The phenomenon of topological inconsistencies of frames of map sheets during the creation of the main state topographic map

dc.citation.epage112
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage103
dc.citation.volume95
dc.contributor.affiliationКиївський національний університет будівництва і архітектури
dc.contributor.affiliationKyiv National University of Construction and Architecture
dc.contributor.authorКінь, Данило
dc.contributor.authorКарпінський, Юрій
dc.contributor.authorKin, Danylo
dc.contributor.authorKarpinskyi, Yurii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-06-07T08:41:39Z
dc.date.available2023-06-07T08:41:39Z
dc.date.created2022-02-22
dc.date.issued2022-02-22
dc.description.abstractМета цієї роботи – дослідження топологічної неузгодженості під час зшивання та зведення рамок суміжних аркушів цифрових топографічних карт масштабу 1:50000 із застосуванням строгих аналітичних геодезичних методів на референц-еліпсоїді у геоінформаційному середовищі. У виконаних дослідженнях проаналізовано феномен виникнення топологічних неузгодженостей рамок суміжних аркушів цифрових топографічних карт масштабу 1:50000 на межах зон проекцій Гаусса–Крюгера та доцільність переходу на строгі аналітичні геодезичні методи у геоінформаційному середовищі під час створення бази топографічних даних “Основна державна топографічна карта” шляхом визначення розбіжностей між вершинами рамок номенклатурних аркушів цифрових топографічних карт масштабу 1:50000 на межах зон проекції, виявлених під час робіт в державному підприємстві “Науково-дослідний інститут геодезії і картографії”. У роботі отримано і проаналізовано залежності, які демонструють зміни відстаней між вершинами рамок суміжних аркушів масштабу 1:50000 по довготі і широті. Ці величини знаходяться в межах від 1 мм до 8 мм, що веде до топологічної неузгодженості у вигляді розривів (gaps) і накладань (overlaps) суміжних аркушів топографічних карт , що ускладнює процес зведення аркушів цифрових топографічних карт та унеможливлює автоматизацію процесу зшивання об’єктів бази топографічних даних. Наукова новизна проведених досліджень полягає в обґрунтуванні застосування строгих аналітичних геодезичних методів та засобів замість аналогових картометричних і стандартних методів інструментальних ГІС; використання референц-еліпсоїда, а не лише картографічних проєкцій, сфероїда або сфери. Практична значущість досліджень полягає у використанні строгих аналітичних геодезичних методів, які значно мінімізують величини розривів і накладань, оскільки встановлення допусків для цих величин не дозволяє автоматизувати процес коректного зшивання та зведення аркушів топографічних карт. Виконані дослідження можуть використовуватися для створення бази топографічних даних “Базової топографічної карти масштабу 1:10000”, під час створення та оновлення геопросторових даних в геоінформаційному середовищі і виконання геодезичних методів для визначення картометричних характеристик об’єктів за допомогою ГІС. З огляду на отримані результати досліджень можна зробити висновок, що на сучасному етапі застосування геоінформаційних систем в топографо-гео дезичній діяльності вимагається підвищення рівня топології даних та точності всіх картометричних методів, що обумовлює перехід на використання виключно строгих аналітичних геодезичних методів безпосередньо на референц-еліпсоїді.
dc.description.abstractThe aim of this work – research of topological inconsistencies during adjustment and junction of adjacent map sheets of digital topographic maps of scale 1:50000 with the use of rigorous analytical geodetic methods on the reference ellipsoid in the geoinformation environment. The research analyzes the phenomenon of topological inconsistencies of frames of adjacent digital topographic maps of 1:50000 scale within the zones of Gauss–Krueger projections and the feasibility of transition to rigorous analytical geodetic methods in the geoinformation environment during the creation of the topographic database “The Main state topographic map” by determining the differences between the vertices of the frames of digital topographic maps at a scale of 1: 50000 at the boundaries of the projection zones. This phenomenon was discovered during work at the state enterprise “Research Institute of Geodesy and Cartography”. The dependences are shown and analyzed, which show the changes in the distances between the vertices of the frames of adjacent map sheets of scale 1: 50000 in longitude and latitude. These values range from 1 mm to 8 mm, which leads to topological inconsistencies in the form of gaps and overlaps of adjacent map sheets. These gaps and overlaps complicate the process of adjustment of map sheets and make it impossible to automate the process of the junction of features into the topographic database. The scientific novelty of the research is to justify the use of rigorous analytical geodetic methods and tools instead of analog cartometric and standard methods of instrumental GIS; the use of a reference ellipsoid, not just cartographic projections, a spheroid or a sphere. The practical significance of research is the use of rigorous analytical geodetic methods that significantly minimize the values of gaps and overlaps, as the establishment of tolerances for these values does not automate the process of correct adjustment and junction of map sheets. The performed research can be used to create the topographic database “The Basic topographic map scale 1: 10000”, during the creation and updating of geospatial data in the geoinformation environment and the implementation of geodetic methods to determine the cartometric characteristics of features using GIS. Given the results of research, we can conclude that the present stage of application of geographic information systems in topographic and geodetic activities requires increasing the level of data topology and accuracy of all cartometric methods, which leads to the transition to extremely rigorous analytical geodetic methods directly on the reference ellipsoid.
dc.format.extent103-112
dc.format.pages10
dc.identifier.citationKin D. The phenomenon of topological inconsistencies of frames of map sheets during the creation of the main state topographic map / Danylo Kin, Yurii Karpinskyi // Geodesy, Cartography and Aerial photography. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 95. — P. 103–112.
dc.identifier.citationenKin D. The phenomenon of topological inconsistencies of frames of map sheets during the creation of the main state topographic map / Danylo Kin, Yurii Karpinskyi // Geodesy, Cartography and Aerial photography. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 95. — P. 103–112.
dc.identifier.doidoi.org/10.23939/istcgcap2022.95.103
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59182
dc.language.isoen
dc.publisherВидавництво Львівської політехніки,
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання (95), 2022
dc.relation.ispartofGeodesy, Cartography and Aerial photography (95), 2022
dc.relation.referencesBaranovskyi, V., Karpinskyi, Yu., & Lyashchenko, A.
dc.relation.references(2009a). Topographic, geodetic and cartographic
dc.relation.referencessupport of the state land cadastre. Determination of
dc.relation.referencesareas of territories. K.: Research Institute of Geodesy
dc.relation.referencesand Cartography, 92. (in Ukrainian).
dc.relation.referencesBaranovskyi, V., Karpinskyi, Yu., Lyashchenko, A.
dc.relation.referencesKucher O., (2009b). Topographic, geodetic and
dc.relation.referencescartographic support of the state land cadastre.
dc.relation.referencesCoordinate systems and cartographic projections.
dc.relation.referencesK.: Research Institute of Geodesy and Cartography, 96. (in Ukrainian).
dc.relation.referencesBaselga, S., & Olsen, M. J. (2021). Approximations, Errors,
dc.relation.referencesand Misconceptions in the Use of Map Projections.
dc.relation.referencesMathematical Problems in Engineering, 2021.
dc.relation.referenceshttps://doi.org/10.1155/2021/1094602.
dc.relation.referencesBerk, S., & Ferlan, M. (2018). Accurate area determination
dc.relation.referencesin the cadaster: Case study of Slovenia. cartography
dc.relation.referencesand geographic information science, 45(1), 1–17.
dc.relation.referenceshttps://doi.org/10.1080/15230406.2016.1217789.
dc.relation.referencesCazabal–Valencia, L., Caballero–Morales, S. O., &
dc.relation.referencesMartínez-Flores, J. L. (2016). Logistic model for the
dc.relation.referencesfacility location problem on ellipsoids. International
dc.relation.referencesJournal of Engineering Business Management, 8,
dc.relation.referenceshttps://doi.org/10.1177/1847979016668979.
dc.relation.referencesChamberlain, R. G., & Duquette, W. H. (2007).
dc.relation.referencesSome algorithms for polygons on a sphere.
dc.relation.referencesPasadena, CA: Jet Propulsion Laboratory.
dc.relation.referenceshttp://hdl.handle.net/2014/40409
dc.relation.referencesDong, J., Ji, H., Tang, L., Peng, R., & Zhang, Z. (2021).
dc.relation.referencesAccuracy analysis and verification of the method for
dc.relation.referencescalculation of geodetic problem on earth ellipsoid
dc.relation.referencessurface. In E3S Web of Conferences (Vol. 245,
dc.relation.referencesp. 02033). EDP Sciences. https://doi.org/10.1051/e3sconf/202124502033
dc.relation.referencesFisikopoulos, V. (2019). Geodesic Algorithms: An
dc.relation.referencesExperimental Study. International Archives of the
dc.relation.referencesPhotogrammetry, Remote Sensing and Spatial
dc.relation.referencesInformation Sciences, 42(4/W14), 45–47.
dc.relation.referenceshttps://pdfs.semanticscholar.org/0fd3/7bed6be199ee1766ae46a6ec2ed409d0304c.pdf
dc.relation.referencesGalo, M., Monico, J. F. G., & Oliveira, L. C. (2003). Cálculo
dc.relation.referencesde áreas de polígonos sobre o elipsóide usando projeções
dc.relation.referencesequivalentes. Curitiba: Universidade Federal do Paraná, 465–479. http://dx.doi.org/10.13140/2.1.3233.0240
dc.relation.referencesGojković, Z., Radojičić, M., & Vulović, N. (2017).
dc.relation.referencesAplication for coordinate transfomation between
dc.relation.referencesGaus–Kruger projection-Bessel ellipsoid and UTM
dc.relation.referencesprojection-WGS84 ellipsoid. Podzemni radovi, (30), 29–45. https://doi.org/10.5937/podrad1730029Z
dc.relation.referencesGuidance on the determination of design hydrological
dc.relation.referencescharacteristics. L., Gidrometeoizdat, 1973. 112 с. (in
dc.relation.referencesRussian). https://www.twirpx.com/file/1390547/
dc.relation.referencesHuang, H. (2017). Estimating area of vector polygons on
dc.relation.referencesspherical and ellipsoidal earth models with application in
dc.relation.referencesestimating regional carbon flows. Student thesis series
dc.relation.referencesINES. http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8921924&fileOId=8922096.
dc.relation.referencesIdrizi Bashkim (2020) Necessity for geometric corrections
dc.relation.referencesof distances in web and mobile maps. Proceedings
dc.relation.referencesVol. 1, 8th International Conference on Cartography
dc.relation.referencesand GIS, Nessebar, Bulgaria. 462–470.
dc.relation.referencesKarney, C. (2013). Algorithms for geodesics. Journal of
dc.relation.referencesGeodesy, 87, 43–55. https://doi.org/10.1007/s00190-012-0578-z.
dc.relation.referencesKarney, C. F. (2011). Transverse Mercator with an accuracy
dc.relation.referencesof a few nanometers. Journal of Geodesy, 85(8), 475–485. https://doi.org/10.1007/s00190-011-0445-3.
dc.relation.referencesKarpinskyi Yu. (2015). System-technical aspects of
dc.relation.referencesformation of topological land cadastral coverage.
dc.relation.referencesBulletin of Geodesy and Cartography. Kyiv,
dc.relation.referencesNo 5–6 (98–99), P. 62–68. (in Ukrainian).
dc.relation.referenceshttp://nbuv.gov.ua/UJRN/vgtk_2015_5-6_13.
dc.relation.referencesKarpinskyi, Yu., & Kin, D. (2018). Research cartometric
dc.relation.referencesoperations in the environment of GIS. Urban planning
dc.relation.referencesand spatial planning, 68, 706–711. (in Ukrainian).
dc.relation.referenceshttp://repositary.knuba.edu.ua//handle/987654321/7068
dc.relation.referencesKarpinskyi Yu., & Kin D. (2020). Research of the
dc.relation.referencestransition from cartometric to analytical operations.
dc.relation.referencesXXV Jubilee International Scientific and Technical
dc.relation.referencesConference “Geoforum-2020”, Lviv, Ukraine.
dc.relation.referenceshttps://doi.org/10.13140/RG.2.2.34353.40806.
dc.relation.referencesKin, D., & Karpinskyi, Y. (2020). Peculiarities of the
dc.relation.referencesmethod of calculation feature’s geodetic area on the
dc.relation.referencesreference ellipsoid in GIS. International Conference
dc.relation.referencesof Young Professionals “GeoTerrace-2020” (Vol. 2020, No. 1, pp. 1–5). European Association of
dc.relation.referencesGeoscientists & Engineers.
dc.relation.referenceshttps://doi.org/10.3997/2214-4609.20205757
dc.relation.referencesKin, D., & Karpinskyi, Y. (2021). Ontology of geodetic,
dc.relation.referencescartometric and morphometric methods in the
dc.relation.referencesgeoinformation environment. In Geoinformatics
dc.relation.references(Vol. 2021, No. 1, pp. 1–6). European Association of
dc.relation.referencesGeoscientists & Engineers.
dc.relation.referenceshttps://doi.org/10.3997/2214-4609.20215521101
dc.relation.referencesLazorenko-Hevel, N., & Kin, D. (2019). The edge matching method of digital topographic maps in the scale
dc.relation.referencesof 1:50000 for creation the main state topographic
dc.relation.referencesmap. Engineering geodesy, 67, 56–66. (in Ukrainian).
dc.relation.referenceshttps://doi.org/10.32347/0130-6014.2019.67.56-66
dc.relation.referencesLazorenko–Hevel N., Karpinskyi Yu. & Kin D. Some
dc.relation.referencespeculiarities of creation (updating) of digital
dc.relation.referencestopographic maps for the seamless topographic
dc.relation.referencesdatabase of the Main State Topographic Map in
dc.relation.referencesUkraine. (2021). Geoingegneria Ambientale e
dc.relation.referencesMineraria, Anno LVIII, n. 1, p 19–24. DOI:
dc.relation.referenceshttps://doi.org/10.19199/2021.1.1121-9041.019.
dc.relation.referencesMaling, D. H. (1989). Measurements from maps: principles
dc.relation.referencesand methods of cartometry. Oxford: Pergamon press.
dc.relation.referencesMartínez–Llario, J. C., Baselga, S., & Coll, E.
dc.relation.references(2021). Accurate algorithms for spatial operations
dc.relation.referenceson the spheroid in a spatial database management
dc.relation.referencessystem. Applied Sciences, 11(11), 5129. https://doi.org/10.3390/app11115129.
dc.relation.referencesMarx, C. (2021). Performance of a solution of the direct
dc.relation.referencesgeodetic problem by Taylor series of Cartesian
dc.relation.referencescoordinates. Journal of Geodetic Science, 11(1), 122–130. https://doi.org/10.1515/jogs-2020-0127.
dc.relation.referencesMorgaś, W., & Kopacz, Z. (2016). Analytical dependence
dc.relation.referencesrelations of converting geodetic coordinates into UTM
dc.relation.referencescoordinates recommended in hydrographic work. Zeszyty
dc.relation.referencesNaukowe Akademii Marynarki Wojennej, 57(2 (205)), 61–73. https://doi.org/10.5604/0860889X.1219971.
dc.relation.referencesMorgaś, W., & Kopacz, Z. (2017). Conversion of geodetic
dc.relation.referencescoordinates into flat (2-dimensinal) coordinates PL-UTM
dc.relation.referencesfor the purposes of navigation. Zeszyty Naukowe
dc.relation.referencesAkademii Marynarki Wojennej, 58.
dc.relation.referenceshttps://doi.org/10.5604/0860889X.1237622.
dc.relation.referencesNishiyama, Y. (2012). Measuring Areas: From Polygons to
dc.relation.referencesLand Maps. International Journal of Pure and Applied
dc.relation.referencesMathematics, 81(1), 91–99. http://www.ijpam.eu/
dc.relation.referencesPanou, G., Delikaraoglou, D., & Korakitis, R. (2013).
dc.relation.referencesSolving the geodesics on the ellipsoid as a boundary
dc.relation.referencesvalue problem. Journal of Geodetic Science, 3(1), 40–47. https://doi.org/10.2478/jogs-2013-0007.
dc.relation.referencesPanou, G., & Korakitis, R. (2021). Analytical and numerical
dc.relation.referencesmethods of converting Cartesian to ellipsoidal
dc.relation.referencescoordinates. Journal of Geodetic Science, 11(1), 111–121 https://doi.org/10.1515/jogs-2020-0126.
dc.relation.referencesPędzich, P., Balcerzak, J., & Panasiuk, J.
dc.relation.references(2009). New approach to the Gauss–Kruger
dc.relation.referencesprojection of an ellipsoid onta a sphere (No.
dc.relation.referencesR3/RS). Department of Cartography, p. 11.
dc.relation.referenceshttps://repo.pw.edu.pl/info/report/WUT31f242c159a84e35aa3642ca455cff39/#.Yqn7Kf1ByUk.
dc.relation.referencesPędzich, P. & Kuźma, M. (2012). Application of methods for
dc.relation.referencesarea calculation of geodesic polygons on Polish
dc.relation.referencesadministrative units. Geodesy and Cartography, vol. 61,
dc.relation.referencesnr 2, pp. 105–115. https://doi.org/10.2478/v10277-012-0025-6.
dc.relation.referencesRapp, R. H. (1993). Geometric geodesy part 2. The Ohio
dc.relation.referencesState University.
dc.relation.referencesRechtzamer, G. R. (1974). Fundamentals of
dc.relation.referencescartography (textbook). L., 217. (in Russian).
dc.relation.referenceshttps://www.twirpx.com/file/1390547/.
dc.relation.referencesSetiawan, A., & Sediyono, E. (2020). Area calculation
dc.relation.referencesbased on GADM geographic information system
dc.relation.referencesdatabase. Telkomnika, 18(3), 1416–1421.
dc.relation.referenceshttp://doi.org/10.12928/telkomnika.v18i3.14901.
dc.relation.referencesSjöberg, L. E., & Shirazian, M. (2012). Solving the
dc.relation.referencesdirect and inverse geodetic problems on the ellipsoid
dc.relation.referencesby numerical integration. Journal of Surveying
dc.relation.referencesEngineering, 138(1), 9–16. https://www.divaportal.org/smash/record.jsf?pid=diva2%3A515798&dswid=-9466.
dc.relation.referencesTuriño, C. E. (2008). Gauss Krüger projection for areas
dc.relation.referencesof wide longitudinal extent. International Journal of
dc.relation.referencesGeographical Information Science, 22(6), 703–719.
dc.relation.referenceshttps://doi.org/10.1080/13658810701602286.
dc.relation.referencesVermeer, M., & Rasila, A. (2019). Map of the World: An
dc.relation.referencesIntroduction to Mathematical Geodesy. CRC Press.
dc.relation.referenceshttps://doi.org/10.1201/9780429265990.
dc.relation.referencesVoser, S. A. (1999). Cartometric Aspects of Hybrid Analysis
dc.relation.referenceswithin GIS. Semantic Modelling for the Acquisition of
dc.relation.referencesTopographic Information from Images and Maps, 61.
dc.relation.referenceshttp://mapref.org/savpub/LinkedDocuments/vosersmati99.pdf.
dc.relation.referencesYildirim, F. & Kadi, F. (2021). Determining the area
dc.relation.referencescorrections affecting the map areas in GIS applications.
dc.relation.referencesReports on Geodesy and Geoinformatics, 112(1) 9–17.
dc.relation.referenceshttps://doi.org/10.2478/rgg-2021-0003.
dc.relation.referencesenBaranovskyi, V., Karpinskyi, Yu., & Lyashchenko, A.
dc.relation.referencesen(2009a). Topographic, geodetic and cartographic
dc.relation.referencesensupport of the state land cadastre. Determination of
dc.relation.referencesenareas of territories. K., Research Institute of Geodesy
dc.relation.referencesenand Cartography, 92. (in Ukrainian).
dc.relation.referencesenBaranovskyi, V., Karpinskyi, Yu., Lyashchenko, A.
dc.relation.referencesenKucher O., (2009b). Topographic, geodetic and
dc.relation.referencesencartographic support of the state land cadastre.
dc.relation.referencesenCoordinate systems and cartographic projections.
dc.relation.referencesenK., Research Institute of Geodesy and Cartography, 96. (in Ukrainian).
dc.relation.referencesenBaselga, S., & Olsen, M. J. (2021). Approximations, Errors,
dc.relation.referencesenand Misconceptions in the Use of Map Projections.
dc.relation.referencesenMathematical Problems in Engineering, 2021.
dc.relation.referencesenhttps://doi.org/10.1155/2021/1094602.
dc.relation.referencesenBerk, S., & Ferlan, M. (2018). Accurate area determination
dc.relation.referencesenin the cadaster: Case study of Slovenia. cartography
dc.relation.referencesenand geographic information science, 45(1), 1–17.
dc.relation.referencesenhttps://doi.org/10.1080/15230406.2016.1217789.
dc.relation.referencesenCazabal–Valencia, L., Caballero–Morales, S. O., &
dc.relation.referencesenMartínez-Flores, J. L. (2016). Logistic model for the
dc.relation.referencesenfacility location problem on ellipsoids. International
dc.relation.referencesenJournal of Engineering Business Management, 8,
dc.relation.referencesenhttps://doi.org/10.1177/1847979016668979.
dc.relation.referencesenChamberlain, R. G., & Duquette, W. H. (2007).
dc.relation.referencesenSome algorithms for polygons on a sphere.
dc.relation.referencesenPasadena, CA: Jet Propulsion Laboratory.
dc.relation.referencesenhttp://hdl.handle.net/2014/40409
dc.relation.referencesenDong, J., Ji, H., Tang, L., Peng, R., & Zhang, Z. (2021).
dc.relation.referencesenAccuracy analysis and verification of the method for
dc.relation.referencesencalculation of geodetic problem on earth ellipsoid
dc.relation.referencesensurface. In E3S Web of Conferences (Vol. 245,
dc.relation.referencesenp. 02033). EDP Sciences. https://doi.org/10.1051/e3sconf/202124502033
dc.relation.referencesenFisikopoulos, V. (2019). Geodesic Algorithms: An
dc.relation.referencesenExperimental Study. International Archives of the
dc.relation.referencesenPhotogrammetry, Remote Sensing and Spatial
dc.relation.referencesenInformation Sciences, 42(4/W14), 45–47.
dc.relation.referencesenhttps://pdfs.semanticscholar.org/0fd3/7bed6be199ee1766ae46a6ec2ed409d0304c.pdf
dc.relation.referencesenGalo, M., Monico, J. F. G., & Oliveira, L. C. (2003). Cálculo
dc.relation.referencesende áreas de polígonos sobre o elipsóide usando projeções
dc.relation.referencesenequivalentes. Curitiba: Universidade Federal do Paraná, 465–479. http://dx.doi.org/10.13140/2.1.3233.0240
dc.relation.referencesenGojković, Z., Radojičić, M., & Vulović, N. (2017).
dc.relation.referencesenAplication for coordinate transfomation between
dc.relation.referencesenGaus–Kruger projection-Bessel ellipsoid and UTM
dc.relation.referencesenprojection-WGS84 ellipsoid. Podzemni radovi, (30), 29–45. https://doi.org/10.5937/podrad1730029Z
dc.relation.referencesenGuidance on the determination of design hydrological
dc.relation.referencesencharacteristics. L., Gidrometeoizdat, 1973. 112 p. (in
dc.relation.referencesenRussian). https://www.twirpx.com/file/1390547/
dc.relation.referencesenHuang, H. (2017). Estimating area of vector polygons on
dc.relation.referencesenspherical and ellipsoidal earth models with application in
dc.relation.referencesenestimating regional carbon flows. Student thesis series
dc.relation.referencesenINES. http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8921924&fileOId=8922096.
dc.relation.referencesenIdrizi Bashkim (2020) Necessity for geometric corrections
dc.relation.referencesenof distances in web and mobile maps. Proceedings
dc.relation.referencesenVol. 1, 8th International Conference on Cartography
dc.relation.referencesenand GIS, Nessebar, Bulgaria. 462–470.
dc.relation.referencesenKarney, C. (2013). Algorithms for geodesics. Journal of
dc.relation.referencesenGeodesy, 87, 43–55. https://doi.org/10.1007/s00190-012-0578-z.
dc.relation.referencesenKarney, C. F. (2011). Transverse Mercator with an accuracy
dc.relation.referencesenof a few nanometers. Journal of Geodesy, 85(8), 475–485. https://doi.org/10.1007/s00190-011-0445-3.
dc.relation.referencesenKarpinskyi Yu. (2015). System-technical aspects of
dc.relation.referencesenformation of topological land cadastral coverage.
dc.relation.referencesenBulletin of Geodesy and Cartography. Kyiv,
dc.relation.referencesenNo 5–6 (98–99), P. 62–68. (in Ukrainian).
dc.relation.referencesenhttp://nbuv.gov.ua/UJRN/vgtk_2015_5-6_13.
dc.relation.referencesenKarpinskyi, Yu., & Kin, D. (2018). Research cartometric
dc.relation.referencesenoperations in the environment of GIS. Urban planning
dc.relation.referencesenand spatial planning, 68, 706–711. (in Ukrainian).
dc.relation.referencesenhttp://repositary.knuba.edu.ua//handle/987654321/7068
dc.relation.referencesenKarpinskyi Yu., & Kin D. (2020). Research of the
dc.relation.referencesentransition from cartometric to analytical operations.
dc.relation.referencesenXXV Jubilee International Scientific and Technical
dc.relation.referencesenConference "Geoforum-2020", Lviv, Ukraine.
dc.relation.referencesenhttps://doi.org/10.13140/RG.2.2.34353.40806.
dc.relation.referencesenKin, D., & Karpinskyi, Y. (2020). Peculiarities of the
dc.relation.referencesenmethod of calculation feature’s geodetic area on the
dc.relation.referencesenreference ellipsoid in GIS. International Conference
dc.relation.referencesenof Young Professionals "GeoTerrace-2020" (Vol. 2020, No. 1, pp. 1–5). European Association of
dc.relation.referencesenGeoscientists & Engineers.
dc.relation.referencesenhttps://doi.org/10.3997/2214-4609.20205757
dc.relation.referencesenKin, D., & Karpinskyi, Y. (2021). Ontology of geodetic,
dc.relation.referencesencartometric and morphometric methods in the
dc.relation.referencesengeoinformation environment. In Geoinformatics
dc.relation.referencesen(Vol. 2021, No. 1, pp. 1–6). European Association of
dc.relation.referencesenGeoscientists & Engineers.
dc.relation.referencesenhttps://doi.org/10.3997/2214-4609.20215521101
dc.relation.referencesenLazorenko-Hevel, N., & Kin, D. (2019). The edge matching method of digital topographic maps in the scale
dc.relation.referencesenof 1:50000 for creation the main state topographic
dc.relation.referencesenmap. Engineering geodesy, 67, 56–66. (in Ukrainian).
dc.relation.referencesenhttps://doi.org/10.32347/0130-6014.2019.67.56-66
dc.relation.referencesenLazorenko–Hevel N., Karpinskyi Yu. & Kin D. Some
dc.relation.referencesenpeculiarities of creation (updating) of digital
dc.relation.referencesentopographic maps for the seamless topographic
dc.relation.referencesendatabase of the Main State Topographic Map in
dc.relation.referencesenUkraine. (2021). Geoingegneria Ambientale e
dc.relation.referencesenMineraria, Anno LVIII, n. 1, p 19–24. DOI:
dc.relation.referencesenhttps://doi.org/10.19199/2021.1.1121-9041.019.
dc.relation.referencesenMaling, D. H. (1989). Measurements from maps: principles
dc.relation.referencesenand methods of cartometry. Oxford: Pergamon press.
dc.relation.referencesenMartínez–Llario, J. C., Baselga, S., & Coll, E.
dc.relation.referencesen(2021). Accurate algorithms for spatial operations
dc.relation.referencesenon the spheroid in a spatial database management
dc.relation.referencesensystem. Applied Sciences, 11(11), 5129. https://doi.org/10.3390/app11115129.
dc.relation.referencesenMarx, C. (2021). Performance of a solution of the direct
dc.relation.referencesengeodetic problem by Taylor series of Cartesian
dc.relation.referencesencoordinates. Journal of Geodetic Science, 11(1), 122–130. https://doi.org/10.1515/jogs-2020-0127.
dc.relation.referencesenMorgaś, W., & Kopacz, Z. (2016). Analytical dependence
dc.relation.referencesenrelations of converting geodetic coordinates into UTM
dc.relation.referencesencoordinates recommended in hydrographic work. Zeszyty
dc.relation.referencesenNaukowe Akademii Marynarki Wojennej, 57(2 (205)), 61–73. https://doi.org/10.5604/0860889X.1219971.
dc.relation.referencesenMorgaś, W., & Kopacz, Z. (2017). Conversion of geodetic
dc.relation.referencesencoordinates into flat (2-dimensinal) coordinates PL-UTM
dc.relation.referencesenfor the purposes of navigation. Zeszyty Naukowe
dc.relation.referencesenAkademii Marynarki Wojennej, 58.
dc.relation.referencesenhttps://doi.org/10.5604/0860889X.1237622.
dc.relation.referencesenNishiyama, Y. (2012). Measuring Areas: From Polygons to
dc.relation.referencesenLand Maps. International Journal of Pure and Applied
dc.relation.referencesenMathematics, 81(1), 91–99. http://www.ijpam.eu/
dc.relation.referencesenPanou, G., Delikaraoglou, D., & Korakitis, R. (2013).
dc.relation.referencesenSolving the geodesics on the ellipsoid as a boundary
dc.relation.referencesenvalue problem. Journal of Geodetic Science, 3(1), 40–47. https://doi.org/10.2478/jogs-2013-0007.
dc.relation.referencesenPanou, G., & Korakitis, R. (2021). Analytical and numerical
dc.relation.referencesenmethods of converting Cartesian to ellipsoidal
dc.relation.referencesencoordinates. Journal of Geodetic Science, 11(1), 111–121 https://doi.org/10.1515/jogs-2020-0126.
dc.relation.referencesenPędzich, P., Balcerzak, J., & Panasiuk, J.
dc.relation.referencesen(2009). New approach to the Gauss–Kruger
dc.relation.referencesenprojection of an ellipsoid onta a sphere (No.
dc.relation.referencesenR3/RS). Department of Cartography, p. 11.
dc.relation.referencesenhttps://repo.pw.edu.pl/info/report/WUT31f242c159a84e35aa3642ca455cff39/#.Yqn7Kf1ByUk.
dc.relation.referencesenPędzich, P. & Kuźma, M. (2012). Application of methods for
dc.relation.referencesenarea calculation of geodesic polygons on Polish
dc.relation.referencesenadministrative units. Geodesy and Cartography, vol. 61,
dc.relation.referencesennr 2, pp. 105–115. https://doi.org/10.2478/v10277-012-0025-6.
dc.relation.referencesenRapp, R. H. (1993). Geometric geodesy part 2. The Ohio
dc.relation.referencesenState University.
dc.relation.referencesenRechtzamer, G. R. (1974). Fundamentals of
dc.relation.referencesencartography (textbook). L., 217. (in Russian).
dc.relation.referencesenhttps://www.twirpx.com/file/1390547/.
dc.relation.referencesenSetiawan, A., & Sediyono, E. (2020). Area calculation
dc.relation.referencesenbased on GADM geographic information system
dc.relation.referencesendatabase. Telkomnika, 18(3), 1416–1421.
dc.relation.referencesenhttp://doi.org/10.12928/telkomnika.v18i3.14901.
dc.relation.referencesenSjöberg, L. E., & Shirazian, M. (2012). Solving the
dc.relation.referencesendirect and inverse geodetic problems on the ellipsoid
dc.relation.referencesenby numerical integration. Journal of Surveying
dc.relation.referencesenEngineering, 138(1), 9–16. https://www.divaportal.org/smash/record.jsf?pid=diva2%3A515798&dswid=-9466.
dc.relation.referencesenTuriño, C. E. (2008). Gauss Krüger projection for areas
dc.relation.referencesenof wide longitudinal extent. International Journal of
dc.relation.referencesenGeographical Information Science, 22(6), 703–719.
dc.relation.referencesenhttps://doi.org/10.1080/13658810701602286.
dc.relation.referencesenVermeer, M., & Rasila, A. (2019). Map of the World: An
dc.relation.referencesenIntroduction to Mathematical Geodesy. CRC Press.
dc.relation.referencesenhttps://doi.org/10.1201/9780429265990.
dc.relation.referencesenVoser, S. A. (1999). Cartometric Aspects of Hybrid Analysis
dc.relation.referencesenwithin GIS. Semantic Modelling for the Acquisition of
dc.relation.referencesenTopographic Information from Images and Maps, 61.
dc.relation.referencesenhttp://mapref.org/savpub/LinkedDocuments/vosersmati99.pdf.
dc.relation.referencesenYildirim, F. & Kadi, F. (2021). Determining the area
dc.relation.referencesencorrections affecting the map areas in GIS applications.
dc.relation.referencesenReports on Geodesy and Geoinformatics, 112(1) 9–17.
dc.relation.referencesenhttps://doi.org/10.2478/rgg-2021-0003.
dc.relation.urihttps://doi.org/10.1155/2021/1094602
dc.relation.urihttps://doi.org/10.1080/15230406.2016.1217789
dc.relation.urihttps://doi.org/10.1177/1847979016668979
dc.relation.urihttp://hdl.handle.net/2014/40409
dc.relation.urihttps://doi.org/10.1051/e3sconf/202124502033
dc.relation.urihttps://pdfs.semanticscholar.org/0fd3/7bed6be199ee1766ae46a6ec2ed409d0304c.pdf
dc.relation.urihttp://dx.doi.org/10.13140/2.1.3233.0240
dc.relation.urihttps://doi.org/10.5937/podrad1730029Z
dc.relation.urihttps://www.twirpx.com/file/1390547/
dc.relation.urihttp://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8921924&fileOId=8922096
dc.relation.urihttps://doi.org/10.1007/s00190-012-0578-z
dc.relation.urihttps://doi.org/10.1007/s00190-011-0445-3
dc.relation.urihttp://nbuv.gov.ua/UJRN/vgtk_2015_5-6_13
dc.relation.urihttp://repositary.knuba.edu.ua//handle/987654321/7068
dc.relation.urihttps://doi.org/10.13140/RG.2.2.34353.40806
dc.relation.urihttps://doi.org/10.3997/2214-4609.20205757
dc.relation.urihttps://doi.org/10.3997/2214-4609.20215521101
dc.relation.urihttps://doi.org/10.32347/0130-6014.2019.67.56-66
dc.relation.urihttps://doi.org/10.19199/2021.1.1121-9041.019
dc.relation.urihttps://doi.org/10.3390/app11115129
dc.relation.urihttps://doi.org/10.1515/jogs-2020-0127
dc.relation.urihttps://doi.org/10.5604/0860889X.1219971
dc.relation.urihttps://doi.org/10.5604/0860889X.1237622
dc.relation.urihttp://www.ijpam.eu/
dc.relation.urihttps://doi.org/10.2478/jogs-2013-0007
dc.relation.urihttps://doi.org/10.1515/jogs-2020-0126
dc.relation.urihttps://repo.pw.edu.pl/info/report/WUT31f242c159a84e35aa3642ca455cff39/#.Yqn7Kf1ByUk
dc.relation.urihttps://doi.org/10.2478/v10277-012-0025-6
dc.relation.urihttp://doi.org/10.12928/telkomnika.v18i3.14901
dc.relation.urihttps://www.divaportal.org/smash/record.jsf?pid=diva2%3A515798&dswid=-9466
dc.relation.urihttps://doi.org/10.1080/13658810701602286
dc.relation.urihttps://doi.org/10.1201/9780429265990
dc.relation.urihttp://mapref.org/savpub/LinkedDocuments/vosersmati99.pdf
dc.relation.urihttps://doi.org/10.2478/rgg-2021-0003
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectреференц-еліпсоїд
dc.subjectгеодезичні методи
dc.subjectрозриви та накладання
dc.subjectкартографія
dc.subjectстрогі комп’ютерні методи
dc.subjectбаза топографічних даних
dc.subjectкартометрія
dc.subjectтопологія
dc.subjectthe reference ellipsoid
dc.subjectgeodetic methods
dc.subjectgaps and overlaps
dc.subjectcartography
dc.subjectrigorous computer methods
dc.subjectthe topographic database
dc.subjectcartometry
dc.subjecttopology
dc.subject.udc528.23
dc.titleThe phenomenon of topological inconsistencies of frames of map sheets during the creation of the main state topographic map
dc.title.alternativeФеномен виникнення топологічних неузгодженостей рамок карт при створенні основної державної топографічної карти
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v95_Kin_D-The_phenomenon_of_topological_103-112.pdf
Size:
691.84 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v95_Kin_D-The_phenomenon_of_topological_103-112__COVER.png
Size:
1.57 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: