Aсtivity of binary vinadium compounds in reaction of epoxidation of 1-octene and decomposition of tert-butyl hydroperoxide

dc.citation.epage74
dc.citation.issue1
dc.citation.spage70
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМакота, О. І.
dc.contributor.authorКомаренська, З. М.
dc.contributor.authorОлійник, Л. П.
dc.contributor.authorБулгакова, Л. В.
dc.contributor.authorКловак, Н. В.
dc.contributor.authorMakota, O.
dc.contributor.authorKomarenska, Z.
dc.contributor.authorOliynyk, L.
dc.contributor.authorBulgakova, L.
dc.contributor.authorKlovak, N.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2021-01-28T11:23:55Z
dc.date.available2021-01-28T11:23:55Z
dc.date.created2020-02-24
dc.date.issued2020-02-24
dc.description.abstractДосліджено вплив ванадійвмісних сполук як каталізаторів на реакцію епоксидування октену-1 гідропероксидом трет-бутилу та розкладу цього гідропероксиду. Показано, що каталітична активність сполук ванадію залежить від природи ліганда, що входить до складу каталізатора. Встановлено, що борид і карбід ванадію є найактивнішими каталізаторами гідропероксидного епоксидування, тоді як V2O5 найактивнішим каталізатором розкладу гідропероксиду трет-бутилу. Найвища селективність утворення 1,2-епоксиоктену спостерігається у разі використання як каталізатора VC.
dc.description.abstractThe influenceof vanadium-containing compounds as catalysts on the reaction of 1-octene epoxidation by tert-butyl hydroperoxide and the decomposition of this hydroperoxide was investigated. It is shown that the catalytic activity of vanadium compounds depends on catalyst ligand nature. It is established that vanadium boride and carbide are the most active catalysts for hydroperoxide epoxidation, while V2O5 is the most active catalyst of tert-butyl hydroxide decomposition. The highest selectivity of 1,2-epoxyoctene formation is observed when VC is used as a catalyst.
dc.format.extent70-74
dc.format.pages5
dc.identifier.citationAсtivity of binary vinadium compounds in reaction of epoxidation of 1-octene and decomposition of tert-butyl hydroperoxide / O. Makota, Z. Komarenska, L. Oliynyk, L. Bulgakova, N. Klovak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 70–74.
dc.identifier.citationenAсtivity of binary vinadium compounds in reaction of epoxidation of 1-octene and decomposition of tert-butyl hydroperoxide / O. Makota, Z. Komarenska, L. Oliynyk, L. Bulgakova, N. Klovak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 70–74.
dc.identifier.doidoi.org/10.23939/ctas2020.01.070
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56066
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (3), 2020
dc.relation.references1. Marco-Contelles, J., Molina, M. T., Anjum, S. (2004). Naturallyoccurring cyclohexane epoxides: Sources, biological activitiesand synthesis. Chemical Reviews, 104(6), 2857–2899. doi: 10.1021/cr980013j.
dc.relation.references2. Diez, D., Beneitez, M. T., Marcos, I. S., Garrido, N. M., Basabe, P., Urones, J. G. (2002). Regio- and stereoselective ring openingof epoxides. Enantioselective synthesis of 2,3,4-trisubstitutedfive-membered heterocycles. Tetrahedron Asymmetry, 13(6), 639–646. doi: 10.1016/S0957-4166(02)00160–X
dc.relation.references3. Yudin, A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley-VCH,Weinheim, Germany. doi: 10.1002/3527607862
dc.relation.references4. Xia, Q. H., Ge, H. Q., Ye, C. P., Liu, Z. M., Su K. X. (2005). Advancesin homogeneous and heterogeneous catalytic asymmetricepoxidation. Chemical Reviews, 105(5), 1603–1662. doi: 10.1021/cr0406458. Arends, I. W. C. E., Sheldon, R. A. (2001). Activities and stabilitiesof heterogeneous catalysts in selective liquid phase oxidations:recent developments. Applied Catalysis A, 212(1–2),175-187. doi: 10.1016/S0926-860X(00) 00855-3.
dc.relation.references5. Tietze, L. F., Eicher T., Diederichsen U., Speicher A. (2007). Reactions and Syntheses in the Organic Chemistry Laboratory. Wiley-VCH, Weinheim. ISBN: 978-3-527-33814-6.
dc.relation.references6. Mirzaee, M., Bahramian, B., Gholizadeh, Ja., Feizi, A., Gholami, R. (2016). Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes.Chemical Engineering Journal, 308, 160–168. doi: 10.1016/j.cej.2016.09.055.
dc.relation.references7. Belaidi, N., Bedrane, S., Choukchou-Braham, A., Bachir, R. (2015). Novel vanadium-chromium-bentonite green catalysts for cyclohexene epoxidation. Applied Clay Science, 107, 14–24. doi: 10.1016/j.clay.2015.01.026.
dc.relation.references8. Arfaoui, Ji., KhalfallahBoudali, L., Ghorbel, A., (2010). Catalytic epoxidation of allylic alcohol (E)-2- Hexen-1-ol over vanadium supported on unsulfated and sulfated titanium pillared montmorillonite catalysts: Effect of sulfate groups and vanadium loading.Applied Clay Science, 48, 171–178. doi: 10.1016/j.clay.2009.12.005.
dc.relation.references9. Noji M., Kondo, H., Yazaki, C.,Yamaguchi, H., Ohkura, S., Takanami, T. (2019). An immobilized vanadiumbinaphthylbishydroxamic acid complex as a reusable catalyst for the asymmetric epoxidation of allylic alcohols. Tetrahedron Letters, 60(23), 1518–1521. doi: 10.1016/j.tetlet.2019.05.013.
dc.relation.references10. Yang, L., He, Ji., Zhang, Q., Wang, Y. (2010). Copper-catalyzed propylene epoxidation by oxygen: Significant promoting effect of vanadium on unsupported copper catalyst. Journal of Catalysis, 276(1), 76–84. doi: 10.1016/j.jcat.2010.09.002.
dc.relation.references11. Held A., Kowalska-Kuś Jo., Nowińska K., Góra-Marek, K. (2019). Potassium-modified silicasupported vanadium oxide catalysts applied for propene epoxidation. Journal of Catalysis, 347, 21–35. doi: 10.1016/j.jcat.2016.12.001.
dc.relation.references12. Milas N. A., Surgenor D. M. (1946). Studies in organic peroxides. VIII. t-Butyl hydroperoxide and di-tbutyl peroxide. Journal of the American Chemical Society, 68(2), 205–208. doi: 10.1021/ja01206a017.
dc.relation.referencesen1. Marco-Contelles, J., Molina, M. T., Anjum, S. (2004). Naturallyoccurring cyclohexane epoxides: Sources, biological activitiesand synthesis. Chemical Reviews, 104(6), 2857–2899. doi: 10.1021/cr980013j.
dc.relation.referencesen2. Diez, D., Beneitez, M. T., Marcos, I. S., Garrido, N. M., Basabe, P., Urones, J. G. (2002). Regio- and stereoselective ring openingof epoxides. Enantioselective synthesis of 2,3,4-trisubstitutedfive-membered heterocycles. Tetrahedron Asymmetry, 13(6), 639–646. doi: 10.1016/S0957-4166(02)00160–X
dc.relation.referencesen3. Yudin, A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley-VCH,Weinheim, Germany. doi: 10.1002/3527607862
dc.relation.referencesen4. Xia, Q. H., Ge, H. Q., Ye, C. P., Liu, Z. M., Su K. X. (2005). Advancesin homogeneous and heterogeneous catalytic asymmetricepoxidation. Chemical Reviews, 105(5), 1603–1662. doi: 10.1021/cr0406458. Arends, I. W. C. E., Sheldon, R. A. (2001). Activities and stabilitiesof heterogeneous catalysts in selective liquid phase oxidations:recent developments. Applied Catalysis A, 212(1–2),175-187. doi: 10.1016/S0926-860X(00) 00855-3.
dc.relation.referencesen5. Tietze, L. F., Eicher T., Diederichsen U., Speicher A. (2007). Reactions and Syntheses in the Organic Chemistry Laboratory. Wiley-VCH, Weinheim. ISBN: 978-3-527-33814-6.
dc.relation.referencesen6. Mirzaee, M., Bahramian, B., Gholizadeh, Ja., Feizi, A., Gholami, R. (2016). Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes.Chemical Engineering Journal, 308, 160–168. doi: 10.1016/j.cej.2016.09.055.
dc.relation.referencesen7. Belaidi, N., Bedrane, S., Choukchou-Braham, A., Bachir, R. (2015). Novel vanadium-chromium-bentonite green catalysts for cyclohexene epoxidation. Applied Clay Science, 107, 14–24. doi: 10.1016/j.clay.2015.01.026.
dc.relation.referencesen8. Arfaoui, Ji., KhalfallahBoudali, L., Ghorbel, A., (2010). Catalytic epoxidation of allylic alcohol (E)-2- Hexen-1-ol over vanadium supported on unsulfated and sulfated titanium pillared montmorillonite catalysts: Effect of sulfate groups and vanadium loading.Applied Clay Science, 48, 171–178. doi: 10.1016/j.clay.2009.12.005.
dc.relation.referencesen9. Noji M., Kondo, H., Yazaki, C.,Yamaguchi, H., Ohkura, S., Takanami, T. (2019). An immobilized vanadiumbinaphthylbishydroxamic acid complex as a reusable catalyst for the asymmetric epoxidation of allylic alcohols. Tetrahedron Letters, 60(23), 1518–1521. doi: 10.1016/j.tetlet.2019.05.013.
dc.relation.referencesen10. Yang, L., He, Ji., Zhang, Q., Wang, Y. (2010). Copper-catalyzed propylene epoxidation by oxygen: Significant promoting effect of vanadium on unsupported copper catalyst. Journal of Catalysis, 276(1), 76–84. doi: 10.1016/j.jcat.2010.09.002.
dc.relation.referencesen11. Held A., Kowalska-Kuś Jo., Nowińska K., Góra-Marek, K. (2019). Potassium-modified silicasupported vanadium oxide catalysts applied for propene epoxidation. Journal of Catalysis, 347, 21–35. doi: 10.1016/j.jcat.2016.12.001.
dc.relation.referencesen12. Milas N. A., Surgenor D. M. (1946). Studies in organic peroxides. VIII. t-Butyl hydroperoxide and di-tbutyl peroxide. Journal of the American Chemical Society, 68(2), 205–208. doi: 10.1021/ja01206a017.
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectепоксидування
dc.subjectкаталізатори
dc.subjectванадійвмісні сполуки
dc.subjectоктен-1
dc.subjectгідропероксид трет-бутилу
dc.subjectepoxidation
dc.subjectcatalysts
dc.subjectvanadium compounds
dc.subject1-octene
dc.subjecttert-butyl hydroperoxide
dc.titleAсtivity of binary vinadium compounds in reaction of epoxidation of 1-octene and decomposition of tert-butyl hydroperoxide
dc.title.alternativeАктивність бінарних сполук ванадію у реакції епоксидування октену-1 і розкладу гідропероксиду трет-бутилу
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2020v3n1_Makota_O-Astivity_of_binary_vinadium_70-74.pdf
Size:
452.06 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2020v3n1_Makota_O-Astivity_of_binary_vinadium_70-74__COVER.png
Size:
462.8 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.11 KB
Format:
Plain Text
Description: