 2024, 461, 132696. https://doi.org/10.1016/j.jhazmat.2023.132696
dc.relation.referencesen[13] Zong, Y.; Shao, Y.; Zeng, Y.; Shao, B.; Xu, L.; Zhao, Z.; Liu, W.; Wu, D. Enhanced oxidation of organic contaminants by iron(II)-activated periodate: The significance of high-valent iron–oxo species. Environ. Sci. Technol. 2021, 55, 7634–7642. https://doi.org/10.1021/acs.est.1c00375
dc.relation.referencesen[14] Seid-Mohammadi, A.; Asgari, G.; Shokoohi, R.; Baziar, M.; Mirzaei, N.; Adabi, S.; Partoei, K. Degradation of phenol using US/periodate/nZVI system from aqueous solutions. Glob. Nest. J. 2019, 21, 360–367. https://doi.org/10.30955/gnj.002990
dc.relation.referencesen[15] Zong, Y.; Zhang, H.; Shao, Y.; Ji, W.; Zeng, Y.; Xu, L.; Wu, D. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants. J. Hazard. Mater. 2022, 423, 126991. https://doi.org/10.1016/j.jhazmat.2021.126991
dc.relation.referencesen[16] Wu, Y.; Tan, X.; Zhao, J.; Ma, J. α-Fe2O3 mediated periodate activation for selective degradation of phenolic compounds via electron transfer pathway under visible irradiation. J. Hazard. Mater. 2023, 454, 131506. https://doi.org/10.1016/j.jhazmat.2023.131506
dc.relation.referencesen[17] Wang, Q.; Zeng, H.; Liang, Y.; Cao, Ye.; Xiao, Y.; Ma, J. Degradation of bisphenol AF in water by periodate activation with FeS (mackinawite) and the role of sulfur species in the generation of sulfate radicals. Chem. Eng. J. 2021, 407, 126738. https://doi.org/10.1016/j.cej.2020.126738
dc.relation.referencesen[18] He, L.; Yang, S.; Yang, L.; Shen, S.; Li, Y.; Kong, D.; Chen, Z.; Yang, S.; Wang, J.; Wu, L. et al. Ball milling-assisted preparation of sludge biochar as a novel periodate activator for nonradical degradation of sulfamethoxazole: Insight into the mechanism of enhanced electron transfer. Environ. Pollut. 2023, 316, 120620. https://doi.org/10.1016/j.envpol.2022.120620
dc.relation.referencesen[19] Yang, B.; Ma, Q.; Hao, J.; Huang, J.; Wang, Q.; Wang, D.; Zhang, J. Periodate-based advanced oxidation processes: A review focusing on the overlooked role of high-valent iron and manganese species. Chemosphere 2023, 337, 139442. https://doi.org/10.1016/j.chemosphere.2023.139442
dc.relation.referencesen[20] Xiang, L.; Almatrafi, E.; Yang, H.; Ye, H.; Qin, F.; Yi, H.; Fu, Y.; Huo, X.; Xia, W.; Li, H. et al. Coupled carbon structure and iron species for multiple periodate-based oxidation reaction. Chem. Eng. J. 2023, 455, 140560. https://doi.org/10.1016/j.cej.2022.140560
dc.relation.referencesen[21] Zong, Y.; Shao, Y.; Ji, W.; Zeng, Y.; Xu, J.; Liu, W.; Xu, L.; Wu, D. Trace Mn(II)-catalyzed periodate oxidation of organic contaminants not relying on any transient reactive species: The substrate-dependent dual roles of in-situ formed colloidal MnO2. Chem. Eng. J. 2023, 451, 139106. https://doi.org/10.1016/j.cej.2022.139106
dc.relation.referencesen[22] Yu, J.; Qiu, W.; Lin, X.; Wang, Y.; Lu, X.; Yu, Y.; Gu, H.; Heng, S.; Zhang, H.; Ma, J. Periodate activation with stable MgMn2O4 spinel for bisphenol A removal: Radical and non-radical pathways. Chem. Eng. J. 2023, 459, 141574. https://doi.org/10.1016/j.cej.2023.141574
dc.relation.referencesen[23] Yang, T.; An, L.; Zeng, G.; Mai, J.; Li, Y.; Lian, J.; Zhang, H.; Li, J.; Cheng, X.; Jia, J. et al. Enhanced hydroxyl radical generation for micropollutant degradation in the In2O3/Vis-LED process through the addition of periodate. Water Res. 2023, 243, 120401. https://doi.org/10.1016/j.watres.2023.120401
dc.relation.referencesen[24] Zhang, K.; Ye, C.; Lou, Y.; Yu, X.; Feng, M. Promoting selective water decontamination via boosting activation of periodate by nanostructured Ru-supported Co3O4 catalysts. J. Hazard. Mater. 2023, 442, 130058. https://doi.org/10.1016/j.jhazmat.2022.130058
dc.relation.referencesen[25] Chen, W.; Dai, X.; Liu, Z.; Du, B.; Zheng, X.; Ma, D.; Huang, X. Sulfide-modified cobalt silicate activated periodate for nitenpyram degradation: Enhanced radical and non-radical pathway. Chem. Eng. J. 2023, 469, 143922. https://doi.org/10.1016/j.cej.2023.143922
dc.relation.referencesen[26] Luo, K.; Shi, Y.; Huang, R.; Wei, X.; Wu, Z.; Zhou, P.; Zhang, H.; Wang, Y.; Xiong, Z.; Lai, B. Activation of periodate by N-doped iron-based porous carbon for degradation of sulfisoxazole: Significance of catalyst-mediated electron transfer mechanism. J. Hazard. Mater. 2023, 457, 131790. https://doi.org/10.1016/j.jhazmat.2023.131790
dc.relation.referencesen[27] Long, Y.; Huang, S.; Zhao, S.; Xiao, G.; Sun, J.; Peng, D. Pyrolyzed iron-nitrogen-carbon hybrids for efficient contaminant decomposition via periodate activation: Active site and degradation mechanism. Sep. Purif. Technol. 2023, 317, 123945. https://doi.org/10.1016/j.seppur.2023.123945
dc.relation.referencesen[28] Shen, S.; Jiang, W.; Zhao, Q.; He, L.; Ma, Y.; Zhou, X.; Wang, J.; Yang, L.; Chen, Z. Molten-salts assisted preparation of iron-nitrogen-carbon catalyst for efficient degradation of acetaminophen by periodate activation. Sci. Total Environ. 2023, 859, 160001. http://dx.doi.org/10.1016/j.scitotenv.2022.160001
dc.relation.referencesen[29] Chen, Y.; Yuan, X.; Jiang, L.; Zhao, Y.; Chen, H.; Shangguan, Z.; Qin, C.; Wang, H. Insights into periodate oxidation of antibiotics mediated by visible-light-induced polymeric carbon nitride: Performance and mechanism. Chem. Eng. J. 2023, 457, 141147. https://doi.org/10.1016/j.cej.2022.141147
dc.relation.referencesen[30] Long, Y.; Dai, J.; Zhao, S.; Su, Y.; Wang, Z.; Zhang, Z. Atomically dispersed cobalt sites on graphene as efficient periodate activators for selective organic pollutant degradation. Environ. Sci. Technol. 2021, 55, 5357–5370. https://doi.org/10.1021/acs.est.0c07794
dc.relation.referencesen[31] Hu, J.; Zou, Y.; Li, Y.; Yu, Z.; Bao, Y.; Lin, L.; Li, B.; Li, X.-Y. Periodate activation by atomically dispersed Mn on carbon nanotubes for the production of iodate radicals and rapid degradation of sulfadiazine. Chem. Eng. J. 2023, 472, 144862. https://doi.org/10.1016/j.cej.2023.144862
dc.relation.referencesen[32] He, L.; Lv, L.; Pillai, S.C.; Wang, H.; Xue, J.; Ma, Y.; Liu, Y.; Chen, Y.; Wu, L.; Zhang, Z. et al. Efficient degradation of diclofenac sodium by periodate activation using Fe/Cu bimetallic modified sewage sludge biochar/UV system. Sci. Total Environ. 2021, 783, 146974. https://doi.org/10.1016/j.scitotenv.2021.146974
dc.relation.referencesen[33] Xiao, P.; Yi, X.; Wu, M.; Wang, X.; Zhu, S.; Gao, B.; Liu, Y.; Zhou, H. Catalytic performance and periodate activation mechanism of anaerobic sewage sludge-derived biochar. J. Hazard. Mater. 2022, 424, 127692. https://doi.org/10.1016/j.jhazmat.2021.127692
dc.relation.referencesen[34] Yang, H.; Liu, Y.; Zhang, Y.; Liu, L.; Xia, S.; Xue, Q. Secondary pyrolysis oil-based drill-cutting ash for peroxymonosulfate/ periodate activation to remove tetracycline: A comparative study. Sep. Purif. Technol. 2022, 294, 121264. https://doi.org/10.1016/j.seppur.2022.121264
dc.relation.referencesen[35] He, L.; Shi, Y.; Chen, Y.; Shen, S.; Xue, J.; Ma, Y.; Zheng, L.; Wu, L.; Zhang, Z.; Yang, L. Iron-manganese oxide loaded sludge biochar as a novel periodate activator for thiacloprid efficient degradation over a wide pH range. Sep. Purif. Technol. 2022, 288, 120703. https://doi.org/10.1016/j.seppur.2022.120703
dc.relation.referencesen[36] Fang, G.; Li, J.; Zhang, C.; Qin, F.; Luo, H.; Huang, C.; Qin, D.; Ouyang, Z. Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar. Environ. Pollut. 2022, 300, 118939. https://doi.org/10.1016/j.envpol.2022.118939
dc.relation.referencesen[37] Dai, J.; Wang, Z.; Chen, K.; Ding, D.; Yang, S.; Cai, T. Applying a novel advanced oxidation process of biochar activated periodate for the efficient degradation of bisphenol A: Two nonradical pathways. Chem. Eng. J. 2023, 453, 139889. https://doi.org/10.1016/j.cej.2022.139889
dc.relation.referencesen[38] Hu, J.; Gong, H.; Liu, X.; Luo, J.; Zhu, N. Target-prepared sludge biochar-derived synergistic Mn and N/O induces high-performance periodate activation for reactive iodine radicals generation towards ofloxacin degradation. J. Hazard. Mater. 2023, 460, 132362. https://doi.org/10.1016/j.jhazmat.2023.132362
dc.relation.referencesen[39] Sukhatskiy, Y.; Sozanskyi, M.; Shepida, M.; Znak, Z.; Gogate, P.R. Decolorization of an aqueous solution of methylene blue using a combination of ultrasound and peroxate process. Sep. Purif. Technol. 2022, 288, 120651. https://doi.org/10.1016/j.seppur.2022.120651
dc.relation.referencesen[40] Chadi, N.E.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.; Ashokkumar, M. H2O2/periodate ( ): a novel advanced oxidation technology for the degradation of refractory organic pollutants. Environ. Sci., Water Res. Technol. 2019, 5, 1113–1123. https://doi.org/10.1016/j.seppur.2022.120651
dc.relation.referencesen[41] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Khomyak, S.V.; Mnykh, R.V.; Lysenko, A.V. The decomposition of the benzene in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii 2018, 1, 72–77.
dc.relation.referencesen[42] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Vyrsta, K.R. The intensification of the cavitation decomposition of benzene. Voprosy Khimii i Khimicheskoi Tekhnologii 2019, 4, 55–61. https://doi.org/10.32434/0321-4095-2019-125-4-55-61
dc.relation.referencesen[43] Yavorskiy, V.; Sukhatskiy, Y.; Znak, Z.; Mnykh, R. Investigations of cavitation processes in different types of emitters using sonochemical analysis. Chem. Chem. Technol. 2016, 10, 507–513. https://doi.org/10.23939/chcht10.04.507
dc.relation.referencesen[44] Yavors’kyi, V.T.; Znak, Z.O.; Sukhats’kyi, Y.V.; Mnykh, R.V. Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Mater. Sci. 2017, 52, 595–600. https://doi.org/10.1007/s11003-017-9995-8
dc.relation.referencesen[45] Znak, Z.; Sukhatskiy, Y. The brandon method in modelling the cavitation processing of aqueous media. East.-Eur. J. Enterp. Technol. 2016, 3, 37–42. https://doi.org/10.15587/1729-4061.2016.72539
dc.relation.referencesen[46] Sun, H.; He, F.; Choi, W. Production of reactive oxygen species by the reaction of periodate and hydroxylamine for rapid removal of organic pollutants and waterborne bacteria. Environ. Sci. Technol. 2020, 54, 6427–6437. https://dx.doi.org/10.1021/acs.est.0c00817
dc.relation.referencesen[47] Xie, Z.-H.; He, C.-S.; Pei, D.-N.; Dong, Y.; Yang, S.-R.; Xiong, Z.; Zhou, P.; Pan, Z.-C.; Yao, G.; Lai, B. Review of characteristics, generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes (AOPs). Chem. Eng. J. 2023, 468, 143778. https://doi.org/10.1016/j.cej.2023.143778
dc.relation.referencesen[48] Yu, X.; Kamali, M.; Aken, P.V.; Appels, L.; Van der Bruggen, B.; Dewil, R. Synergistic effects of the combined use of ozone and sodium percarbonate for the oxidative degradation of dichlorvos. J. Water Process Eng. 2021, 39, 101721. https://doi.org/10.1016/j.jwpe.2020.101721
dc.relation.referencesen[49] Ma, J.; Yang, X.; Jiang, X.; Wen, J.; Li, J.; Zhong, Y.; Chi, L.; Wang, Y. Percarbonate persistence under different water chemistry conditions. Chem. Eng. J. 2020, 389, 123422. https://doi.org/10.1016/j.cej.2019.123422
dc.relation.referencesen[50] Hung, C.-M.; Chen, C.-W.; Huang, C.-P.; Tsai, M.-L.; Wu, C.-H.; Lin, Y.-L.; Cheng, Y.-R.; Dong, C.-D. Efficacy and cytotoxicity of engineered ferromanganese-bearing sludge-derived biochar for percarbonate-induced phthalate ester degradation. J. Hazard. Mater. 2022, 422, 126922. https://doi.org/10.1016/j.jhazmat.2021.126922
dc.relation.referencesen[51] Pimentel, J.A.I.; Dong, C.-D.; Garcia-Segura, S.; Abarca, R.R.M.; Chen, C.-W.; de Luna, M.D.G. Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation. Sci. Total Environ. 2021, 781, 146411. https://doi.org/10.1016/j.scitotenv.2021.146411
dc.relation.referencesen[52] Huang, J.; Zhou, Z.; Ali, M.; Gu, X.; Danish, M.; Sui, Q.; Lyu, S. Degradation of trichloroethene by citric acid chelated Fe(II) catalyzing sodium percarbonate in the environment of sodium dodecyl sulfate aqueous solution. Chemosphere 2021, 281, 130798. https://doi.org/10.1016/j.chemosphere.2021.130798
dc.relation.referencesen[53] Sablas, M.M.; de Luna, M.D.G.; Garcia-Segura, S.; Chen, C.-W.; Chen, C.-F.; Dong, C.-D. Percarbonate mediated advanced oxidation completely degrades recalcitrant pesticide imidacloprid: Role of reactive oxygen species and transformation products. Sep. Purif. Technol. 2020, 250, 117269. https://doi.org/10.1016/j.seppur.2020.117269
dc.relation.referencesen[54] Ling, X.; Deng, J.; Ye, C.; Cai, A.; Ruan, S.; Chen, M.; Li, X. Fe(II)-activated sodium percarbonate for improving sludge dewaterability: Experimental and theoretical investigation combined with the evaluation of subsequent utilization. Sci. Total Environ. 2021, 799, 149382. https://doi.org/10.1016/j.scitotenv.2021.149382
dc.relation.referencesen[55] Li, Y.J.; Dong, H.R.; Xiao, J.Y.; Li, L.; Chu, D.D.; Hou, X.Z.; Xiang, S.X.; Dong, Q.X.; Zhang, H.X. Advanced oxidation processes for water purification using percarbonate: Insights into oxidation mechanisms, challenges, and enhancing strategies. J. Hazard. Mater. 2023, 442, 130014. https://doi.org/10.1016/j.jhazmat.2022.130014
dc.relation.referencesen[56] Ma, J.; Xia, X.C.; Ma, Y.; Luo, Y.J.; Zhong, Y.J. Stability of dissolved percarbonate and its implications for groundwater remediation. Chemosph. 2018, 205, 41–44. https://doi.org/10.1016/j.chemosphere.2018.04.084
dc.relation.referencesen[57] Zhang, B.T.; Kuang, L.L.; Teng, Y.G.; Fan, M.H.; Ma, Y. Application of percarbonate and peroxymonocarbonate in decontamination technologies. J. Environ. Sci. 2021, 105, 100–115. https://doi.org/10.1016/j.jes.2020.12.031
dc.relation.referencesen[58] Thanekar, P.; Lakshmi, N.J.; Shah, M.; Gogate, P.R.; Znak, Z.; Sukhatskiy, Y.; Mnykh, R. Degradation of dimethoate using combined approaches based on hydrodynamic cavitation and advanced oxidation processes. Process Saf. Environ. Prot. 2020, 143, 222–230. https://doi.org/10.1016/j.psep.2020.07.002
dc.relation.referencesen[59] Thanekar, P.; Gogate, P.R. Improved processes involving hydrodynamic cavitation and oxidants for treatment of real industrial effluent. Sep. Purif. Technol. 2020, 239, 116563. https://doi.org/10.1016/j.seppur.2020.116563
dc.relation.referencesen[60] Odehnalová, K.; Přibilová, P.; Maršálková, E.; Zezulka, Š.; Pochylý, F.; Rudolf, P.; Maršálek, B. Hydrodynamic cavitation-enhanced activation of sodium percarbonate for estrogen removal. Water Sci. Technol. 2023, 88, 2905–2916. https://doi.org/10.2166/wst.2023.382
dc.relation.referencesen[61] Dular, M.; Griessler-Bulc, T.; Gutierrez-Aguirre, I.; Heath, E.; Kosjek, T.; Klemenčič, A.K.; Oder, M.; Petkovšek, M.; Rački, N.; Ravnikar M. et al. Use of hydrodynamic cavitation in (waste)water treatment. Ultrason. Sonochem. 2016, 29, 577–588. https://doi.org/10.1016/j.ultsonch.2015.10.010
dc.relation.referencesen[62] Maršalek, B.; Zezulka, S.; Maršalkova, E.; Pochyly, F; Rudolf, P. Synergistic effects of trace concentrations of hydrogen peroxide used in a novel hydrodynamic cavitation device allows for selective removal of cyanobacteria. Chem. Eng. J. 2020, 382, 122383. https://doi.org/10.1016/j.cej.2019.122383
dc.relation.referencesen[63] Panda, D.; Saharan, V.K.; Manickam, S. Controlled hydrodynamic cavitation: A review of recent advances and perspectives for greener processing. Processes 2020, 8, 220. https://doi.org/10.3390/pr8020220
dc.relation.referencesen[64] Badve, M.; Gogate, P.; Pandit, A.; Csoka, L. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep. Purif. Technol. 2013, 106, 15–21. https://doi.org/10.1016/j.seppur.2012.12.029
dc.relation.referencesen[65] Zheng, H.X.; Zheng, Y.; Zhu, J.S. Recent developments in hydrodynamic cavitation reactors: Cavitation mechanism, reactor design, and applications. Eng. 2022, 19, 180–198. https://doi.org/10.1016/j.eng.2022.04.027
dc.relation.referencesen[66] Amin, L.P.; Gogate, P.R.; Burgess, A.E.; Bremner, D.H. Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry. Chem. Eng. J. 2010, 156, 165–169. https://doi.org/10.1016/j.cej.2009.09.043
dc.relation.referencesen[67] Kohno, M.; Mokudai, T.; Ozawa, T.; Niwano, Y. Free radical formation from sonolysis of water in the presence of different gases. J. Clin. Biochem. Nutr. 2011, 49, 96–101. https://doi.org/10.3164/jcbn.10-130
dc.relation.referencesen[68] Thanekar, P.; Gogate, P.R.; Znak, Z.; Sukhatskiy, Y.; Mnykh, R. Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrason. Sonochem. 2021, 70, 105296. https://doi.org/10.1016/j.ultsonch.2020.105296
dc.relation.referencesen[69] Sukhatskiy, Y.; Znak, Z.; Zin, O.; Chupinskyi, D. Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chem. Chem. Technol. 2021, 15, 284–290. https://doi.org/10.23939/chcht15.02.284
dc.relation.referencesen[70] Torres, R.A.; Pétrier, C.; Combet, E.; Carrier, M.; Pulgarin, C. Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrason. Sonochem. 2008, 15, 605–611. https://doi.org/10.1016/j.ultsonch.2007.07.003
dc.relation.referencesen[71] Lin, X.; He, J.; Xu, L.; Fang, Y.; Rao, G. Degradation of metronidazole by ultrasound-assisted sodium percarbonate activated by ferrous sulfate. Water Pollut. Treat. 2020, 8, 66–76. https://doi.org/10.12677/wpt.2020.83010
dc.relation.referencesen[72] Eslami, A.; Mehdipour, F.; Lin, K.-Y.A.; Maleksari, H.S.; Mirzaei, F.; Ghanbari, F. Sono-photo activation of percarbonate for the degradation of organic dye: The effect of water matrix and identification of by-products. J. Water Process Eng. 2020, 33, 100998. https://doi.org/10.1016/j.jwpe.2019.100998
dc.relation.referencesen[73] Wang, T.; Jia, H.; Guo, X.; Xia, T.; Qu, G.; Sun, Q.; Yin, X. Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma. Chem. Eng. J. 2018, 346, 65–76. https://doi.org/10.1016/j.cej.2018.04.024
dc.relation.referencesen[74] Tang, S.; Yuan, D.; Rao, Y.; Li, M.; Shi, G.; Gu, J.; Zhang, T. Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. J. Hazard. Mater. 2019, 366, 669–676. https://doi.org/10.1016/j.jhazmat.2018.12.056
dc.relation.referencesen[75] Geng, T.; Yi, C.; Yi, R.; Yang, L.; Nawaz, M.I. Mechanism and degradation pathways of bisphenol A in aqueous solution by strong ionization discharge. Water Air Soil Pollut. 2020, 231, 185. https://doi.org/10.1007/s11270-020-04563-5
dc.relation.referencesen[76] Gao, J.; Duan, X.; O’Shea, K.; Dionysiou, D.D. Degradation and transformation of bisphenol A in UV/sodium percarbonate: Dual role of carbonate radical anion. Water Res. 2020, 171, 115394. https://doi.org/10.1016/j.watres.2019.115394
dc.relation.referencesen[77] Qiu, Z.; Rao, G.; Wang, L.; Wang, L. Photo-assisted degradation of naphthalene by sodium percarbonate system. Adv. Environ. Prot. 2021, 11, 497–505. https://doi.org/10.12677/AEP.2021.113055
dc.relation.referencesen[78] Ortiz-Marin, A.D.; Bandala, E.R.; Ramírez, K.; Moeller-Chávez, G.; Pérez-Estrada, L.; Ramírez-Pereda, B.; Amabilis-Sosa, L.E. Kinetic modeling of UV/H2O2, UV/sodium percarbonate, and UV/potassium peroxymonosulfate processes for albendazole degradation. Reac. Kinet. Mech. Catal. 2022, 135, 639–654. https://doi.org/10.1007/s11144-021-02152-z
dc.relation.referencesen[79] Li, L.; Guo, R.; Zhang, S.; Yuan, Y. Sustainable and effective degradation of aniline by sodium percarbonate activated with UV in aqueous solution: Kinetics, mechanism and identification of reactive species. Environ. Res. 2022, 207, 112176. https://doi.org/10.1016/j.envres.2021.112176
dc.relation.referencesen[80] Mohammadi, S.; Moussavi, G.; Yaghmaeian, K.; Giannakis, S. Development of a percarbonate-enhanced Vacuum UV process for simultaneous fluoroquinolone antibiotics removal and fecal bacteria inactivation under a continuous flow mode of operation. Chem. Eng. J. 2022, 431, 134064. https://doi.org/10.1016/j.cej.2021.134064
dc.relation.referencesen[81] Kozak, J.; Włodarczyk-Makuła, M. The use of sodium percarbonate in the Fenton reaction for the PAHs oxidation. Civ. Environ. Eng. Rep. 2018, 28, 124–139. https://doi.org/10.2478/ceer-2018-0024
dc.relation.referencesen[82] Kozak, J.; Włodarczyk-Makuła, M. The use of sodium carbonate-hydrogen peroxide (2/3) in the modified Fenton reaction to degradation PAHs in coke wastewater. Proc. 2019, 16, 44–48. https://doi.org/10.3390/proceedings2019016044
dc.relation.referencesen[83] Pieczykolan, B.; Płonka, I.; Barbusiński, K. Discoloration of dye wastewater by modified UV-Fenton process with sodium percarbonate. Archit. Civ. Eng. Environ. 2016, 9, 135–140. https://doi.org/10.21307/acee-2016-060
dc.relation.referencesen[84] Tang, P.; Jiang, W.; Lu, S.; Zhang, X.; Xue, Y.; Qiu, Z.; Sui, Q. Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol. Environ. Technol. 2019, 40, 356–364. https://doi.org/10.1080/09593330.2017.1393012
dc.relation.referencesen[85] Farooq, U.; Sajid, M.; Shan, A.; Wang, X.; Lyu, S. Role of cysteine in enhanced degradation of trichloroethane under ferrous percarbonate system. Chem. Eng. J. 2021, 423, 130221. https://doi.org/10.1016/j.cej.2021.130221
dc.relation.referencesen[86] Fu, X.; Wei, X.; Zhang, W.; Yan, W.; Wei, P.; Lyu, S. Enhanced effects of reducing agent on oxalate chelated Fe(II) catalyzed percarbonate system for benzene degradation. Water Supply 2022, 22, 208–219. https://doi.org/10.2166/ws.2021.278
dc.relation.referencesen[87] Pan, S.; Zhao, T.; Liu, H.; Li, X.; Zhao, M.; Yuan, D.; Jiao, T.; Zhang, Q.; Tang, S. Enhancing ferric ion/sodium percarbonate Fenton-like reaction with tungsten disulfide cocatalyst for metronidazole decomposition over wide pH range. Chem. Eng. J. 2023, 452, 139245. https://doi.org/10.1016/j.cej.2022.139245
dc.relation.referencesen[88] Zhou, Z.; Ye, G.; Zong, Y.; Zhao, Z.; Wu. D. Improvement of Fe(III)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism. J. Hazard. Mater. 2024, 464, 132924. https://doi.org/10.1016/j.jhazmat.2023.132924
dc.relation.referencesen[89] Pang, K.; Fang, G.; Wang, Y.; Huang, Y.; Huang, D.; Liu, X. Synthesis of Mo based/carbon nanocomposistes for water decontamination via percarbonate activation. Catal. Lett. 2024, 154, 2999–3008. https://doi.org/10.1007/s10562-023-04517-6
dc.relation.referencesen[90] Li, Y.; Dong, H.; Li, L.; Xiao, J.; Xiao, S.; Jin, Z. Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite. Water Res. 2021, 202, 117451. https://doi.org/10.1016/j.watres.2021.117451
dc.relation.referencesen[91] Li, Y.; Dong, H.; Xiao, J.; Li, L.; Dong, J.; Huang, D.; Deng, J. Ascorbic acid-enhanced CuO/percarbonate oxidation: Insights into the pH-dependent mechanism. ACS ES&T Eng. 2023, 3, 798–810. https://doi.org/10.1021/acsestengg.2c00410
dc.relation.referencesen[92] Liu, M.; Ye, Y.; Xu, L.; Gao, T.; Zhong, A.; Song, Z. Recent advances in nanoscale zero-valent iron (nZVI)-based advanced oxidation processes (AOPs): Applications, mechanisms, and future prospects. Nanomaterials 2023, 13, 2830. https://doi.org/10.3390/nano13212830
dc.relation.referencesen[93] Makido, O.; Khovanets’, G.; Kochubei, V.; Yevchuk, I. Nanostructured magnetically sensitive catalysts for the Fenton system: Obtaining, research, application. Chem. Chem. Technol. 2022, 16, 227–236. https://doi.org/10.23939/chcht16.02.227
dc.relation.referencesen[94] Che, M.; Xiao, J.; Shan, C.; Chen, S.; Huang, R.; Zhou, Y.; Cui, M.; Qi, W.; Su, R. Efficient removal of chloroform from groundwater using activated percarbonate by cellulose nanofiber-supported Fe/Cu nanocomposites. Water Res. 2023, 243, 120420. https://doi.org/10.1016/j.watres.2023.120420
dc.relation.referencesen[95] Rashid, T.; Iqbal, D.; Hazafa, A.; Hussain, S.; Sher, F.; Sher, F. Formulation of zeolite supported nano-metallic catalyst and applications in textile effluent treatment. J. Environ. Chem. Eng. 2020, 8, 104023. https://doi.org/10.1016/j.jece.2020.104023
dc.relation.referencesen[96] Xiao, Y.; Liu, X.; Huang, Y.; Kang, W.; Wang, Z.; Zheng, H. Roles of hydroxyl and carbonate radicals in bisphenol A degradation via a nanoscale zero-valent iron/percarbonate system: Influencing factors and mechanisms. RSC Adv. 2021, 11, 3636–3644. https://doi.org/10.1039/D0RA08395J
dc.relation.referencesen[97] Rostami-Javanroudi, S.; Fattahi, N.; Sharafi, K.; Arfaeinia, H.; Moradi, M. Chalcopyrite as an oxidants activator for organic pollutant remediation: A review of mechanisms, parameters, and future perspectives. Heliyon 2023, 9, e19992. https://doi.org/10.1016/j.heliyon.2023.e19992
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2021.146781
dc.relation.urihttps://doi.org/10.1016/j.seppur.2022.122305
dc.relation.urihttps://doi.org/10.1016/j.jphotochem.2020.113102
dc.relation.urihttps://doi.org/10.1016/j.watres.2022.118747
dc.relation.urihttps://doi.org/10.3390/w15040758
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2022.116241
dc.relation.urihttps://doi.org/10.1016/j.cej.2022.137680
dc.relation.urihttps://doi.org/10.56042/ijct.v30i3.62814
dc.relation.urihttps://doi.org/10.3390/catal12111460
dc.relation.urihttps://doi.org/10.1016/j.jphotochem.2019.112245
dc.relation.urihttps://doi.org/10.1080/01932691.2020.1841652
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2023.132696
dc.relation.urihttps://doi.org/10.1021/acs.est.1c00375
dc.relation.urihttps://doi.org/10.30955/gnj.002990
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2021.126991
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2023.131506
dc.relation.urihttps://doi.org/10.1016/j.cej.2020.126738
dc.relation.urihttps://doi.org/10.1016/j.envpol.2022.120620
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2023.139442
dc.relation.urihttps://doi.org/10.1016/j.cej.2022.140560
dc.relation.urihttps://doi.org/10.1016/j.cej.2022.139106
dc.relation.urihttps://doi.org/10.1016/j.cej.2023.141574
dc.relation.urihttps://doi.org/10.1016/j.watres.2023.120401
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2022.130058
dc.relation.urihttps://doi.org/10.1016/j.cej.2023.143922
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2023.131790
dc.relation.urihttps://doi.org/10.1016/j.seppur.2023.123945
dc.relation.urihttp://dx.doi.org/10.1016/j.scitotenv.2022.160001
dc.relation.urihttps://doi.org/10.1016/j.cej.2022.141147
dc.relation.urihttps://doi.org/10.1021/acs.est.0c07794
dc.relation.urihttps://doi.org/10.1016/j.cej.2023.144862
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2021.146974
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2021.127692
dc.relation.urihttps://doi.org/10.1016/j.seppur.2022.121264
dc.relation.urihttps://doi.org/10.1016/j.seppur.2022.120703
dc.relation.urihttps://doi.org/10.1016/j.envpol.2022.118939
dc.relation.urihttps://doi.org/10.1016/j.cej.2022.139889
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2023.132362
dc.relation.urihttps://doi.org/10.1016/j.seppur.2022.120651
dc.relation.urihttps://doi.org/10.32434/0321-4095-2019-125-4-55-61
dc.relation.urihttps://doi.org/10.23939/chcht10.04.507
dc.relation.urihttps://doi.org/10.1007/s11003-017-9995-8
dc.relation.urihttps://doi.org/10.15587/1729-4061.2016.72539
dc.relation.urihttps://dx.doi.org/10.1021/acs.est.0c00817
dc.relation.urihttps://doi.org/10.1016/j.cej.2023.143778
dc.relation.urihttps://doi.org/10.1016/j.jwpe.2020.101721
dc.relation.urihttps://doi.org/10.1016/j.cej.2019.123422
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2021.126922
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2021.146411
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2021.130798
dc.relation.urihttps://doi.org/10.1016/j.seppur.2020.117269
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2021.149382
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2022.130014
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2018.04.084
dc.relation.urihttps://doi.org/10.1016/j.jes.2020.12.031
dc.relation.urihttps://doi.org/10.1016/j.psep.2020.07.002
dc.relation.urihttps://doi.org/10.1016/j.seppur.2020.116563
dc.relation.urihttps://doi.org/10.2166/wst.2023.382
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2015.10.010
dc.relation.urihttps://doi.org/10.1016/j.cej.2019.122383
dc.relation.urihttps://doi.org/10.3390/pr8020220
dc.relation.urihttps://doi.org/10.1016/j.seppur.2012.12.029
dc.relation.urihttps://doi.org/10.1016/j.eng.2022.04.027
dc.relation.urihttps://doi.org/10.1016/j.cej.2009.09.043
dc.relation.urihttps://doi.org/10.3164/jcbn.10-130
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2020.105296
dc.relation.urihttps://doi.org/10.23939/chcht15.02.284
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2007.07.003
dc.relation.urihttps://doi.org/10.12677/wpt.2020.83010
dc.relation.urihttps://doi.org/10.1016/j.jwpe.2019.100998
dc.relation.urihttps://doi.org/10.1016/j.cej.2018.04.024
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2018.12.056
dc.relation.urihttps://doi.org/10.1007/s11270-020-04563-5
dc.relation.urihttps://doi.org/10.1016/j.watres.2019.115394
dc.relation.urihttps://doi.org/10.12677/AEP.2021.113055
dc.relation.urihttps://doi.org/10.1007/s11144-021-02152-z
dc.relation.urihttps://doi.org/10.1016/j.envres.2021.112176
dc.relation.urihttps://doi.org/10.1016/j.cej.2021.134064
dc.relation.urihttps://doi.org/10.2478/ceer-2018-0024
dc.relation.urihttps://doi.org/10.3390/proceedings2019016044
dc.relation.urihttps://doi.org/10.21307/acee-2016-060
dc.relation.urihttps://doi.org/10.1080/09593330.2017.1393012
dc.relation.urihttps://doi.org/10.1016/j.cej.2021.130221
dc.relation.urihttps://doi.org/10.2166/ws.2021.278
dc.relation.urihttps://doi.org/10.1016/j.cej.2022.139245
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2023.132924
dc.relation.urihttps://doi.org/10.1007/s10562-023-04517-6
dc.relation.urihttps://doi.org/10.1016/j.watres.2021.117451
dc.relation.urihttps://doi.org/10.1021/acsestengg.2c00410
dc.relation.urihttps://doi.org/10.3390/nano13212830
dc.relation.urihttps://doi.org/10.23939/chcht16.02.227
dc.relation.urihttps://doi.org/10.1016/j.watres.2023.120420
dc.relation.urihttps://doi.org/10.1016/j.jece.2020.104023
dc.relation.urihttps://doi.org/10.1039/D0RA08395J
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2023.e19992
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Sukhatskiy Y., Znak Z., Sozanskyi M., Shepida M., Gogate P. R., Tsymbaliuk V., 2024
dc.subjectактивація
dc.subjectперйодат
dc.subjectнатрію перкарбонат
dc.subjectпередові процеси окиснення
dc.subjectультразвук
dc.subjectкаталізатор
dc.subjectactivation
dc.subjectperiodate
dc.subjectsodium percarbonate
dc.subjectadvanced oxidation processes
dc.subjectultrasound
dc.subjectcatalyst
dc.titleActivated Periodates and Sodium Percarbonate in Advanced Oxidation Processes of Organic Pollutants in Aqueous Media. A Review
dc.title.alternativeАктивовані перйодати і натрію перкарбонат у передових процесах окиснення органічних забруднювачів водних середовищ. Огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n2_Sukhatskiy_Y-Activated_Periodates_119-130.pdf
Size:
769.36 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n2_Sukhatskiy_Y-Activated_Periodates_119-130__COVER.png
Size:
502.58 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: