Thermomechanical behavior of an electrically conductive cylindrical implant under the action of external unstable electromagnetic fields

dc.citation.epage191
dc.citation.issue2
dc.citation.spage184
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМусій, Р. С.
dc.contributor.authorМельник, Н. Б.
dc.contributor.authorДрогомирецька, Х. Т.
dc.contributor.authorЗакаулова, Ю. В.
dc.contributor.authorMusii, R. S.
dc.contributor.authorMelnyk, N. B.
dc.contributor.authorDrohomyretska, Kh. T.
dc.contributor.authorZakaulova, J. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-10-24T07:21:52Z
dc.date.available2023-10-24T07:21:52Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractЗапропоновано фізико-математичну модель визначення термонапружного стану електропровідного циліндричного імпланта за дії зовнішніх неусталених електромагнітних полів, зокрема імпульсних із модуляцією амплітуди. Дана модель дозволяє прогнозувати гранично допустимі, згідно з фізіологічними нормами, значення температури та інтенсивності напружень у розглядуваному імпланті залежно від параметрів зовнішніх неусталених електромагнітних полів та часу їх дії.
dc.description.abstractA physical and mathematical model for determining the thermostressed state of an electrically conductive cylindrical implant under the action of external unstable electromagnetic fields, in particular the impulse with amplitude modulation, is proposed. This model allows predicting the maximum allowable values (according to physiological norms) of temperature and stress intensities in the considered implant depending on the parameters of external unstable electromagnetic fields and the time of their action.
dc.format.extent184-191
dc.format.pages8
dc.identifier.citationThermomechanical behavior of an electrically conductive cylindrical implant under the action of external unstable electromagnetic fields / R. S. Musii, N. B. Melnyk, Kh. T. Drohomyretska, J. V. Zakaulova // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 2. — P. 184–191.
dc.identifier.citationenThermomechanical behavior of an electrically conductive cylindrical implant under the action of external unstable electromagnetic fields / R. S. Musii, N. B. Melnyk, Kh. T. Drohomyretska, J. V. Zakaulova // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 2. — P. 184–191.
dc.identifier.doidoi.org/10.23939/mmc2021.02.184
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60392
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 2 (8), 2021
dc.relation.references[1] Hoffmann O., Zafiropoulos G.-G. Tooth-implant connection: a review. Journal of Oral Implantology. 38 (2), 194–200 (2012).
dc.relation.references[2] Gilbert Triplett R., Berger J., Jensen O., Louis P. Dental and Craniomaxillofacial Implant Surgery. Journal of Oral and Maxillofacial Surgery. 75 (8), e74–e93 (2017).
dc.relation.references[3] Ozkan Y., Ozcan M., Varol A., Akoglu B., Ucankale M., Basa S. Resonance frequency analysis assessment of implant stability in labial onlay grafted posterior mandibles: a pilot clinical study. Int. Journal Oral Maxillofac Implants. 22 (2), 235–242 (2007).
dc.relation.references[4] Taylor T. D., Agar J. R., Vogiatzi T. Implant prosthodontics: current perspective and future directions. Int. Journal Oral Maxillofac Implants. 15 (1), 66–75 (2000).
dc.relation.references[5] Jaworski N., Iwaniec M. Numerical simulation of dental implant insertion process. 2017 XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH). 59–61 (2017).
dc.relation.references[6] Batygin Yu. V., Lavinsky V. I., Himenko L. T. Impulse magnetic fields for advanced technologies. Harkov, MOST-Tornado Publ. (2003), (in Russian).
dc.relation.references[7] Podstryhach Ja. S., Burak Ja. I., Hachkevich A. R., Cherniavskaia L. V. Thermoelasticity of electroconductive bodies. Kiev, Naukova dumka (1977), (in Russian).
dc.relation.references[8] Hachkevych O. R., Musii R. S., Tarlakovskyi D. V. Thermomechanics of non-ferromagnetic electrically conductive bodies under the action of pulsed electromagnetic fields with amplitude modulation. Lviv, SPOLOM (2011), (in Ukrainian).
dc.relation.references[9] Honorovskij I. S. Radiotechnical chains and signals. Moscow, Radio and communication (1986), (in Russian).
dc.relation.references[10] Musii R., Melnyk N., Dmytruk V. Thermoelastic processes analyzer for piecewise homogeneous conductive structures subjected to pulsed electromagnetic action. Journal of Thermal Stresses. 41 (9), 1125–1135 (2018).
dc.relation.references[11] Musij R. S. Dynamic problem of thermomechanics for conductive bodies of canonical form. Lviv, Rastr-7 (2010), (in Ukranian).
dc.relation.references[12] Hachkevych O. R., Musii R. S., Stasiuk H. B. Problems of thermomechanics of electrically conductive bodies with plane-parallel limits under pulsed electromagnetic actions are connected. Lviv, Rastr-7 (2019), (in Ukranian).
dc.relation.references[13] Hachkevych O., Musij R. Mathematical modeling in thermomechanics of electroconductive bodies under the action of the pulsed electromagnetic fields with modulation of amplitude. Mathematical Modeling and Computing. 6 (1), 30–36 (2019).
dc.relation.references[14] Musii R., Mel’nyk N., Dmytruk V., Levus Y., Oryshchyn O., Nakonechny R. Computer prediction of operability of bimetal cylindrical sensors under the influence of radio-frequency pulses. 14th International Conference on Perspective Technologies and Methods in MEMS Design, MEMSTECH 2018 (Polyana, UKRAINE, 18–22 April 2018). 44–47 (2018).
dc.relation.references[15] Musij R., Dmytruk V., Melnyk N. Mathematical modeling and analysis of thermostressed state of bimetallic plate under electromagnetic action in the mode with pulse modulated signal. Mechanics and Mechanical Engineering. 22 (4), 865–870 (2018).
dc.relation.references[16] Musii R., Melnyk N., Dmytruk V., Bilyk O., Kushka B., Shayner H. Modeling and calculation of the temperature-force regime of functioning of an electrical conductive spherical sensor under the action of an amplitude-modulated radio pulse. 15th International Conference on the Experience of Designing and Application of CAD Systems CADSM 2019 (Polyana-Svalyava, UKRAINE, February 26 – March 2, 2019). 5/45-48 (2019).
dc.relation.references[17] Musij R., Drohomyretska K., Klapchuk M., Oryshchyn O., Nakonechnyy R. Solution of the connected problem of thermomechanics for a long hollow electroconductive cylinder under the action of impulse electromagnetic field with amplitude modulation. Mathematical Modeli
dc.relation.referencesen[1] Hoffmann O., Zafiropoulos G.-G. Tooth-implant connection: a review. Journal of Oral Implantology. 38 (2), 194–200 (2012).
dc.relation.referencesen[2] Gilbert Triplett R., Berger J., Jensen O., Louis P. Dental and Craniomaxillofacial Implant Surgery. Journal of Oral and Maxillofacial Surgery. 75 (8), e74–e93 (2017).
dc.relation.referencesen[3] Ozkan Y., Ozcan M., Varol A., Akoglu B., Ucankale M., Basa S. Resonance frequency analysis assessment of implant stability in labial onlay grafted posterior mandibles: a pilot clinical study. Int. Journal Oral Maxillofac Implants. 22 (2), 235–242 (2007).
dc.relation.referencesen[4] Taylor T. D., Agar J. R., Vogiatzi T. Implant prosthodontics: current perspective and future directions. Int. Journal Oral Maxillofac Implants. 15 (1), 66–75 (2000).
dc.relation.referencesen[5] Jaworski N., Iwaniec M. Numerical simulation of dental implant insertion process. 2017 XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH). 59–61 (2017).
dc.relation.referencesen[6] Batygin Yu. V., Lavinsky V. I., Himenko L. T. Impulse magnetic fields for advanced technologies. Harkov, MOST-Tornado Publ. (2003), (in Russian).
dc.relation.referencesen[7] Podstryhach Ja. S., Burak Ja. I., Hachkevich A. R., Cherniavskaia L. V. Thermoelasticity of electroconductive bodies. Kiev, Naukova dumka (1977), (in Russian).
dc.relation.referencesen[8] Hachkevych O. R., Musii R. S., Tarlakovskyi D. V. Thermomechanics of non-ferromagnetic electrically conductive bodies under the action of pulsed electromagnetic fields with amplitude modulation. Lviv, SPOLOM (2011), (in Ukrainian).
dc.relation.referencesen[9] Honorovskij I. S. Radiotechnical chains and signals. Moscow, Radio and communication (1986), (in Russian).
dc.relation.referencesen[10] Musii R., Melnyk N., Dmytruk V. Thermoelastic processes analyzer for piecewise homogeneous conductive structures subjected to pulsed electromagnetic action. Journal of Thermal Stresses. 41 (9), 1125–1135 (2018).
dc.relation.referencesen[11] Musij R. S. Dynamic problem of thermomechanics for conductive bodies of canonical form. Lviv, Rastr-7 (2010), (in Ukranian).
dc.relation.referencesen[12] Hachkevych O. R., Musii R. S., Stasiuk H. B. Problems of thermomechanics of electrically conductive bodies with plane-parallel limits under pulsed electromagnetic actions are connected. Lviv, Rastr-7 (2019), (in Ukranian).
dc.relation.referencesen[13] Hachkevych O., Musij R. Mathematical modeling in thermomechanics of electroconductive bodies under the action of the pulsed electromagnetic fields with modulation of amplitude. Mathematical Modeling and Computing. 6 (1), 30–36 (2019).
dc.relation.referencesen[14] Musii R., Mel’nyk N., Dmytruk V., Levus Y., Oryshchyn O., Nakonechny R. Computer prediction of operability of bimetal cylindrical sensors under the influence of radio-frequency pulses. 14th International Conference on Perspective Technologies and Methods in MEMS Design, MEMSTECH 2018 (Polyana, UKRAINE, 18–22 April 2018). 44–47 (2018).
dc.relation.referencesen[15] Musij R., Dmytruk V., Melnyk N. Mathematical modeling and analysis of thermostressed state of bimetallic plate under electromagnetic action in the mode with pulse modulated signal. Mechanics and Mechanical Engineering. 22 (4), 865–870 (2018).
dc.relation.referencesen[16] Musii R., Melnyk N., Dmytruk V., Bilyk O., Kushka B., Shayner H. Modeling and calculation of the temperature-force regime of functioning of an electrical conductive spherical sensor under the action of an amplitude-modulated radio pulse. 15th International Conference on the Experience of Designing and Application of CAD Systems CADSM 2019 (Polyana-Svalyava, UKRAINE, February 26 – March 2, 2019). 5/45-48 (2019).
dc.relation.referencesen[17] Musij R., Drohomyretska K., Klapchuk M., Oryshchyn O., Nakonechnyy R. Solution of the connected problem of thermomechanics for a long hollow electroconductive cylinder under the action of impulse electromagnetic field with amplitude modulation. Mathematical Modeli
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectелектропровідний імплант
dc.subjectциліндр
dc.subjectнеусталене електромагнітне поле
dc.subjectтемпература
dc.subjectінтенсивності напружень
dc.subjectфізіологічні критерії
dc.subjectelectrically conductive implant
dc.subjectcylinder
dc.subjectunstable electromagnetic field
dc.subjecttemperature
dc.subjectstress intensities
dc.subjectphysiological criteria
dc.titleThermomechanical behavior of an electrically conductive cylindrical implant under the action of external unstable electromagnetic fields
dc.title.alternativeТермомеханічна поведінка електропровідного циліндричного імпланта за дії зовнішніх неусталених електромагнітних полів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v8n2_Musii_R_S-Thermomechanical_behavior_184-191.pdf
Size:
929.77 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v8n2_Musii_R_S-Thermomechanical_behavior_184-191__COVER.png
Size:
458.19 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: