A mathematical study of the COVID-19 propagation through a stochastic epidemic model
dc.citation.epage | 795 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 784 | |
dc.contributor.affiliation | Університет Сіді Мохамеда Бен Абделла | |
dc.contributor.affiliation | Sidi Mohamed Ben Abdellah University | |
dc.contributor.author | Кіуах, Д. | |
dc.contributor.author | Ель-Ідріссі, С. Е. А. | |
dc.contributor.author | Саббар, Ю. | |
dc.contributor.author | Kiouach, D. | |
dc.contributor.author | El-Idrissi, S. E. A. | |
dc.contributor.author | Sabbar, Y. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T12:17:25Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | COVID-19 є великою небезпекою, яка загрожує всьому світу. У цьому контексті математичне моделювання є дуже потужним інструментом, щоб дізнатися більше про те, як така хвороба передається всередині людської популяції. У зв’язку з цим у цій статті пропонується стохастична модель епідемії, яка описує динаміку COVID-19 під час застосування карантину та стратегій медіа-висвітлення, і здійснено строгий математичний аналіз цієї моделі, щоб отримати загальне уявлення про поширення COVID-19. | |
dc.description.abstract | The COVID-19 is a major danger that threatens the whole world. In this context, mathematical modeling is a very powerful tool for knowing more about how such a disease is transmitted within a host population of humans. In this regard, we propose in the current study a stochastic epidemic model that describes the COVID-19 dynamics under the application of quarantine and coverage media strategies, and we give a rigorous mathematical analysis of this model to obtain an overview of COVID-19 dissemination behavior. | |
dc.format.extent | 784-795 | |
dc.format.pages | 12 | |
dc.identifier.citation | Kiouach D. A mathematical study of the COVID-19 propagation through a stochastic epidemic model / D. Kiouach, S. E. A. El-Idrissi, Y. Sabbar // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 784–795. | |
dc.identifier.citationen | Kiouach D. A mathematical study of the COVID-19 propagation through a stochastic epidemic model / D. Kiouach, S. E. A. El-Idrissi, Y. Sabbar // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 784–795. | |
dc.identifier.doi | doi.org/10.23939/mmc2023.03.784 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63514 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 3 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 3 (10), 2023 | |
dc.relation.references | [1] Jia J., Ding J., Liu S., Liao G., Li J., Duan B., Wang G., Zhang R. Modeling the control of COVID-19: Impact of policy interventions and meteorological factors. Preprint arXiv:2003.02985 (2020). | |
dc.relation.references | [2] Pawar D. D., Patil W. D., Raut D. K. Fractional-order mathematical model for analysing impact of quarantine on transmission of COVID-19 in India. Mathematical Modeling and Computing. 8 (2), 253–266 (2021). | |
dc.relation.references | [3] Ilnytskyi J. M. Modeling of the COVID-19 pandemic in the limit of no acquired immunity. Mathematical Modeling and Computing. 8 (2), 282–303 (2021). | |
dc.relation.references | [4] Yavorska O., Bun R. Spatial analysis of COVID-19 spread in Europe using “center of gravity” concept. Mathematical Modeling and Computing. 9 (1), 130–142 (2022). | |
dc.relation.references | [5] Kouidere A., Elhia M., Balatif O. A spatiotemporal spread of COVID-19 pandemic with vaccination optimal control strategy: A case study in Morocco. Mathematical Modeling and Computing. 10 (1), 171–185 (2023). | |
dc.relation.references | [6] Mao X. Stochastic differential equations and applications. Woodhead Publishing (2007). | |
dc.relation.references | [7] Karatzas I., Shreve S. E. Brownian Motion and Stochastic Calculus. Springer New York, NY (1998). | |
dc.relation.references | [8] Zhao Y., Jiang D. The threshold of a stochastic SIS epidemic model with vaccination. Applied Mathematics and Computation. 243, 718–727 (2014). | |
dc.relation.references | [9] Yin S. A New Generalization on Cauchy–Schwarz Inequality. Journal of Function Spaces. 2017, 9576375 (2017). | |
dc.relation.references | [10] Song Y., Miao A., Zhang T., Wang X., Liu J. Extinction and persistence of a stochastic SIRS epidemic model with saturated incidence rate and transfer from infectious to susceptible. Advances in Difference Equations. 2018, 293 (2018). | |
dc.relation.references | [11] Sun F. Dynamics of an imprecise stochastic Holling II one-predator two-prey system with jumps. Preprint arXiv:2006.14943 (2020). | |
dc.relation.references | [12] Nicholson J., Clapham C. The Concise Oxford Dictionary of Mathematics. Vol. 5. Oxford University Press Oxford (2014). | |
dc.relation.references | [13] Tang B., Wang X., Li Q., Bragazzi N. L., Tang S., Xiao Y., Wu J. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. Journal of Clinical Medicine. 9 (2), 462 (2020). | |
dc.relation.references | [14] Wu J., Tang B., Bragazzi N. L., Nah K., McCarthy Z. Quantifying the role of social distancing, personal protection and case detection in mitigating COVID-19 outbreak in Ontario, Canada. Journal of Mathematics in Industry. 10, 15 (2020). | |
dc.relation.references | [15] Public Health Ontario. Ontario COVID-19 Data Tool. PHO official website (2020). | |
dc.relation.referencesen | [1] Jia J., Ding J., Liu S., Liao G., Li J., Duan B., Wang G., Zhang R. Modeling the control of COVID-19: Impact of policy interventions and meteorological factors. Preprint arXiv:2003.02985 (2020). | |
dc.relation.referencesen | [2] Pawar D. D., Patil W. D., Raut D. K. Fractional-order mathematical model for analysing impact of quarantine on transmission of COVID-19 in India. Mathematical Modeling and Computing. 8 (2), 253–266 (2021). | |
dc.relation.referencesen | [3] Ilnytskyi J. M. Modeling of the COVID-19 pandemic in the limit of no acquired immunity. Mathematical Modeling and Computing. 8 (2), 282–303 (2021). | |
dc.relation.referencesen | [4] Yavorska O., Bun R. Spatial analysis of COVID-19 spread in Europe using "center of gravity" concept. Mathematical Modeling and Computing. 9 (1), 130–142 (2022). | |
dc.relation.referencesen | [5] Kouidere A., Elhia M., Balatif O. A spatiotemporal spread of COVID-19 pandemic with vaccination optimal control strategy: A case study in Morocco. Mathematical Modeling and Computing. 10 (1), 171–185 (2023). | |
dc.relation.referencesen | [6] Mao X. Stochastic differential equations and applications. Woodhead Publishing (2007). | |
dc.relation.referencesen | [7] Karatzas I., Shreve S. E. Brownian Motion and Stochastic Calculus. Springer New York, NY (1998). | |
dc.relation.referencesen | [8] Zhao Y., Jiang D. The threshold of a stochastic SIS epidemic model with vaccination. Applied Mathematics and Computation. 243, 718–727 (2014). | |
dc.relation.referencesen | [9] Yin S. A New Generalization on Cauchy–Schwarz Inequality. Journal of Function Spaces. 2017, 9576375 (2017). | |
dc.relation.referencesen | [10] Song Y., Miao A., Zhang T., Wang X., Liu J. Extinction and persistence of a stochastic SIRS epidemic model with saturated incidence rate and transfer from infectious to susceptible. Advances in Difference Equations. 2018, 293 (2018). | |
dc.relation.referencesen | [11] Sun F. Dynamics of an imprecise stochastic Holling II one-predator two-prey system with jumps. Preprint arXiv:2006.14943 (2020). | |
dc.relation.referencesen | [12] Nicholson J., Clapham C. The Concise Oxford Dictionary of Mathematics. Vol. 5. Oxford University Press Oxford (2014). | |
dc.relation.referencesen | [13] Tang B., Wang X., Li Q., Bragazzi N. L., Tang S., Xiao Y., Wu J. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. Journal of Clinical Medicine. 9 (2), 462 (2020). | |
dc.relation.referencesen | [14] Wu J., Tang B., Bragazzi N. L., Nah K., McCarthy Z. Quantifying the role of social distancing, personal protection and case detection in mitigating COVID-19 outbreak in Ontario, Canada. Journal of Mathematics in Industry. 10, 15 (2020). | |
dc.relation.referencesen | [15] Public Health Ontario. Ontario COVID-19 Data Tool. PHO official website (2020). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | COVID-19 | |
dc.subject | броунівський рух | |
dc.subject | стохастична модель епідемії | |
dc.subject | висвітлення ЗМІ | |
dc.subject | карантин | |
dc.subject | COVID-19 | |
dc.subject | Brownian motion | |
dc.subject | stochastic epidemic model | |
dc.subject | coverage media | |
dc.subject | quarantine | |
dc.title | A mathematical study of the COVID-19 propagation through a stochastic epidemic model | |
dc.title.alternative | Математичне дослідження розповсюдження COVID-19 через стохастичну модель епідемії | |
dc.type | Article |
Files
License bundle
1 - 1 of 1