Semilinear periodic equation with arbitrary nonlinear growth and data measure: mathematical analysis and numerical simulation

dc.citation.epage964
dc.citation.issue3
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage956
dc.contributor.affiliationУніверситет Каді Айяд
dc.contributor.affiliationCadi Ayyad University
dc.contributor.authorЕль Габі, М.
dc.contributor.authorАлаа, Х.
dc.contributor.authorАлаа, Н. Е.
dc.contributor.authorEl Ghabi, M.
dc.contributor.authorAlaa, H.
dc.contributor.authorAlaa, N. E.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T12:17:33Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цій роботі цікавимося існуванням, єдиністю та чисельним моделюванням слабких періодичних розв’язків для деяких напівлінійних еліптичних рівнянь із мірами даних та з довільними нелінійностями зростання. Оскільки дані не дуже регулярні, а зростання є довільним, необхідний новий підхід для аналізу цих типів рівнянь. Накінець, наведено відповідну чисельну схему дискретизації. Наведено декілька числових прикладів, які демонструють надійність запропонованого алгоритму.
dc.description.abstractIn this work, we are interested in the existence, uniqueness, and numerical simulation of weak periodic solutions for some semilinear elliptic equations with data measures and with arbitrary growth of nonlinearities. Since the data are not very regular and the growths are arbitrary, a new approach is needed to analyze these types of equations. Finally, a suitable numerical discretization scheme is presented. Several numerical examples are given which show the robustness of our algorithm.
dc.format.extent956-964
dc.format.pages9
dc.identifier.citationEl Ghabi M. Semilinear periodic equation with arbitrary nonlinear growth and data measure: mathematical analysis and numerical simulation / M. El Ghabi, H. Alaa, N. E. Alaa // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 956–964.
dc.identifier.citationenEl Ghabi M. Semilinear periodic equation with arbitrary nonlinear growth and data measure: mathematical analysis and numerical simulation / M. El Ghabi, H. Alaa, N. E. Alaa // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 956–964.
dc.identifier.doidoi.org/10.23939/mmc2023.03.956
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63532
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 3 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 3 (10), 2023
dc.relation.references[1] Alaa N. Quasilinear elliptic equations with arbitrary growth nonlinearity and data measures. Extracta Mathematicae. 11 (3), 405–411 (1996).
dc.relation.references[2] Alaa N., Iguernane M. Weak periodic solutions of some quasilinear parabolic equations with data measure. Journal of Inequalities in Pure and Applied Mathematics. 3 (3), 46 (2002).
dc.relation.references[3] Charkaoui A., Kouadri G., Selt O., Alaa N. Existence results of weak periodic solution for some quasilinear parabolic problem with L1 data. Annals of the University of Craiova, Mathematics and Computer Science Series. 46 (1), 66–77 (2019).
dc.relation.references[4] Charkaoui A., Kouadri G., Alaa N. Some Results on The Existence of Weak Periodic Solutions For Quasilinear Parabolic Systems With L1 Data. Boletim da Sociedade Paranaense de Matem´atica. 40, 1–15 (2022).
dc.relation.references[5] Elaassri A., Uahabi L. K., Charkaoui A., Alaa N. E., Mesbahi S. Existence of weak periodic solution for quasilinear parabolic problem with nonlinear boundary conditions. Annals of the University of Craiova, Mathematics and Computer Science Series. 46 (1), 1–13 (2019).
dc.relation.references[6] Alaa N. E., Charkaoui A., Elaassr A. Periodic parabolic problem with discontinuous coefficients. Mathematical Analysis and Numerical Simulation. 41 (6), 1251–1271 (2022).
dc.relation.references[7] Alaa H., El Ghabi M., Charkaoui A. Semilinear Periodic Parabolic Problem with Discontinuous Coefficients: Mathematical Anlysis and Numerical Simulation. Filomat. 37 (7), 2151–2164 (2023).
dc.relation.references[8] Canada A., Drabek P., Fonda A. Handbook of Differential Equations: Ordinary Differential Equations. North Holland (2008).
dc.relation.references[9] Farkas M. Periodic Motions. Springer, New York (1994).
dc.relation.references[10] De Coster C., Habets P. Chapter III – Relation with Degree Theory. Two-Point Boundary Value Problems: Lower and Upper Solutions. Mathematics in Science and Engineering. 205, 135–188 (2006).
dc.relation.references[11] Takemura K., Kametaka Y., Watanabe K., Nagai A., Yamagishi H. Sobolev type inequalities of timeperiodic boundary value problems for Heaviside and Thomson cables. Boundary Value Problems. 2012, 95 (2012).
dc.relation.references[12] Ciarlet P. G., Scitultz H., Vag R. S. Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems, IV. Periodic Boundary Conditions. Numerische Mathematik. 12, 266–279 (1968).
dc.relation.references[13] Aubin J.-P., Ekeland I. Applied Nonlinear Analysis. Wiley, Hoboken (1984).
dc.relation.references[14] Amjed D., Zaraiqati F., Al-Zoubhi H., Abu Hamma M. Numerical methods for finding periodic solutions of ordinary differential equations with strong nonlinearity. Journal of Mathematical and Computational Science. 11 (6), 6910–6922 (2021).
dc.relation.references[15] Samoilenko A. M. Certain questions of the theory of periodic and quasi-periodic systems. D.Sc. Dissertation, Kiev (1967).
dc.relation.referencesen[1] Alaa N. Quasilinear elliptic equations with arbitrary growth nonlinearity and data measures. Extracta Mathematicae. 11 (3), 405–411 (1996).
dc.relation.referencesen[2] Alaa N., Iguernane M. Weak periodic solutions of some quasilinear parabolic equations with data measure. Journal of Inequalities in Pure and Applied Mathematics. 3 (3), 46 (2002).
dc.relation.referencesen[3] Charkaoui A., Kouadri G., Selt O., Alaa N. Existence results of weak periodic solution for some quasilinear parabolic problem with L1 data. Annals of the University of Craiova, Mathematics and Computer Science Series. 46 (1), 66–77 (2019).
dc.relation.referencesen[4] Charkaoui A., Kouadri G., Alaa N. Some Results on The Existence of Weak Periodic Solutions For Quasilinear Parabolic Systems With L1 Data. Boletim da Sociedade Paranaense de Matem´atica. 40, 1–15 (2022).
dc.relation.referencesen[5] Elaassri A., Uahabi L. K., Charkaoui A., Alaa N. E., Mesbahi S. Existence of weak periodic solution for quasilinear parabolic problem with nonlinear boundary conditions. Annals of the University of Craiova, Mathematics and Computer Science Series. 46 (1), 1–13 (2019).
dc.relation.referencesen[6] Alaa N. E., Charkaoui A., Elaassr A. Periodic parabolic problem with discontinuous coefficients. Mathematical Analysis and Numerical Simulation. 41 (6), 1251–1271 (2022).
dc.relation.referencesen[7] Alaa H., El Ghabi M., Charkaoui A. Semilinear Periodic Parabolic Problem with Discontinuous Coefficients: Mathematical Anlysis and Numerical Simulation. Filomat. 37 (7), 2151–2164 (2023).
dc.relation.referencesen[8] Canada A., Drabek P., Fonda A. Handbook of Differential Equations: Ordinary Differential Equations. North Holland (2008).
dc.relation.referencesen[9] Farkas M. Periodic Motions. Springer, New York (1994).
dc.relation.referencesen[10] De Coster C., Habets P. Chapter III – Relation with Degree Theory. Two-Point Boundary Value Problems: Lower and Upper Solutions. Mathematics in Science and Engineering. 205, 135–188 (2006).
dc.relation.referencesen[11] Takemura K., Kametaka Y., Watanabe K., Nagai A., Yamagishi H. Sobolev type inequalities of timeperiodic boundary value problems for Heaviside and Thomson cables. Boundary Value Problems. 2012, 95 (2012).
dc.relation.referencesen[12] Ciarlet P. G., Scitultz H., Vag R. S. Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems, IV. Periodic Boundary Conditions. Numerische Mathematik. 12, 266–279 (1968).
dc.relation.referencesen[13] Aubin J.-P., Ekeland I. Applied Nonlinear Analysis. Wiley, Hoboken (1984).
dc.relation.referencesen[14] Amjed D., Zaraiqati F., Al-Zoubhi H., Abu Hamma M. Numerical methods for finding periodic solutions of ordinary differential equations with strong nonlinearity. Journal of Mathematical and Computational Science. 11 (6), 6910–6922 (2021).
dc.relation.referencesen[15] Samoilenko A. M. Certain questions of the theory of periodic and quasi-periodic systems. D.Sc. Dissertation, Kiev (1967).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectперіодичний розв’язок
dc.subjectнапівлінійне рівняння
dc.subjectметод оптимізації
dc.subjectчисельне моделювання
dc.subjectperiodic solution
dc.subjectsemilinear equation
dc.subjectoptimisation method
dc.subjectnumerical simulation
dc.titleSemilinear periodic equation with arbitrary nonlinear growth and data measure: mathematical analysis and numerical simulation
dc.title.alternativeНапівлінійне періодичне рівняння з довільною нелінійністю зростання та мірою даних: математичний аналіз та чисельне моделювання
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n3_El_Ghabi_M-Semilinear_periodic_equation_956-964.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n3_El_Ghabi_M-Semilinear_periodic_equation_956-964__COVER.png
Size:
381.16 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: