A hybrid variable neighborhood search with bootstrap resampling technique for credit scoring problem
| dc.citation.epage | 119 | |
| dc.citation.issue | 11 | |
| dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
| dc.citation.spage | 109 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Національний інститут статистики та прикладної економіки, Рабат | |
| dc.contributor.affiliation | National Institute for Statistics and Applied Economics, Rabat | |
| dc.contributor.author | Бархдаді, М. | |
| dc.contributor.author | Беньякуб, Б. | |
| dc.contributor.author | Узінеб, М. | |
| dc.contributor.author | Barhdadi, M. | |
| dc.contributor.author | Benyacoub, B. | |
| dc.contributor.author | Ouzineb, M. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-10-20T07:44:06Z | |
| dc.date.created | 2024-02-24 | |
| dc.date.issued | 2024-02-24 | |
| dc.description.abstract | Моделі кредитного скорингу зіграли життєво важливу роль у наданні кредитів кредиторами та фінансовими установами. Останнім часом їм приділяється більше уваги в практиці управління ризиками. Було розроблено багато методів моделювання для оцінки кредитоспроможності позичальників. У цій статті представлено модель кредитного скорингу за допомогою одного з методів локального пошуку – алгоритму пошуку змінної околиці (VNS). Оптимізація структури околиці VNS є корисним методом, що застосовується для вирішення проблем кредитного скорингу. Одночасно налаштовуючи структуру околиці, запропонований алгоритм генерує оптимізовані ваги, які використовуються для побудови лінійної дискримінантної функції. Експериментальні результати, отримані шляхом застосування цієї моделі на змодельованих та реальних наборах даних, доводять її високу ефективність та оцінюють її значення для кредитного рейтингування. | |
| dc.description.abstract | Credit scoring models have played a vitally important role in the granting credit by lenders and financial institutions. Recently, these have gained more attention related to the risk management practice. Many modeling techniques have been developed to evaluate the worthiness of borrowers. This paper presents a credit scoring model via one of local search methods – variable neighborhood search (VNS) algorithm. The optimizing VNS neighborhood structure is a useful method applied to solve credit scoring problems. By simultaneously tuning the neighborhood structure, the proposed algorithm generates optimized weights which are used to build a linear discriminant function. The experimental results obtained by applying this model on simulated and real datasets prove its high efficiency and evaluate its significant value on credit scoring. | |
| dc.format.extent | 109-119 | |
| dc.format.pages | 11 | |
| dc.identifier.citation | Barhdadi M. A hybrid variable neighborhood search with bootstrap resampling technique for credit scoring problem / M. Barhdadi, B. Benyacoub, M. Ouzineb // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 109–119. | |
| dc.identifier.citationen | Barhdadi M. A hybrid variable neighborhood search with bootstrap resampling technique for credit scoring problem / M. Barhdadi, B. Benyacoub, M. Ouzineb // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 109–119. | |
| dc.identifier.doi | 10.23939/mmc2024.01.109 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/113771 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Математичне моделювання та комп'ютинг, 11 (1), 2024 | |
| dc.relation.ispartof | Mathematical Modeling and Computing, 11 (1), 2024 | |
| dc.relation.references | [1] Crook J. N., Edelman D. B., Thomas L. C. Recent developments in consumer credit risk assessment. European Journal of Operational Research. 183 (3), 1447–1465 (2007). | |
| dc.relation.references | [2] Lee T.-S., Chiu C.-C., Chou Y.-C., Lu C.-J. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis. 50 (4), 1113–1130 (2006). | |
| dc.relation.references | [3] Thomas L. C. A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers. International Journal of Forecasting. 16 (2), 149–172 (2000). | |
| dc.relation.references | [4] Westgaard S., van der Wijst N. Default probabilities in a corporate bank portfolio: a logistic model approach. European Journal of Operational Research. 135 (2), 338–349 (2001). | |
| dc.relation.references | [5] Henley W. E., Hand D. j. Construction of a k-nearest-neighbour credit-scoring system. IMA Journal of Management Mathematics. 8 (4), 305–321 (1997). | |
| dc.relation.references | [6] Khashman A. Neural networks for credit risk evaluation: investigation of different neural models and learning schemes. Expert Systems with Applications. 37 (9), 6233–6239 (2010). | |
| dc.relation.references | [7] Rosenberg E., Gleit A. Quantitative methods in credit management: a survey. Operations Research. 42 (4), 589–613 (1994). | |
| dc.relation.references | [8] Baesens B., Van Gestel T., Viaene S., Stepanova M., Suykens J., Vanthienen J. Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society. 54 (6), 627–635 (2003). | |
| dc.relation.references | [9] Mladenovi´c N., Hansen P. Variable neighborhood search. Computers & Operations Research. 24 (11), 1097–1100 (1997). | |
| dc.relation.references | [10] Hansen P., Mladenovi´c N. Variable neighborhood search: principles and applications. European Journal of Operational Research. 130 (3), 449–467 (2001). | |
| dc.relation.references | [11] Bickel P. J., G¨otze F., van Zwet W. R. Resampling fewer than n observations: Gains, losses, and remedies for losses. Statistica Sinica. 7 (1), 1–31 (1997). | |
| dc.relation.references | [12] Politis D., Romano J., Wolf M. Subsampling. Springer, New York (1999). | |
| dc.relation.references | [13] Bickel P. J., Sakov A. Extrapolation and the bootstrap. Sankhya: The Indian Journal of Statistics, Series A. 64 (3), 640–652 (2002). | |
| dc.relation.references | [14] Bickel P. J., Sakov A. On the choice of m in the m out of n bootstrap and confidence bounds for extrema. Statistica Sinica. 18, 967–985 (2008). | |
| dc.relation.references | [15] Kleiner A., Talwalkar A., Sarkar P., Jordan M. I. The big data bootstrap. Preprint arXiv:1206.6415 (2012). | |
| dc.relation.references | [16] Kleiner A., Talwalkar A., Sarkar P., Jordan M. I. A scalable bootstrap for massive data. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 76 (4), 795–816 (2014). | |
| dc.relation.references | [17] Sengupta S., Volgushev S., Shao X. A Subsampled Double Bootstrap for Massive Data. Journal of the American Statistical Association. 111 (515), 1222–1232 (2016). | |
| dc.relation.references | [18] Caravagna G., Ramazzotti D. Learning the structure of Bayesian Networks via the bootstrap. Neurocomputing. 448, 48–59 (2021). | |
| dc.relation.references | [19] Magasarian O. L. Linear and non linear separation of patterns by linear programming. Operations Research. 13 (3), 444–452 (1965). | |
| dc.relation.references | [20] Freed N., Glover F. Simple but powerful goal programming models for discriminant problems. European Journal of Operational Research. 7 (1), 44–60 (1981). | |
| dc.relation.references | [21] Freed N., Glover F. Evaluating alternative linear, programming models to solve the twogroup discriminant problem. Decision Science. 17 (2), 151–162 (1986). | |
| dc.relation.references | [22] Bequ´e A., Lessmann S. Extreme learning machines for credit scoring: An empirical evaluation. Expert Systems with Applications. 86, 42–53 (2017). | |
| dc.relation.references | [23] Teng G.-E., He C.-Z., Xiao J., Jiang X.-Y. Customer credit scoring based on HMM/GMDH hybrid model. Knowledge and Information Systems. 36 (3), 731–747 (2013). | |
| dc.relation.referencesen | [1] Crook J. N., Edelman D. B., Thomas L. C. Recent developments in consumer credit risk assessment. European Journal of Operational Research. 183 (3), 1447–1465 (2007). | |
| dc.relation.referencesen | [2] Lee T.-S., Chiu C.-C., Chou Y.-C., Lu C.-J. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis. 50 (4), 1113–1130 (2006). | |
| dc.relation.referencesen | [3] Thomas L. C. A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers. International Journal of Forecasting. 16 (2), 149–172 (2000). | |
| dc.relation.referencesen | [4] Westgaard S., van der Wijst N. Default probabilities in a corporate bank portfolio: a logistic model approach. European Journal of Operational Research. 135 (2), 338–349 (2001). | |
| dc.relation.referencesen | [5] Henley W. E., Hand D. j. Construction of a k-nearest-neighbour credit-scoring system. IMA Journal of Management Mathematics. 8 (4), 305–321 (1997). | |
| dc.relation.referencesen | [6] Khashman A. Neural networks for credit risk evaluation: investigation of different neural models and learning schemes. Expert Systems with Applications. 37 (9), 6233–6239 (2010). | |
| dc.relation.referencesen | [7] Rosenberg E., Gleit A. Quantitative methods in credit management: a survey. Operations Research. 42 (4), 589–613 (1994). | |
| dc.relation.referencesen | [8] Baesens B., Van Gestel T., Viaene S., Stepanova M., Suykens J., Vanthienen J. Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society. 54 (6), 627–635 (2003). | |
| dc.relation.referencesen | [9] Mladenovi´c N., Hansen P. Variable neighborhood search. Computers & Operations Research. 24 (11), 1097–1100 (1997). | |
| dc.relation.referencesen | [10] Hansen P., Mladenovi´c N. Variable neighborhood search: principles and applications. European Journal of Operational Research. 130 (3), 449–467 (2001). | |
| dc.relation.referencesen | [11] Bickel P. J., G¨otze F., van Zwet W. R. Resampling fewer than n observations: Gains, losses, and remedies for losses. Statistica Sinica. 7 (1), 1–31 (1997). | |
| dc.relation.referencesen | [12] Politis D., Romano J., Wolf M. Subsampling. Springer, New York (1999). | |
| dc.relation.referencesen | [13] Bickel P. J., Sakov A. Extrapolation and the bootstrap. Sankhya: The Indian Journal of Statistics, Series A. 64 (3), 640–652 (2002). | |
| dc.relation.referencesen | [14] Bickel P. J., Sakov A. On the choice of m in the m out of n bootstrap and confidence bounds for extrema. Statistica Sinica. 18, 967–985 (2008). | |
| dc.relation.referencesen | [15] Kleiner A., Talwalkar A., Sarkar P., Jordan M. I. The big data bootstrap. Preprint arXiv:1206.6415 (2012). | |
| dc.relation.referencesen | [16] Kleiner A., Talwalkar A., Sarkar P., Jordan M. I. A scalable bootstrap for massive data. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 76 (4), 795–816 (2014). | |
| dc.relation.referencesen | [17] Sengupta S., Volgushev S., Shao X. A Subsampled Double Bootstrap for Massive Data. Journal of the American Statistical Association. 111 (515), 1222–1232 (2016). | |
| dc.relation.referencesen | [18] Caravagna G., Ramazzotti D. Learning the structure of Bayesian Networks via the bootstrap. Neurocomputing. 448, 48–59 (2021). | |
| dc.relation.referencesen | [19] Magasarian O. L. Linear and non linear separation of patterns by linear programming. Operations Research. 13 (3), 444–452 (1965). | |
| dc.relation.referencesen | [20] Freed N., Glover F. Simple but powerful goal programming models for discriminant problems. European Journal of Operational Research. 7 (1), 44–60 (1981). | |
| dc.relation.referencesen | [21] Freed N., Glover F. Evaluating alternative linear, programming models to solve the twogroup discriminant problem. Decision Science. 17 (2), 151–162 (1986). | |
| dc.relation.referencesen | [22] Bequ´e A., Lessmann S. Extreme learning machines for credit scoring: An empirical evaluation. Expert Systems with Applications. 86, 42–53 (2017). | |
| dc.relation.referencesen | [23] Teng G.-E., He C.-Z., Xiao J., Jiang X.-Y. Customer credit scoring based on HMM/GMDH hybrid model. Knowledge and Information Systems. 36 (3), 731–747 (2013). | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | кредитне рейтингування | |
| dc.subject | математичне моделювання | |
| dc.subject | алгоритм пошуку за змінною околицею | |
| dc.subject | лінійна класифікація | |
| dc.subject | техніка повторної вибірки | |
| dc.subject | credit scoring | |
| dc.subject | mathematical modeling | |
| dc.subject | variable neighborhood search algorithm | |
| dc.subject | linear classification | |
| dc.subject | resampling technique | |
| dc.title | A hybrid variable neighborhood search with bootstrap resampling technique for credit scoring problem | |
| dc.title.alternative | Гібридний пошук за змінною околицею з технікою повторної вибірки початкового завантаження для проблеми кредитного рейтингу | |
| dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1