Photopolymerization of Poly(Hydroxyethyl Acrylate) (PHEA): Experimental Parameters-Viscoelastic Properties Relationship

dc.citation.epage600
dc.citation.issue3
dc.citation.spage592
dc.contributor.affiliationCentre de Recherche (CRAPC)
dc.contributor.affiliationUniversite de Tlemcen (UABT)
dc.contributor.authorBouchikhi, Nouria
dc.contributor.authorLerari, Djahida
dc.contributor.authorHamri, Salah
dc.contributor.authorDergal, Faycal
dc.contributor.authorBachari, Khaldoun
dc.contributor.authorBedjaoui-Alachaher, Lamia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:51:57Z
dc.date.available2024-02-12T08:51:57Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractОцінено активність фотоініціювальної системи на основі триетаноламіну (ТЕОА) і метиленового синього (МС) у фотополімеризації мономеру гідроксіетил-акрилату (ГЕА) в умовах дуже м'якого опромінення. Виявлено помітну різницю в кінетиці полімеризації для серії експериментів ПГЕА залежно від концентрацій ТЕОА/МС, а також рН розчинів. Дійсно, комплексна в'язкість (η*), модуль зберігання (G') і модуль втрат (G") отриманих полімерів потенційно залежали від цих експериментальних параметрів, незважаючи на співрозмірні значення конверсії мономеру.
dc.description.abstractThe activity of the photoinitiator system, based on triethanolamine (TEOA) and methylene blue (MB), on the photopolymerization of hydroxyethyl acrylate (HEA) monomer under very soft irradiation conditions, was evaluated. A remarkable difference in the polymerization kinetics of a set of PHEA experiments was underlined according to TEOA/MB concentrations, as well as the solutions pH. Indeed, the complex viscosity (η*), storage modulus (G'), and loss modulus (G") of the resulting polymers were potentially dependent on these experimental parameters despite comparable values of monomer conversion.
dc.format.extent592-600
dc.format.pages9
dc.identifier.citationPhotopolymerization of Poly(Hydroxyethyl Acrylate) (PHEA): Experimental Parameters-Viscoelastic Properties Relationship / Nouria Bouchikhi, Djahida Lerari, Salah Hamri, Faycal Dergal, Khaldoun Bachari, Lamia Bedjaoui-Alachaher // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 592–600.
dc.identifier.citationenPhotopolymerization of Poly(Hydroxyethyl Acrylate) (PHEA): Experimental Parameters-Viscoelastic Properties Relationship / Nouria Bouchikhi, Djahida Lerari, Salah Hamri, Faycal Dergal, Khaldoun Bachari, Lamia Bedjaoui-Alachaher // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 592–600.
dc.identifier.doidoi.org/10.23939/chcht17.03.592
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61264
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Liu, Y.; Hu, J.; Wu, Z. Fabrication of coatings with structural color on a wood surface. Coatings 2020, 10, 32. https://doi.org/10.3390/coatings10010032
dc.relation.references[2] Seghier, Z.; Couve, J.; Voytekunas, V.; Lipik, V.; Abadie, M.J.M. Light Curable Dental Composites – Kinetics by Plasma and Halogen Lamps. Chem. Chem. Technol. 2011, 5, 413-421. http://dx.doi.org/10.23939/chcht05.04.413
dc.relation.references[3] Fouassier, J. P.; Lalevée, J. Photoinitiators for polymer synthe-sis: scope, reactivity, and efficiency. John Wiley & Sons, 2012.
dc.relation.references[4] Fouassier, J.P.; Allonas, X.; Burget, D. Photopolymerization Reactions under Visible Lights: Principle, Mechanisms and Exam-ples of Applications. Prog. Org. Coat. 2003, 47, 16-36. https://doi.org/10.1016/S0300-9440(03)00011-0
dc.relation.references[5] Burget, D.; Mallein, C.; Fouassier, J.P. Photopolymerization of Thiol–Allyl Ether and Thiol–Acrylate Coatings with Visible Light Photosensitive Systems. Polymer 2004, 45, 6561-6567. http://dx.doi.org/10.1016/j.polymer.2004.07.052
dc.relation.references[6] Hamri, S.; Bouchaour, T.; Maschke, U. Erythro-sine/Triethanolamine System to Elaborate Crosslinked poly (2-Hydroxyethylmethacrylate): UV-Photopolymerization and Swelling Studies. Macromol Symp. 2014, 336, 75-81. https://doi.org/10.1002/masy.201300018
dc.relation.references[7] Medvedevskikh, Y.; Khovanets’, G.; Yevchuk, I. Kinetic Model of Photoinitiated Copolymerization of Monofunctional Monomers Till High Conversions. Chem. Chem. Technol. 2009, 3, 1-6. https://doi.org/10.23939/chcht03.01.001
dc.relation.references[8] Rubens, M.; Latsrisaeng, P.; Junkers, T. Visible Light-Induced Iniferter Polymerization of Methacrylates Enhanced by Continuous Flow. Polym. Chem. 2017, 8, 6496-6505. https://doi.org/10.1039/C7PY01157A
dc.relation.references[9] Ottersbach, P.; Lennarz, K.; Bargon, J. Rheological Study of the Kinetics of Photoinitiated Free Radical Polymerizations with the Quartz Microbalance. Macromol. Chem. Phys. 1994, 195, 3929-3935. https://doi.org/10.1002/macp.1994.021951218
dc.relation.references[10] Chiou, B.S.; Khan, S.A. Real-Time FTIR and in situ Rheological Studies on the UV Curing Kinetics of Thiol-ene Poly-mers. Macromolecules 1997, 30, 7322-7328.
dc.relation.references[11] Steeman, P.A.; Dias, A.A.; Wienke, D.; Zwartkruis, T. Poly-merization and Network Formation of UV-Curable Systems Moni-tored by Hyphenated Real-Time Dynamic Mechanical Analysis and Near-Infrared Spectroscopy. Macromolecules 2004, 37, 7001-7007. https://doi.org/10.1021/ma049366c
dc.relation.references[12] He, H.; Li, L.; Lee, L.J. Photopolymerization and Structure Formation of Methacrylic Acid Based Hydrogels in Water/Ethanol Mixture. Polymer 2006, 47, 1612-1619. https://doi.org/10.1016/j.polymer.2006.01.014
dc.relation.references[13] He, H.; Li, L.; Lee, L. J. Photopolymerization and Structure Formation of Methacrylic Acid Based Hydrogels: The Effect of Light Intensity. React. Funct. Polym. 2008, 68, 103-113. https://doi.org/10.1016/j.reactfunctpolym.2007.10.006
dc.relation.references[14] Zhang, C.; Han, H.M.; Qu, P.; Xu, J.; Zhou, Y.; Wang, J.; Xu, J. Initiator Concentration Effect on Rheological Properties of a pH-Sensitive Semi-IPN Hydrogel Based on Konjac Glucomannan and Methacrylic Acid. Adv. Mat. Res. 2013, 627, 730-733. https://doi.org/10.4028/www.scientific.net/AMR.627.730
dc.relation.references[15] Alim, M.D.; Childress, K.K.; Baugh, N.J.; Martinez, A.M.; Davenport, A.; Fairbanks, B.D.; McBride, M.K.; Worrell, B.T.; Stansbury, J.W.; McLeod, R.R. et al. A Photopolymerizable Ther-moplastic with Tunable Mechanical Performance. Mater. Horiz. 2020, 7, 835-842. https://doi.org/10.1039/C9MH01336A
dc.relation.references[16] Barabash, E.; Popov, Y.; Danchenko, Y. The Study of the Influence of Chemical Nature of Functional Groups in Oligomeric and Low--Molecular Modifiers on the Rheological Properties of the Epoxy Oligomer. Chem. Chem. Technol. 2020, 15, 53-60. https://doi.org/10.23939/chcht15.01.053
dc.relation.references[17] Garra, P.; Dumur, F.; Morlet-Savary, F.; Dietlin, C.; Foua-ssier, J. P.; Lalevée, J. A New Highly Efficient Amine-Free and Peroxide-Free Redox System for Free Radical Polymerization under Air with Possible Light Activation. Macromolecules 2016, 49, 6296-6309. https://doi.org/10.1021/acs.macromol.6b01615
dc.relation.references[18] Podsiadły, R.; Podemska, K.; Szymczak, A.M. Novel Visible Photoinitiators Systems for Free-Radical/Cationic Hybrid Photopo-lymerization. Dyes Pigm. 2011, 91, 422-426. https://doi.org/10.1016/j.dyepig.2011.05.012
dc.relation.references[19] Zhang, S.; Li, B.; Tang, L.; Wang, X.; Liu, D.; Zhou, Q. Studies on the Near Infrared Laser Induced Photopolymerization Employing a Cyanine Dye–Borate Complex as the Photoinitiator. Polymer 2001, 42, 7575-7582. http://dx.doi.org/10.1016/S0032-3861(01)00233-6
dc.relation.references[20] Padon, K.S.; Scranton, A.B. A Mechanistic Investigation of a Three-Component Radical Photoinitiator System Comprising Me-thylene Blue, N-methyldiethanolamine, and Diphenyliodonium Chloride. J Polym Sci A Polym Chem. 2000, 38, 2057-2066. https://doi.org/10.1002/(SICI)1099-0518(20000601)38:11%3C2057::AID-POLA140%3E3.0.CO;2-5
dc.relation.references[21] Bouchikhi, N.; Bouazza, M.; Hamri, S.; Maschke, U.; Lerari, D.; Dergal, F.; Bachari, K.; Bedjaoui-Alachaher, L. Photo-curing Kinetics of Hydroxyethyl Acrylate (HEA): Synergetic Effect of Dye/Amine Photoinitiator Systems. Int J Ind Chem. 2020, 11, 1-9. https://doi.org/10.1007/s40090-019-00197-7
dc.relation.references[22] Mills, A.; Wang, J. Photobleaching of Methylene Blue Sensi-tised by TiO2: An Ambiguous System. J. Photochem. Photobiol. A 1999, 127, 123-134. https://doi.org/10.1016/S1010-6030(99)00143-4
dc.relation.references[23] Severino, D.; Junqueira, H. C.; Gabrielli, D.S.; Gugliotti M.; Baptista, M. S. Influence of Negatively Charged Interfaces on the Ground and Excited State Properties of Methylene Blue. Photochem Photobiol. 2003, 77, 459-468. https://doi.org/10.1562/0031-8655(2003)0770459IONCIO2.0.CO2
dc.relation.references[24] Morita, H.; Sadakiyo, T. Laser-Induced Polymeric Film Formation from Gaseous Methyl Acrylate. J. Photochem. Photobiol. A 1995, 87, 163-167. https://doi.org/10.1016/1010-6030(94)03975-Z
dc.relation.references[25] Encinas, M.V.; Rufs, A.M.; Neumann, M.G.; Previtali, C.M. Photoinitiated Vinyl Polymerization by Safranine T/triethanolamine in Aqueous Solution. Polymer 1996, 37, 1395-1398. https://doi.org/10.1016/0032-3861(96)81137-2
dc.relation.references[26] Villegas, L.; Encinas, M.V.; Rufs, A.M.; Bueno, C.; Bertolot-ti, S.; Previtali, C.M. Aqueous Photopolymerization with Visible-Light Photoinitiators: Acrylamide Polymerization Photoinitiated with a Phenoxazine Dye/Amine System. J Polym Sci A Polym Chem. 2001, 39, 4074-4082. http://dx.doi.org/10.1002/pola.10059
dc.relation.references[27] Valdebenito, A.; Encinas, M.V. Photopolymerization of 2-Hydroxyethyl Methacrylate: Effect of the Medium Properties on the Polymerization Rate. J Polym Sci A Polym Chem. 2003, 41, 2368-2373. https://doi.org/10.1002/pola.10776
dc.relation.references[28] Cho, J.D.; Kim, H.K.; Kim, Y.S.; Hong, J.W. Dual Curing of Cationic UV-curable Clear and Pigmented Coating Systems Photo-sensitized by Thioxanthone and Anthracene. Polym. Test. 2003, 22, 633-645. https://doi.org/10.1016/S0142-9418(02)00169-1
dc.relation.references[29] Sheng, C.K.; Bin Mat Yunus, W.M.; Yunus, W.M.Z.W.; Talib, Z.A.; Moksin, M.M. UV-Visible Photodegradation of Methylene Blue Doped in Poly (Vinyl Alcohol)(pva) Solid Matrix. Solid State Science and Technology 2003, 11, 124-130. http://psasir.upm.edu.my/id/eprint/42204
dc.relation.references[30] Danziger, R.M.; Bar-Eli, K.H.; Weiss, K. The Laser Photoly-sis of Methylene Blue. J. Phys. Chem. 1967, 71, 2633-2640. https://doi.org/10.1021/j100867a037
dc.relation.references[31] Tuite, E.M.; Kelly, J.M. New Trends in Photobiology: Photo-chemical Interactions of Methylene Blue and Analogues with DNA and Other Biological Substrates. J. Photochem. Photobiol. B, Biol. 1993, 21, 103-124. https://doi.org/10.1016/1011-1344(93)80173-7
dc.relation.references[32] Bonneau, R.; Pottier, R.; Bagno, O.; Joussot-Dubien. J. pH Dependence of Singlet Oxygen Production in Aqueous Solutions Using Thiazine Dyes as Photosensitizers. Photochem. Photobiol. 1975, 21, 159-163. https://doi.org/10.1111/j.1751-1097.1975.tb06646.x
dc.relation.references[33] Azmat, R.; Uddin, F. Photo Bleaching of Methylene Blue with Galactose and D-mannose by High Intensity Radiations. Canadian Journal of Pure and Applied Sciences 2008, 2, 275-283.
dc.relation.references[34] Wildes, P.D.; Lichtin, N.N.; Hoffman, M.Z.; Andrews, L.; Linschitz, H. Anion and Solvent Effects on the Rate of Reduction of Triplet Excited Thiazine Dyes by Ferrous Ions. Photochem. Photobiol. 1977, 25, 21-25. https://doi.org/10.1111/j.1751-1097.1977.tb07419.x
dc.relation.references[35] Faure, J.; Bonneau, R.; Joussot-Dubien, J. Etude en Spectros-copie Par Eclair des Colorants Thiaziniques en Solution Aqueuse. Photochem. Photobiol. 1967, 6, 331-339. https://doi.org/10.1111/j.1751-1097.1967.tb08881.x
dc.relation.references[36] Havelcová, M.; Kubát, P.; Němcová, I. Photophysical Properties of Thiazine Dyes in Aqueous Solution and in Micelles. Dyes Pigm. 1999, 44, 49-54. https://doi.org/10.1016/S0143-7208(99)00070-4
dc.relation.references[37] Görner, H. Oxygen Uptake Induced by Electron Transfer from Donors to the Triplet State of Methylene Blue and Xanthene Dyes in Air-Saturated Aqueous Solution. Photochem Photobiol Sci. 2008, 7, 371-376. https://doi.org/10.1039/b712496a
dc.relation.references[38] Zhong, Q.; Ikeda, S. Viscoelastic Properties of Concentrated Aqueous Ethanol Suspensions of α-Zein. Food Hydrocoll. 2012, 28, 46-52. https://doi.org/10.1016/j.foodhyd.2011.11.014
dc.relation.references[39] Geever, T.; Killion, J.; Grehan, L.; Geever, L.M. Chadwick, E.; Higginbotham, C. Effect of Photoinitiator Concentration on the Properties of Polyethylene Glycol Based Hydrogels for Potential Regenerative Medicine Application. Adv. Environ. Biol. 2014, 8, 7-17.
dc.relation.referencesen[1] Liu, Y.; Hu, J.; Wu, Z. Fabrication of coatings with structural color on a wood surface. Coatings 2020, 10, 32. https://doi.org/10.3390/coatings10010032
dc.relation.referencesen[2] Seghier, Z.; Couve, J.; Voytekunas, V.; Lipik, V.; Abadie, M.J.M. Light Curable Dental Composites – Kinetics by Plasma and Halogen Lamps. Chem. Chem. Technol. 2011, 5, 413-421. http://dx.doi.org/10.23939/chcht05.04.413
dc.relation.referencesen[3] Fouassier, J. P.; Lalevée, J. Photoinitiators for polymer synthe-sis: scope, reactivity, and efficiency. John Wiley & Sons, 2012.
dc.relation.referencesen[4] Fouassier, J.P.; Allonas, X.; Burget, D. Photopolymerization Reactions under Visible Lights: Principle, Mechanisms and Exam-ples of Applications. Prog. Org. Coat. 2003, 47, 16-36. https://doi.org/10.1016/S0300-9440(03)00011-0
dc.relation.referencesen[5] Burget, D.; Mallein, C.; Fouassier, J.P. Photopolymerization of Thiol–Allyl Ether and Thiol–Acrylate Coatings with Visible Light Photosensitive Systems. Polymer 2004, 45, 6561-6567. http://dx.doi.org/10.1016/j.polymer.2004.07.052
dc.relation.referencesen[6] Hamri, S.; Bouchaour, T.; Maschke, U. Erythro-sine/Triethanolamine System to Elaborate Crosslinked poly (2-Hydroxyethylmethacrylate): UV-Photopolymerization and Swelling Studies. Macromol Symp. 2014, 336, 75-81. https://doi.org/10.1002/masy.201300018
dc.relation.referencesen[7] Medvedevskikh, Y.; Khovanets’, G.; Yevchuk, I. Kinetic Model of Photoinitiated Copolymerization of Monofunctional Monomers Till High Conversions. Chem. Chem. Technol. 2009, 3, 1-6. https://doi.org/10.23939/chcht03.01.001
dc.relation.referencesen[8] Rubens, M.; Latsrisaeng, P.; Junkers, T. Visible Light-Induced Iniferter Polymerization of Methacrylates Enhanced by Continuous Flow. Polym. Chem. 2017, 8, 6496-6505. https://doi.org/10.1039/P.7PY01157A
dc.relation.referencesen[9] Ottersbach, P.; Lennarz, K.; Bargon, J. Rheological Study of the Kinetics of Photoinitiated Free Radical Polymerizations with the Quartz Microbalance. Macromol. Chem. Phys. 1994, 195, 3929-3935. https://doi.org/10.1002/macp.1994.021951218
dc.relation.referencesen[10] Chiou, B.S.; Khan, S.A. Real-Time FTIR and in situ Rheological Studies on the UV Curing Kinetics of Thiol-ene Poly-mers. Macromolecules 1997, 30, 7322-7328.
dc.relation.referencesen[11] Steeman, P.A.; Dias, A.A.; Wienke, D.; Zwartkruis, T. Poly-merization and Network Formation of UV-Curable Systems Moni-tored by Hyphenated Real-Time Dynamic Mechanical Analysis and Near-Infrared Spectroscopy. Macromolecules 2004, 37, 7001-7007. https://doi.org/10.1021/ma049366c
dc.relation.referencesen[12] He, H.; Li, L.; Lee, L.J. Photopolymerization and Structure Formation of Methacrylic Acid Based Hydrogels in Water/Ethanol Mixture. Polymer 2006, 47, 1612-1619. https://doi.org/10.1016/j.polymer.2006.01.014
dc.relation.referencesen[13] He, H.; Li, L.; Lee, L. J. Photopolymerization and Structure Formation of Methacrylic Acid Based Hydrogels: The Effect of Light Intensity. React. Funct. Polym. 2008, 68, 103-113. https://doi.org/10.1016/j.reactfunctpolym.2007.10.006
dc.relation.referencesen[14] Zhang, C.; Han, H.M.; Qu, P.; Xu, J.; Zhou, Y.; Wang, J.; Xu, J. Initiator Concentration Effect on Rheological Properties of a pH-Sensitive Semi-IPN Hydrogel Based on Konjac Glucomannan and Methacrylic Acid. Adv. Mat. Res. 2013, 627, 730-733. https://doi.org/10.4028/www.scientific.net/AMR.627.730
dc.relation.referencesen[15] Alim, M.D.; Childress, K.K.; Baugh, N.J.; Martinez, A.M.; Davenport, A.; Fairbanks, B.D.; McBride, M.K.; Worrell, B.T.; Stansbury, J.W.; McLeod, R.R. et al. A Photopolymerizable Ther-moplastic with Tunable Mechanical Performance. Mater. Horiz. 2020, 7, 835-842. https://doi.org/10.1039/P.9MH01336A
dc.relation.referencesen[16] Barabash, E.; Popov, Y.; Danchenko, Y. The Study of the Influence of Chemical Nature of Functional Groups in Oligomeric and Low--Molecular Modifiers on the Rheological Properties of the Epoxy Oligomer. Chem. Chem. Technol. 2020, 15, 53-60. https://doi.org/10.23939/chcht15.01.053
dc.relation.referencesen[17] Garra, P.; Dumur, F.; Morlet-Savary, F.; Dietlin, C.; Foua-ssier, J. P.; Lalevée, J. A New Highly Efficient Amine-Free and Peroxide-Free Redox System for Free Radical Polymerization under Air with Possible Light Activation. Macromolecules 2016, 49, 6296-6309. https://doi.org/10.1021/acs.macromol.6b01615
dc.relation.referencesen[18] Podsiadły, R.; Podemska, K.; Szymczak, A.M. Novel Visible Photoinitiators Systems for Free-Radical/Cationic Hybrid Photopo-lymerization. Dyes Pigm. 2011, 91, 422-426. https://doi.org/10.1016/j.dyepig.2011.05.012
dc.relation.referencesen[19] Zhang, S.; Li, B.; Tang, L.; Wang, X.; Liu, D.; Zhou, Q. Studies on the Near Infrared Laser Induced Photopolymerization Employing a Cyanine Dye–Borate Complex as the Photoinitiator. Polymer 2001, 42, 7575-7582. http://dx.doi.org/10.1016/S0032-3861(01)00233-6
dc.relation.referencesen[20] Padon, K.S.; Scranton, A.B. A Mechanistic Investigation of a Three-Component Radical Photoinitiator System Comprising Me-thylene Blue, N-methyldiethanolamine, and Diphenyliodonium Chloride. J Polym Sci A Polym Chem. 2000, 38, 2057-2066. https://doi.org/10.1002/(SICI)1099-0518(20000601)38:11%3C2057::AID-POLA140%3E3.0.CO;2-5
dc.relation.referencesen[21] Bouchikhi, N.; Bouazza, M.; Hamri, S.; Maschke, U.; Lerari, D.; Dergal, F.; Bachari, K.; Bedjaoui-Alachaher, L. Photo-curing Kinetics of Hydroxyethyl Acrylate (HEA): Synergetic Effect of Dye/Amine Photoinitiator Systems. Int J Ind Chem. 2020, 11, 1-9. https://doi.org/10.1007/s40090-019-00197-7
dc.relation.referencesen[22] Mills, A.; Wang, J. Photobleaching of Methylene Blue Sensi-tised by TiO2: An Ambiguous System. J. Photochem. Photobiol. A 1999, 127, 123-134. https://doi.org/10.1016/S1010-6030(99)00143-4
dc.relation.referencesen[23] Severino, D.; Junqueira, H. C.; Gabrielli, D.S.; Gugliotti M.; Baptista, M. S. Influence of Negatively Charged Interfaces on the Ground and Excited State Properties of Methylene Blue. Photochem Photobiol. 2003, 77, 459-468. https://doi.org/10.1562/0031-8655(2003)0770459IONCIO2.0.CO2
dc.relation.referencesen[24] Morita, H.; Sadakiyo, T. Laser-Induced Polymeric Film Formation from Gaseous Methyl Acrylate. J. Photochem. Photobiol. A 1995, 87, 163-167. https://doi.org/10.1016/1010-6030(94)03975-Z
dc.relation.referencesen[25] Encinas, M.V.; Rufs, A.M.; Neumann, M.G.; Previtali, C.M. Photoinitiated Vinyl Polymerization by Safranine T/triethanolamine in Aqueous Solution. Polymer 1996, 37, 1395-1398. https://doi.org/10.1016/0032-3861(96)81137-2
dc.relation.referencesen[26] Villegas, L.; Encinas, M.V.; Rufs, A.M.; Bueno, C.; Bertolot-ti, S.; Previtali, C.M. Aqueous Photopolymerization with Visible-Light Photoinitiators: Acrylamide Polymerization Photoinitiated with a Phenoxazine Dye/Amine System. J Polym Sci A Polym Chem. 2001, 39, 4074-4082. http://dx.doi.org/10.1002/pola.10059
dc.relation.referencesen[27] Valdebenito, A.; Encinas, M.V. Photopolymerization of 2-Hydroxyethyl Methacrylate: Effect of the Medium Properties on the Polymerization Rate. J Polym Sci A Polym Chem. 2003, 41, 2368-2373. https://doi.org/10.1002/pola.10776
dc.relation.referencesen[28] Cho, J.D.; Kim, H.K.; Kim, Y.S.; Hong, J.W. Dual Curing of Cationic UV-curable Clear and Pigmented Coating Systems Photo-sensitized by Thioxanthone and Anthracene. Polym. Test. 2003, 22, 633-645. https://doi.org/10.1016/S0142-9418(02)00169-1
dc.relation.referencesen[29] Sheng, C.K.; Bin Mat Yunus, W.M.; Yunus, W.M.Z.W.; Talib, Z.A.; Moksin, M.M. UV-Visible Photodegradation of Methylene Blue Doped in Poly (Vinyl Alcohol)(pva) Solid Matrix. Solid State Science and Technology 2003, 11, 124-130. http://psasir.upm.edu.my/id/eprint/42204
dc.relation.referencesen[30] Danziger, R.M.; Bar-Eli, K.H.; Weiss, K. The Laser Photoly-sis of Methylene Blue. J. Phys. Chem. 1967, 71, 2633-2640. https://doi.org/10.1021/j100867a037
dc.relation.referencesen[31] Tuite, E.M.; Kelly, J.M. New Trends in Photobiology: Photo-chemical Interactions of Methylene Blue and Analogues with DNA and Other Biological Substrates. J. Photochem. Photobiol. B, Biol. 1993, 21, 103-124. https://doi.org/10.1016/1011-1344(93)80173-7
dc.relation.referencesen[32] Bonneau, R.; Pottier, R.; Bagno, O.; Joussot-Dubien. J. pH Dependence of Singlet Oxygen Production in Aqueous Solutions Using Thiazine Dyes as Photosensitizers. Photochem. Photobiol. 1975, 21, 159-163. https://doi.org/10.1111/j.1751-1097.1975.tb06646.x
dc.relation.referencesen[33] Azmat, R.; Uddin, F. Photo Bleaching of Methylene Blue with Galactose and D-mannose by High Intensity Radiations. Canadian Journal of Pure and Applied Sciences 2008, 2, 275-283.
dc.relation.referencesen[34] Wildes, P.D.; Lichtin, N.N.; Hoffman, M.Z.; Andrews, L.; Linschitz, H. Anion and Solvent Effects on the Rate of Reduction of Triplet Excited Thiazine Dyes by Ferrous Ions. Photochem. Photobiol. 1977, 25, 21-25. https://doi.org/10.1111/j.1751-1097.1977.tb07419.x
dc.relation.referencesen[35] Faure, J.; Bonneau, R.; Joussot-Dubien, J. Etude en Spectros-copie Par Eclair des Colorants Thiaziniques en Solution Aqueuse. Photochem. Photobiol. 1967, 6, 331-339. https://doi.org/10.1111/j.1751-1097.1967.tb08881.x
dc.relation.referencesen[36] Havelcová, M.; Kubát, P.; Němcová, I. Photophysical Properties of Thiazine Dyes in Aqueous Solution and in Micelles. Dyes Pigm. 1999, 44, 49-54. https://doi.org/10.1016/S0143-7208(99)00070-4
dc.relation.referencesen[37] Görner, H. Oxygen Uptake Induced by Electron Transfer from Donors to the Triplet State of Methylene Blue and Xanthene Dyes in Air-Saturated Aqueous Solution. Photochem Photobiol Sci. 2008, 7, 371-376. https://doi.org/10.1039/b712496a
dc.relation.referencesen[38] Zhong, Q.; Ikeda, S. Viscoelastic Properties of Concentrated Aqueous Ethanol Suspensions of α-Zein. Food Hydrocoll. 2012, 28, 46-52. https://doi.org/10.1016/j.foodhyd.2011.11.014
dc.relation.referencesen[39] Geever, T.; Killion, J.; Grehan, L.; Geever, L.M. Chadwick, E.; Higginbotham, C. Effect of Photoinitiator Concentration on the Properties of Polyethylene Glycol Based Hydrogels for Potential Regenerative Medicine Application. Adv. Environ. Biol. 2014, 8, 7-17.
dc.relation.urihttps://doi.org/10.3390/coatings10010032
dc.relation.urihttp://dx.doi.org/10.23939/chcht05.04.413
dc.relation.urihttps://doi.org/10.1016/S0300-9440(03)00011-0
dc.relation.urihttp://dx.doi.org/10.1016/j.polymer.2004.07.052
dc.relation.urihttps://doi.org/10.1002/masy.201300018
dc.relation.urihttps://doi.org/10.23939/chcht03.01.001
dc.relation.urihttps://doi.org/10.1039/C7PY01157A
dc.relation.urihttps://doi.org/10.1002/macp.1994.021951218
dc.relation.urihttps://doi.org/10.1021/ma049366c
dc.relation.urihttps://doi.org/10.1016/j.polymer.2006.01.014
dc.relation.urihttps://doi.org/10.1016/j.reactfunctpolym.2007.10.006
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMR.627.730
dc.relation.urihttps://doi.org/10.1039/C9MH01336A
dc.relation.urihttps://doi.org/10.23939/chcht15.01.053
dc.relation.urihttps://doi.org/10.1021/acs.macromol.6b01615
dc.relation.urihttps://doi.org/10.1016/j.dyepig.2011.05.012
dc.relation.urihttp://dx.doi.org/10.1016/S0032-3861(01)00233-6
dc.relation.urihttps://doi.org/10.1002/(SICI)1099-0518(20000601)38:11%3C2057::AID-POLA140%3E3.0.CO;2-5
dc.relation.urihttps://doi.org/10.1007/s40090-019-00197-7
dc.relation.urihttps://doi.org/10.1016/S1010-6030(99)00143-4
dc.relation.urihttps://doi.org/10.1562/0031-8655(2003)0770459IONCIO2.0.CO2
dc.relation.urihttps://doi.org/10.1016/1010-6030(94)03975-Z
dc.relation.urihttps://doi.org/10.1016/0032-3861(96)81137-2
dc.relation.urihttp://dx.doi.org/10.1002/pola.10059
dc.relation.urihttps://doi.org/10.1002/pola.10776
dc.relation.urihttps://doi.org/10.1016/S0142-9418(02)00169-1
dc.relation.urihttp://psasir.upm.edu.my/id/eprint/42204
dc.relation.urihttps://doi.org/10.1021/j100867a037
dc.relation.urihttps://doi.org/10.1016/1011-1344(93)80173-7
dc.relation.urihttps://doi.org/10.1111/j.1751-1097.1975.tb06646.x
dc.relation.urihttps://doi.org/10.1111/j.1751-1097.1977.tb07419.x
dc.relation.urihttps://doi.org/10.1111/j.1751-1097.1967.tb08881.x
dc.relation.urihttps://doi.org/10.1016/S0143-7208(99)00070-4
dc.relation.urihttps://doi.org/10.1039/b712496a
dc.relation.urihttps://doi.org/10.1016/j.foodhyd.2011.11.014
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Bouchikhi N., Lerari D., Hamri S., Dergal F., Bachari Kh., Bedjaoui-Alachaher L., 2023
dc.subjectфотополімеризація
dc.subjectбарвник
dc.subjectамін
dc.subjectpH
dc.subjectреологічні властивості
dc.subjectphotopolymerization
dc.subjectdye
dc.subjectamine
dc.subjectpH
dc.subjectrheological properties
dc.titlePhotopolymerization of Poly(Hydroxyethyl Acrylate) (PHEA): Experimental Parameters-Viscoelastic Properties Relationship
dc.title.alternativeФотополімеризація полігідроксіетилакрилату (ПГЕА): зв'язок експериментальних параметрів і в'язкопружних властивостей
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n3_Bouchikhi_N-Photopolymerization_of_592-600.pdf
Size:
530.25 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n3_Bouchikhi_N-Photopolymerization_of_592-600__COVER.png
Size:
547.21 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: