A hybrid variable neighborhood search with bootstrap resampling technique for credit scoring problem

dc.citation.epage119
dc.citation.issue11
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage109
dc.citation.volume1
dc.contributor.affiliationНаціональний інститут статистики та прикладної економіки, Рабат
dc.contributor.affiliationNational Institute for Statistics and Applied Economics, Rabat
dc.contributor.authorБархдаді, М.
dc.contributor.authorБеньякуб, Б.
dc.contributor.authorУзінеб, М.
dc.contributor.authorBarhdadi, M.
dc.contributor.authorBenyacoub, B.
dc.contributor.authorOuzineb, M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T07:44:06Z
dc.date.created2024-02-24
dc.date.issued2024-02-24
dc.description.abstractМоделі кредитного скорингу зіграли життєво важливу роль у наданні кредитів кредиторами та фінансовими установами. Останнім часом їм приділяється більше уваги в практиці управління ризиками. Було розроблено багато методів моделювання для оцінки кредитоспроможності позичальників. У цій статті представлено модель кредитного скорингу за допомогою одного з методів локального пошуку – алгоритму пошуку змінної околиці (VNS). Оптимізація структури околиці VNS є корисним методом, що застосовується для вирішення проблем кредитного скорингу. Одночасно налаштовуючи структуру околиці, запропонований алгоритм генерує оптимізовані ваги, які використовуються для побудови лінійної дискримінантної функції. Експериментальні результати, отримані шляхом застосування цієї моделі на змодельованих та реальних наборах даних, доводять її високу ефективність та оцінюють її значення для кредитного рейтингування.
dc.description.abstractCredit scoring models have played a vitally important role in the granting credit by lenders and financial institutions. Recently, these have gained more attention related to the risk management practice. Many modeling techniques have been developed to evaluate the worthiness of borrowers. This paper presents a credit scoring model via one of local search methods – variable neighborhood search (VNS) algorithm. The optimizing VNS neighborhood structure is a useful method applied to solve credit scoring problems. By simultaneously tuning the neighborhood structure, the proposed algorithm generates optimized weights which are used to build a linear discriminant function. The experimental results obtained by applying this model on simulated and real datasets prove its high efficiency and evaluate its significant value on credit scoring.
dc.format.extent109-119
dc.format.pages11
dc.identifier.citationBarhdadi M. A hybrid variable neighborhood search with bootstrap resampling technique for credit scoring problem / M. Barhdadi, B. Benyacoub, M. Ouzineb // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 109–119.
dc.identifier.citationenBarhdadi M. A hybrid variable neighborhood search with bootstrap resampling technique for credit scoring problem / M. Barhdadi, B. Benyacoub, M. Ouzineb // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 109–119.
dc.identifier.doi10.23939/mmc2024.01.109
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113771
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 11 (1), 2024
dc.relation.ispartofMathematical Modeling and Computing, 11 (1), 2024
dc.relation.references[1] Crook J. N., Edelman D. B., Thomas L. C. Recent developments in consumer credit risk assessment. European Journal of Operational Research. 183 (3), 1447–1465 (2007).
dc.relation.references[2] Lee T.-S., Chiu C.-C., Chou Y.-C., Lu C.-J. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis. 50 (4), 1113–1130 (2006).
dc.relation.references[3] Thomas L. C. A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers. International Journal of Forecasting. 16 (2), 149–172 (2000).
dc.relation.references[4] Westgaard S., van der Wijst N. Default probabilities in a corporate bank portfolio: a logistic model approach. European Journal of Operational Research. 135 (2), 338–349 (2001).
dc.relation.references[5] Henley W. E., Hand D. j. Construction of a k-nearest-neighbour credit-scoring system. IMA Journal of Management Mathematics. 8 (4), 305–321 (1997).
dc.relation.references[6] Khashman A. Neural networks for credit risk evaluation: investigation of different neural models and learning schemes. Expert Systems with Applications. 37 (9), 6233–6239 (2010).
dc.relation.references[7] Rosenberg E., Gleit A. Quantitative methods in credit management: a survey. Operations Research. 42 (4), 589–613 (1994).
dc.relation.references[8] Baesens B., Van Gestel T., Viaene S., Stepanova M., Suykens J., Vanthienen J. Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society. 54 (6), 627–635 (2003).
dc.relation.references[9] Mladenovi´c N., Hansen P. Variable neighborhood search. Computers & Operations Research. 24 (11), 1097–1100 (1997).
dc.relation.references[10] Hansen P., Mladenovi´c N. Variable neighborhood search: principles and applications. European Journal of Operational Research. 130 (3), 449–467 (2001).
dc.relation.references[11] Bickel P. J., G¨otze F., van Zwet W. R. Resampling fewer than n observations: Gains, losses, and remedies for losses. Statistica Sinica. 7 (1), 1–31 (1997).
dc.relation.references[12] Politis D., Romano J., Wolf M. Subsampling. Springer, New York (1999).
dc.relation.references[13] Bickel P. J., Sakov A. Extrapolation and the bootstrap. Sankhya: The Indian Journal of Statistics, Series A. 64 (3), 640–652 (2002).
dc.relation.references[14] Bickel P. J., Sakov A. On the choice of m in the m out of n bootstrap and confidence bounds for extrema. Statistica Sinica. 18, 967–985 (2008).
dc.relation.references[15] Kleiner A., Talwalkar A., Sarkar P., Jordan M. I. The big data bootstrap. Preprint arXiv:1206.6415 (2012).
dc.relation.references[16] Kleiner A., Talwalkar A., Sarkar P., Jordan M. I. A scalable bootstrap for massive data. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 76 (4), 795–816 (2014).
dc.relation.references[17] Sengupta S., Volgushev S., Shao X. A Subsampled Double Bootstrap for Massive Data. Journal of the American Statistical Association. 111 (515), 1222–1232 (2016).
dc.relation.references[18] Caravagna G., Ramazzotti D. Learning the structure of Bayesian Networks via the bootstrap. Neurocomputing. 448, 48–59 (2021).
dc.relation.references[19] Magasarian O. L. Linear and non linear separation of patterns by linear programming. Operations Research. 13 (3), 444–452 (1965).
dc.relation.references[20] Freed N., Glover F. Simple but powerful goal programming models for discriminant problems. European Journal of Operational Research. 7 (1), 44–60 (1981).
dc.relation.references[21] Freed N., Glover F. Evaluating alternative linear, programming models to solve the twogroup discriminant problem. Decision Science. 17 (2), 151–162 (1986).
dc.relation.references[22] Bequ´e A., Lessmann S. Extreme learning machines for credit scoring: An empirical evaluation. Expert Systems with Applications. 86, 42–53 (2017).
dc.relation.references[23] Teng G.-E., He C.-Z., Xiao J., Jiang X.-Y. Customer credit scoring based on HMM/GMDH hybrid model. Knowledge and Information Systems. 36 (3), 731–747 (2013).
dc.relation.referencesen[1] Crook J. N., Edelman D. B., Thomas L. C. Recent developments in consumer credit risk assessment. European Journal of Operational Research. 183 (3), 1447–1465 (2007).
dc.relation.referencesen[2] Lee T.-S., Chiu C.-C., Chou Y.-C., Lu C.-J. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis. 50 (4), 1113–1130 (2006).
dc.relation.referencesen[3] Thomas L. C. A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers. International Journal of Forecasting. 16 (2), 149–172 (2000).
dc.relation.referencesen[4] Westgaard S., van der Wijst N. Default probabilities in a corporate bank portfolio: a logistic model approach. European Journal of Operational Research. 135 (2), 338–349 (2001).
dc.relation.referencesen[5] Henley W. E., Hand D. j. Construction of a k-nearest-neighbour credit-scoring system. IMA Journal of Management Mathematics. 8 (4), 305–321 (1997).
dc.relation.referencesen[6] Khashman A. Neural networks for credit risk evaluation: investigation of different neural models and learning schemes. Expert Systems with Applications. 37 (9), 6233–6239 (2010).
dc.relation.referencesen[7] Rosenberg E., Gleit A. Quantitative methods in credit management: a survey. Operations Research. 42 (4), 589–613 (1994).
dc.relation.referencesen[8] Baesens B., Van Gestel T., Viaene S., Stepanova M., Suykens J., Vanthienen J. Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society. 54 (6), 627–635 (2003).
dc.relation.referencesen[9] Mladenovi´c N., Hansen P. Variable neighborhood search. Computers & Operations Research. 24 (11), 1097–1100 (1997).
dc.relation.referencesen[10] Hansen P., Mladenovi´c N. Variable neighborhood search: principles and applications. European Journal of Operational Research. 130 (3), 449–467 (2001).
dc.relation.referencesen[11] Bickel P. J., G¨otze F., van Zwet W. R. Resampling fewer than n observations: Gains, losses, and remedies for losses. Statistica Sinica. 7 (1), 1–31 (1997).
dc.relation.referencesen[12] Politis D., Romano J., Wolf M. Subsampling. Springer, New York (1999).
dc.relation.referencesen[13] Bickel P. J., Sakov A. Extrapolation and the bootstrap. Sankhya: The Indian Journal of Statistics, Series A. 64 (3), 640–652 (2002).
dc.relation.referencesen[14] Bickel P. J., Sakov A. On the choice of m in the m out of n bootstrap and confidence bounds for extrema. Statistica Sinica. 18, 967–985 (2008).
dc.relation.referencesen[15] Kleiner A., Talwalkar A., Sarkar P., Jordan M. I. The big data bootstrap. Preprint arXiv:1206.6415 (2012).
dc.relation.referencesen[16] Kleiner A., Talwalkar A., Sarkar P., Jordan M. I. A scalable bootstrap for massive data. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 76 (4), 795–816 (2014).
dc.relation.referencesen[17] Sengupta S., Volgushev S., Shao X. A Subsampled Double Bootstrap for Massive Data. Journal of the American Statistical Association. 111 (515), 1222–1232 (2016).
dc.relation.referencesen[18] Caravagna G., Ramazzotti D. Learning the structure of Bayesian Networks via the bootstrap. Neurocomputing. 448, 48–59 (2021).
dc.relation.referencesen[19] Magasarian O. L. Linear and non linear separation of patterns by linear programming. Operations Research. 13 (3), 444–452 (1965).
dc.relation.referencesen[20] Freed N., Glover F. Simple but powerful goal programming models for discriminant problems. European Journal of Operational Research. 7 (1), 44–60 (1981).
dc.relation.referencesen[21] Freed N., Glover F. Evaluating alternative linear, programming models to solve the twogroup discriminant problem. Decision Science. 17 (2), 151–162 (1986).
dc.relation.referencesen[22] Bequ´e A., Lessmann S. Extreme learning machines for credit scoring: An empirical evaluation. Expert Systems with Applications. 86, 42–53 (2017).
dc.relation.referencesen[23] Teng G.-E., He C.-Z., Xiao J., Jiang X.-Y. Customer credit scoring based on HMM/GMDH hybrid model. Knowledge and Information Systems. 36 (3), 731–747 (2013).
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectкредитне рейтингування
dc.subjectматематичне моделювання
dc.subjectалгоритм пошуку за змінною околицею
dc.subjectлінійна класифікація
dc.subjectтехніка повторної вибірки
dc.subjectcredit scoring
dc.subjectmathematical modeling
dc.subjectvariable neighborhood search algorithm
dc.subjectlinear classification
dc.subjectresampling technique
dc.titleA hybrid variable neighborhood search with bootstrap resampling technique for credit scoring problem
dc.title.alternativeГібридний пошук за змінною околицею з технікою повторної вибірки початкового завантаження для проблеми кредитного рейтингу
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n11_Barhdadi_M-A_hybrid_variable_neighborhood_109-119.pdf
Size:
8.13 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n11_Barhdadi_M-A_hybrid_variable_neighborhood_109-119__COVER.png
Size:
485.17 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: