Adsorption Kinetics and Isotherms of Cu(II) and Fe(II) Ions from Aqueous Solutions by Fly Ash-Based Geopolymer

dc.citation.epage176
dc.citation.issue2
dc.citation.spage169
dc.contributor.affiliationDiponegoro University
dc.contributor.authorPurbasari, Aprilina
dc.contributor.authorAriyanti, Dessy
dc.contributor.authorSumardiono, Siswo
dc.contributor.authorKhairunnisa, Khansa
dc.contributor.authorSidharta, Tyaga
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T11:12:57Z
dc.date.available2024-01-22T11:12:57Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractЕкспериментально досліджено адсорбцію йонів Cu2+ та Fe2+, звичайних важких металів, що знаходяться в промислових стічних водах, геополімером на основі золи виносу. Встановлено, що адсорбція кожного йона відбувається за реакцією псевдодругого порядку. Доведено, що ізотерма адсорбції йонів Cu2+ та Fe2+ відповідає моделі Ленгмюра. Визначено, що моношарова адсорбційна здатність становила приблизно 53,76 мг/г та 52,63 мг/г для йонів Cu2+ та Fe2+, відповідно.
dc.description.abstractThis paper describes the adsorption of Cu2+ and Fe2+ ions, common heavy metals found in industrial wastewater, by a fly ash-based geopolymer in batch adsorption experiments. Kinetics studies showed that the adsorption of each ion followed a pseudo-second order reaction. Moreover, adsorption isotherm of Cu2+ and Fe2+ ions followed the Langmuir model. Monolayer adsorption capacities were approximately 53.76 mg/g for Cu2+ ion and 52.63 mg/g for Fe2+ ion, respectively.
dc.format.extent169-176
dc.format.pages8
dc.identifier.citationAdsorption Kinetics and Isotherms of Cu(II) and Fe(II) Ions from Aqueous Solutions by Fly Ash-Based Geopolymer / Aprilina Purbasari, Dessy Ariyanti, Siswo Sumardiono, Khansa Khairunnisa, Tyaga Sidharta // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 169–176.
dc.identifier.citationenAdsorption Kinetics and Isotherms of Cu(II) and Fe(II) Ions from Aqueous Solutions by Fly Ash-Based Geopolymer / Aprilina Purbasari, Dessy Ariyanti, Siswo Sumardiono, Khansa Khairunnisa, Tyaga Sidharta // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 169–176.
dc.identifier.doidoi.org/10.23939/chcht16.02.169
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60964
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (16), 2022
dc.relation.references[1] Davidovits, J. Geopolymers: Ceramic-Like Inorganic Polymers. J. Ceram. Sci. Technol. 2017, 8, 335-350. https://doi.org/10.4416/JCST2017-00038
dc.relation.references[2] Kramar, S.; Ducman, V. Mechanical and Microstructural Characterization of Geopolymer Synthesized from Low Calcium Fly Ash. Chem. Ind. Chem. Eng. Q. 2015, 21, 13-22. https://doi.org/10.2298/CICEQ130725042K
dc.relation.references[3] Bhatnagar, A. ; Minocha, A.K. Conventional and Non-Conventional Adsorbents for Removal of Pollutants From Water – A Review. Indian J. Chem. Technol. 2006, 13, 203-217. http://nopr.niscair.res.in/handle/123456789/7020
dc.relation.references[4] Alehyen, S.; Achouri, M.; Taibi, M. Characterization, Microstructure and Properties of Fly Ash-Based Geopolymer. J. Mater. Environ. Sci., 2017, 8, 1783-1796.
dc.relation.references[5] Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W.H.; Wang, H. Fly Ash-Based Geopolymer: Clean Production, Properties and Applications. J. Clean. Prod. 2016, 125, 253-267. https://doi.org/10.1016/j.jclepro.2016.03.019
dc.relation.references[6] Singh, N.B. Fly Ash-Based Geopolymer Binder: A Future Construction Material. Minerals 2018, 8, 299-320. https://doi.org/10.3390/min8070299
dc.relation.references[7] Siyal, A.A.; Shamsuddin, M.R.; Khan, M.I.; Rabat, N.E.; Zulfiqar, M.; Man, Z.; Siame, J.; Azizli, K.A. A Review on Geopolymers as Emerging Materials for the Adsorption of Heavy Metals and Dyes. J. Environ. Manage. 2018, 224, 327-339. https://doi.org/10.1016/j.jenvman.2018.07.046
dc.relation.references[8] Rasaki, S.A.; Bingxue, Z.; Guarecuco, R.; Thomas, T.; Minghui, Y. Geopolymer for Use in Heavy Metals Adsorption, and Advanced Oxidative Processes: A Critical Review. J. Clean. Prod. 2019, 213, 42-58. https://doi.org/10.1016/j.jclepro.2018.12.145
dc.relation.references[9] Iakovleva, E.; Sillanpää, M. The Use of Low-Cost Adsorbents for Wastewater Purification in Mining Industries. Environ. Sci. Pollut. Res. 2013, 20, 7878-7899. https://doi.org/10.1007/s11356-013-1546-8
dc.relation.references[10] Lim, A.P.; Aris A.Z. A Review on Economically Adsorbents on Heavy Metals Removal in Water and Wastewater. Rev. Environ. Sci. Biotechnol. 2014, 13, 163-181. https://doi.org/10.1007/s11157-013-9330-2
dc.relation.references[11] Sabadash, V.; Mylanyk, O.; Matsuska, O.; Gumnitsky, J. Kinetic Regularities of Copper Ions Adsorption by Natural Zeolite. Chem. Chem. Technol. 2017, 11, 459-462. https://doi.org/10.23939/chcht11.04.459
dc.relation.references[12] Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J. Copper Removal from Industrial Wastewater: A Comprehensive Review. J. Ind. Eng. Chem. 2017, 56, 35-44. https://doi.org/10.1016/j.jiec.2017.07.026
dc.relation.references[13] Ahmaruzzaman, M. Industrial Wastes as Low-Cost Potential Adsorbents for the Treatment of Wastewater Laden with Heavy Metals. Adv. Colloid Interface Sci. 2011, 166, 36-59. https://doi.org/10.1016/j.cis.2011.04.005
dc.relation.references[14] Ge, Y.; Cui, X.; Kong, Y.; Li, Z.; He, Y.; Zhou, Q. Porous Geopolymeric Spheres for Removal of Cu(II) from Aqueous Solution: Synthesis and Evaluation. J. Hazard. Mater. 2015, 283, 244-251. https://doi.org/10.1016/j.jhazmat.2014.09.038
dc.relation.references[15] Abas, S.N.A.; Ismail, M.H.S.; Kamal, M.L.; Izhar, S. Adsorption Process of Heavy Metals by Low-Cost Adsorbent: A Review. World Appl. Sci. J. 2013, 28, 1518-1530.
dc.relation.references[16] Nguyen, K.M.; Nguyen, B.Q.; Nguyen H.T.; Nguyen H.T.H. Adsorption of Arsenic and Heavy Metals from Solutions by Unmodified Iron-Ore Sludge. Appl. Sci. 2019, 9, 619-633. https://doi.org/10.3390/app9040619
dc.relation.references[17] Al-Zboon, K.; Al-Harahsheh, M.S.; Hani, F.B. Fly Ash-Based Geopolymer for Pb Removal from Aqueous Solution. J. Hazard. Mater. 2011, 188, 414-421. https://doi.org/10.1016/j.jhazmat.2011.01.133
dc.relation.references[18]Al-Harahsheh, M.S.; Al-Zboon, K.; Al-Makhadmeh, L.; Hararah, M.; Mahasneh, M. Fly Ash Based Geopolymer for Heavy Metal Removal: A Case Study on Copper Removal. J. Environ. Chem. Eng. 2015, 3, 1669-1677. https://doi.org/10.1016/j.jece.2015.06.005
dc.relation.references[19] Qiu, J.; Zhao, Y.; Xing, J.; Sun, X. Fly Ash-Based Geopolymer as a Potential Adsorbent for Cr(VI) Removal. Desalin. Water Treat. 2017, 70, 201-209. https://doi.org/10.5004/dwt.2017.20493
dc.relation.references[20] Duan, P.; Yan, C.; Zhou, W.; Ren, D. Development of Fly Ash and Iron Ore Tailing Based Porous Geopolymer for Removal of Cu(II) from Wastewater. Ceram. Int. 2016, 42, 13507-13518. https://doi.org/10.1016/j.ceramint.2016.05.143
dc.relation.references[21] Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. https://doi.org/10.1155/2017/3039817
dc.relation.references[22] Karthikeyan, G.; Siva Ilango, S. Equilibrium Sorption Studies of Fe, Cu and Co Ions in Aqueous Medium Using Activated Carbon Prepared from Recinius Communis Linn. J. Appl. Sci. Environ. Manage. 2008, 12, 81-87. https://doi.org/10.4314/jasem.v12i2.55537
dc.relation.references[23] Sarkar, C.; Basu, J.K.; Samanta, A.N. Synthesis of Mesoporous Geopolymeric Powder from LD Slag as Superior Adsorbent for Zinc (II) Removal. Adv. Powder Technol. 2018, 29, 1142-1152. https://doi.org/10.1016/j.apt.2018.02.005
dc.relation.references[24] Davidovits, J. Geopolymer: Chemistry and Applications; Institut Géopolymère: Saint-Quentin, 2008.
dc.relation.references[25] Lee, W.K.W.; van Deventer, J.S.J. Structural Reorganisation of Class F Fly Ash in Alkaline Silicate Solutions. Colloid Surface A 2002, 211, 49-66. https://doi.org/10.1016/S0927-7757(02)00237-6
dc.relation.references[26] Lee, W.K.W.; van Deventer, J.S.J. The Effects of Inorganic Salt Contamination on the Strength and Durability of Geopolymers. Colloid Surface A 2002, 211, 115-126. https://doi.org/10.1016/S0927-7757(02)00239-X
dc.relation.references[27] Nath, S.K.; Maitra, S.; Mukherjee, S.; Kumar S. Microstructural and Morphological Evolution of Fly Ash Based Geopolymers. Constr. Build. Mater. 2016, 111, 758-765. https://doi.org/10.1016/j.conbuildmat.2016.02.106
dc.relation.references[28] Bouguermouh, K.; Bouzidi, N.; Mahtout, L.; Pérez-Villarejo, L.; Martínez-Cartas, M.L.Effect of Acid Attack on Microstructure and Composition of Metakaolin-Based Geopolymers: The Role of Alkaline Activator. J. Non-Cryst. Solids 2017, 463, 128-137. https://doi.org/10.1016/j.jnoncrysol.2017.03.011
dc.relation.referencesen[1] Davidovits, J. Geopolymers: Ceramic-Like Inorganic Polymers. J. Ceram. Sci. Technol. 2017, 8, 335-350. https://doi.org/10.4416/JCST2017-00038
dc.relation.referencesen[2] Kramar, S.; Ducman, V. Mechanical and Microstructural Characterization of Geopolymer Synthesized from Low Calcium Fly Ash. Chem. Ind. Chem. Eng. Q. 2015, 21, 13-22. https://doi.org/10.2298/CICEQ130725042K
dc.relation.referencesen[3] Bhatnagar, A. ; Minocha, A.K. Conventional and Non-Conventional Adsorbents for Removal of Pollutants From Water – A Review. Indian J. Chem. Technol. 2006, 13, 203-217. http://nopr.niscair.res.in/handle/123456789/7020
dc.relation.referencesen[4] Alehyen, S.; Achouri, M.; Taibi, M. Characterization, Microstructure and Properties of Fly Ash-Based Geopolymer. J. Mater. Environ. Sci., 2017, 8, 1783-1796.
dc.relation.referencesen[5] Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W.H.; Wang, H. Fly Ash-Based Geopolymer: Clean Production, Properties and Applications. J. Clean. Prod. 2016, 125, 253-267. https://doi.org/10.1016/j.jclepro.2016.03.019
dc.relation.referencesen[6] Singh, N.B. Fly Ash-Based Geopolymer Binder: A Future Construction Material. Minerals 2018, 8, 299-320. https://doi.org/10.3390/min8070299
dc.relation.referencesen[7] Siyal, A.A.; Shamsuddin, M.R.; Khan, M.I.; Rabat, N.E.; Zulfiqar, M.; Man, Z.; Siame, J.; Azizli, K.A. A Review on Geopolymers as Emerging Materials for the Adsorption of Heavy Metals and Dyes. J. Environ. Manage. 2018, 224, 327-339. https://doi.org/10.1016/j.jenvman.2018.07.046
dc.relation.referencesen[8] Rasaki, S.A.; Bingxue, Z.; Guarecuco, R.; Thomas, T.; Minghui, Y. Geopolymer for Use in Heavy Metals Adsorption, and Advanced Oxidative Processes: A Critical Review. J. Clean. Prod. 2019, 213, 42-58. https://doi.org/10.1016/j.jclepro.2018.12.145
dc.relation.referencesen[9] Iakovleva, E.; Sillanpää, M. The Use of Low-Cost Adsorbents for Wastewater Purification in Mining Industries. Environ. Sci. Pollut. Res. 2013, 20, 7878-7899. https://doi.org/10.1007/s11356-013-1546-8
dc.relation.referencesen[10] Lim, A.P.; Aris A.Z. A Review on Economically Adsorbents on Heavy Metals Removal in Water and Wastewater. Rev. Environ. Sci. Biotechnol. 2014, 13, 163-181. https://doi.org/10.1007/s11157-013-9330-2
dc.relation.referencesen[11] Sabadash, V.; Mylanyk, O.; Matsuska, O.; Gumnitsky, J. Kinetic Regularities of Copper Ions Adsorption by Natural Zeolite. Chem. Chem. Technol. 2017, 11, 459-462. https://doi.org/10.23939/chcht11.04.459
dc.relation.referencesen[12] Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J. Copper Removal from Industrial Wastewater: A Comprehensive Review. J. Ind. Eng. Chem. 2017, 56, 35-44. https://doi.org/10.1016/j.jiec.2017.07.026
dc.relation.referencesen[13] Ahmaruzzaman, M. Industrial Wastes as Low-Cost Potential Adsorbents for the Treatment of Wastewater Laden with Heavy Metals. Adv. Colloid Interface Sci. 2011, 166, 36-59. https://doi.org/10.1016/j.cis.2011.04.005
dc.relation.referencesen[14] Ge, Y.; Cui, X.; Kong, Y.; Li, Z.; He, Y.; Zhou, Q. Porous Geopolymeric Spheres for Removal of Cu(II) from Aqueous Solution: Synthesis and Evaluation. J. Hazard. Mater. 2015, 283, 244-251. https://doi.org/10.1016/j.jhazmat.2014.09.038
dc.relation.referencesen[15] Abas, S.N.A.; Ismail, M.H.S.; Kamal, M.L.; Izhar, S. Adsorption Process of Heavy Metals by Low-Cost Adsorbent: A Review. World Appl. Sci. J. 2013, 28, 1518-1530.
dc.relation.referencesen[16] Nguyen, K.M.; Nguyen, B.Q.; Nguyen H.T.; Nguyen H.T.H. Adsorption of Arsenic and Heavy Metals from Solutions by Unmodified Iron-Ore Sludge. Appl. Sci. 2019, 9, 619-633. https://doi.org/10.3390/app9040619
dc.relation.referencesen[17] Al-Zboon, K.; Al-Harahsheh, M.S.; Hani, F.B. Fly Ash-Based Geopolymer for Pb Removal from Aqueous Solution. J. Hazard. Mater. 2011, 188, 414-421. https://doi.org/10.1016/j.jhazmat.2011.01.133
dc.relation.referencesen[18]Al-Harahsheh, M.S.; Al-Zboon, K.; Al-Makhadmeh, L.; Hararah, M.; Mahasneh, M. Fly Ash Based Geopolymer for Heavy Metal Removal: A Case Study on Copper Removal. J. Environ. Chem. Eng. 2015, 3, 1669-1677. https://doi.org/10.1016/j.jece.2015.06.005
dc.relation.referencesen[19] Qiu, J.; Zhao, Y.; Xing, J.; Sun, X. Fly Ash-Based Geopolymer as a Potential Adsorbent for Cr(VI) Removal. Desalin. Water Treat. 2017, 70, 201-209. https://doi.org/10.5004/dwt.2017.20493
dc.relation.referencesen[20] Duan, P.; Yan, C.; Zhou, W.; Ren, D. Development of Fly Ash and Iron Ore Tailing Based Porous Geopolymer for Removal of Cu(II) from Wastewater. Ceram. Int. 2016, 42, 13507-13518. https://doi.org/10.1016/j.ceramint.2016.05.143
dc.relation.referencesen[21] Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. https://doi.org/10.1155/2017/3039817
dc.relation.referencesen[22] Karthikeyan, G.; Siva Ilango, S. Equilibrium Sorption Studies of Fe, Cu and Co Ions in Aqueous Medium Using Activated Carbon Prepared from Recinius Communis Linn. J. Appl. Sci. Environ. Manage. 2008, 12, 81-87. https://doi.org/10.4314/jasem.v12i2.55537
dc.relation.referencesen[23] Sarkar, C.; Basu, J.K.; Samanta, A.N. Synthesis of Mesoporous Geopolymeric Powder from LD Slag as Superior Adsorbent for Zinc (II) Removal. Adv. Powder Technol. 2018, 29, 1142-1152. https://doi.org/10.1016/j.apt.2018.02.005
dc.relation.referencesen[24] Davidovits, J. Geopolymer: Chemistry and Applications; Institut Géopolymère: Saint-Quentin, 2008.
dc.relation.referencesen[25] Lee, W.K.W.; van Deventer, J.S.J. Structural Reorganisation of Class F Fly Ash in Alkaline Silicate Solutions. Colloid Surface A 2002, 211, 49-66. https://doi.org/10.1016/S0927-7757(02)00237-6
dc.relation.referencesen[26] Lee, W.K.W.; van Deventer, J.S.J. The Effects of Inorganic Salt Contamination on the Strength and Durability of Geopolymers. Colloid Surface A 2002, 211, 115-126. https://doi.org/10.1016/S0927-7757(02)00239-X
dc.relation.referencesen[27] Nath, S.K.; Maitra, S.; Mukherjee, S.; Kumar S. Microstructural and Morphological Evolution of Fly Ash Based Geopolymers. Constr. Build. Mater. 2016, 111, 758-765. https://doi.org/10.1016/j.conbuildmat.2016.02.106
dc.relation.referencesen[28] Bouguermouh, K.; Bouzidi, N.; Mahtout, L.; Pérez-Villarejo, L.; Martínez-Cartas, M.L.Effect of Acid Attack on Microstructure and Composition of Metakaolin-Based Geopolymers: The Role of Alkaline Activator. J. Non-Cryst. Solids 2017, 463, 128-137. https://doi.org/10.1016/j.jnoncrysol.2017.03.011
dc.relation.urihttps://doi.org/10.4416/JCST2017-00038
dc.relation.urihttps://doi.org/10.2298/CICEQ130725042K
dc.relation.urihttp://nopr.niscair.res.in/handle/123456789/7020
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2016.03.019
dc.relation.urihttps://doi.org/10.3390/min8070299
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2018.07.046
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2018.12.145
dc.relation.urihttps://doi.org/10.1007/s11356-013-1546-8
dc.relation.urihttps://doi.org/10.1007/s11157-013-9330-2
dc.relation.urihttps://doi.org/10.23939/chcht11.04.459
dc.relation.urihttps://doi.org/10.1016/j.jiec.2017.07.026
dc.relation.urihttps://doi.org/10.1016/j.cis.2011.04.005
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2014.09.038
dc.relation.urihttps://doi.org/10.3390/app9040619
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2011.01.133
dc.relation.urihttps://doi.org/10.1016/j.jece.2015.06.005
dc.relation.urihttps://doi.org/10.5004/dwt.2017.20493
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2016.05.143
dc.relation.urihttps://doi.org/10.1155/2017/3039817
dc.relation.urihttps://doi.org/10.4314/jasem.v12i2.55537
dc.relation.urihttps://doi.org/10.1016/j.apt.2018.02.005
dc.relation.urihttps://doi.org/10.1016/S0927-7757(02)00237-6
dc.relation.urihttps://doi.org/10.1016/S0927-7757(02)00239-X
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2016.02.106
dc.relation.urihttps://doi.org/10.1016/j.jnoncrysol.2017.03.011
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Purbasari A., Ariyanti D., Sumardiono S., Khairunnisa K., Sidharta T., 2022
dc.subjectадсорбція
dc.subjectйон Cu(II)
dc.subjectйон Fe(II)
dc.subjectгеополімер на основі золи виносу
dc.subjectізотерма Ленгмюра
dc.subjectреакція псевдодругого порядку
dc.subjectadsorption
dc.subjectCu(II) ion
dc.subjectFe(II) ion
dc.subjectfly ashbased geopolymer
dc.subjectLangmuir isotherm
dc.subjectpseudo second order reaction
dc.titleAdsorption Kinetics and Isotherms of Cu(II) and Fe(II) Ions from Aqueous Solutions by Fly Ash-Based Geopolymer
dc.title.alternativeКінетика адсорбції та ізотерми йонів Cu(II) і Fe(II) з водних розчинів з використанням геополімеру на основі золи виносу
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v16n2_Purbasari_A-Adsorption_Kinetics_and_169-176.pdf
Size:
501.2 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v16n2_Purbasari_A-Adsorption_Kinetics_and_169-176__COVER.png
Size:
483.27 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: