Unlocking Sustainability: A Comprehensive Review of Up-Recycling Biomass Waste into Biochar for Environmental Solutions

dc.citation.epage231
dc.citation.issue2
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage211
dc.citation.volume18
dc.contributor.affiliationWroclaw University of Science and Technology
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorPstrowska, Katarzyna
dc.contributor.authorŁużny, Rafał
dc.contributor.authorFałtynowicz, Hanna
dc.contributor.authorJaroszewska, Karolina
dc.contributor.authorPostawa, Karol
dc.contributor.authorPyshyev, Serhiy
dc.contributor.authorWitek-Krowiak, Anna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:47:59Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractЗ точки зору перетворення відходів у цінні продукти та зменшення забруднення навколишнього середовища переробка відходів біомаси в багаті на вуглець матеріали привертає широку увагу. У цьому огляді наведено можливості використання твердого продукту одностадійної карбонізації відходів біомаси рослинного походження. Обговорено ряд застосувань, зокрема виробництво сорбентів, матеріалів для зберігання енергії, носіїв каталізаторів і сільськогосподарське застосування.
dc.description.abstractFrom the perspective of converting waste into valuable products and reducing environmental pollution, the up-recycling of biomass waste into carbon-rich materials is attracting widespread attention. This literature review presents the possibilities of using the solid product of one-stage carbonization (char) of plant-origin waste biomass. Several applications are discussed, including the production of sorbents, energy storage materials, catalyst carriers, and agricultural applications.
dc.format.extent211-231
dc.format.pages21
dc.identifier.citationUnlocking Sustainability: A Comprehensive Review of Up-Recycling Biomass Waste into Biochar for Environmental Solutions / Katarzyna Pstrowska, Rafał Łużny, Hanna Fałtynowicz, Karolina Jaroszewska, Karol Postawa, Serhiy Pyshyev, Anna Witek-Krowiak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 211–231.
dc.identifier.citationenUnlocking Sustainability: A Comprehensive Review of Up-Recycling Biomass Waste into Biochar for Environmental Solutions / Katarzyna Pstrowska, Rafał Łużny, Hanna Fałtynowicz, Karolina Jaroszewska, Karol Postawa, Serhiy Pyshyev, Anna Witek-Krowiak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 211–231.
dc.identifier.doidoi.org/10.23939/chcht18.02.211
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111799
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 2 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 2 (18), 2024
dc.relation.references[1] Jayakumar, M.; Hamda, A. S.; Abo, L. D.; Daba, B. J.; Venkatesa Prabhu, S.; Rangaraju, M.; Jabesa, A.; Periyasamy, S.; Suresh, S.; Baskar, G. Comprehensive Review on Lignocellulosic Biomass Derived Biochar Production, Characterization, Utilization and Applications. Chemosphere 2023, 345, 140515. https://doi.org/10.1016/j.chemosphere.2023.140515
dc.relation.references[2] Rawat, S.; Wang, C. T.; Lay, C. H.; Hotha, S.; Bhaskar, T. Sustainable Biochar for Advanced Electrochemical/Energy Storage Applications. J Energy Storage 2023, 63, 107115. https://doi.org/10.1016/j.est.2023.107115
dc.relation.references[3] Khiari, B.; Jeguirim, M.; Limousy, L.; Bennici, S. Biomass Derived Chars for Energy Applications. Renew. Sustain. Energy Rev. 2019, 108, 253–273. https://doi.org/10.1016/j.rser.2019.03.057
dc.relation.references[4] Liu, W. J.; Jiang, H.; Yu, H. Q. Emerging Applications of Biochar-Based Materials for Energy Storage and Conversion. Energy Environ Sci 2019, 12, 1751–1779. https://doi.org/10.1039/c9ee00206e
dc.relation.references[5] Igalavithana, A. D.; You, S.; Zhang, L.; Shang, J.; Lehmann, J.; Wang, X.; Zhu, Y. G.; Tsang, D. C. W.; Park, Y. K.; Hou, D.; et al. Progress, Barriers, and Prospects for Achieving a “Hydrogen Society” and Opportunities for Biochar Technology. ACS ES and T Engineering 2022, 2, 1987–2001. https://doi.org/10.1021/acsestengg.1c00510
dc.relation.references[6] Sawalha, H.; Bader, A.; Sarsour, J.; Al-Jabari, M.; Rene, E. R. Removal of Dye (Methylene Blue) from Wastewater Using Bio-Char Derived from Agricultural Residues in Palestine: Performance and Isotherm Analysis. Processes 2022, 10, 2039. https://doi.org/10.3390/pr10102039
dc.relation.references[7] Nguyen, T.H.; Nguyen, X.C.; Nguyen, D.L.T.; Nguyen, D.D.; Vo, T.Y.B.; Vo, N.Q.; Nguyen, T.D.; Viet, L.; Ngo, H.H.; Vo, D.-V. N.; et al. Converting Biomass of Agrowastes and Invasive Plant into Alternative Materials for Water Remediation. Biomass Convers Biorefin 2023, 13, 5391-5406. https://link.springer.com/article/10.1007/s13399-021-01526-6
dc.relation.references[8] del Pozo, C.; Rego, F.; Yang, Y.; Puy, N.; Bartrolí, J.; Fàbregas, E.; Bridgwater, A. V. Converting Coffee Silverskin to Value-Added Products by a Slow Pyrolysis-Based Biorefinery Process. Fuel Process Technol 2021, 214, 106708. https://doi.org/10.1016/j.fuproc.2020.106708
dc.relation.references[9] Appiah-Ntiamoah, R.; Tilahun, K. M.; Mengesha, D. N.; Weldesemat, N. T.; Ruello, J. L.; Egualle, F. K.; Ganje, P.; Kim, H. Carbonyl-Interfaced-Biochar Derived from Unique Capillary Structures via One-Step Carbonization with Selective Methyl Blue Adsorption Capability. J Clean Prod 2023, 410, 137291. https://doi.org/10.1016/j.jclepro.2023.137291
dc.relation.references[10] Chen, L.; Mi, B.; He, J.; Li, Y.; Zhou, Z.; Wu, F. Functionalized Biochars with Highly-Efficient Malachite Green Adsorption Property Produced from Banana Peels via Microwave-Assisted Pyrolysis. Bioresour Technol 2023, 376, 128840. https://doi.org/10.1016/j.biortech.2023.128840
dc.relation.references[11] Shukla, S.; Khan, R.; Srivastava, M. M.; Zahmatkesh, S. Valorization of Waste Watermelon Rinds as a Bio-Adsorbent for Efficient Removal of Methylene Blue Dye from Aqueous Solutions. Appl Biochem Biotechnol 2023. https://doi.org/10.1007/s12010-023-04448-3 (accessed: 2023-12-01).
dc.relation.references[12] Pinky, N. S.; Bin Mobarak, M.; Mustafi, S.; Zesanur Rahman, M.; Nahar, A.; Saha, T.; Mohammed Bahadur, N. Facile Preparation of Micro-Porous Biochar from Bangladeshi Sprouted Agricultural Waste (Corncob) via in-House Built Heating Chamber for Cationic Dye Removal. Arab J Chem 2023, 16, 105080. https://doi.org/10.1016/j.arabjc.2023.105080
dc.relation.references[13] Ogunlusi, G. O.; Amos, O. D.; Olatunji, O. F.; Adenuga, A. A. Equilibrium, Kinetic, and Thermodynamic Studies of the Adsorption of Anionic and Cationic Dyes from Aqueous Solution Using Agricultural Waste Biochar. J Iran Chem Soc 2023, 20, 817–830. https://doi.org/10.1007/s13738-022-02721-6
dc.relation.references[14] Nithyalakshmi, B.; Saraswathi, R. Removal of Colorants from Wastewater Using Biochar Derived from Leaf Waste. Biomass Convers Biorefin 2023, 13, 1311–1327. https://doi.org/10.1007/s13399-021-01776-4
dc.relation.references[15] Xiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D. C. W.; Ok, Y. S.; Gao, B. Biochar Technology in Wastewater Treatment: A Critical Review. Chemosphere 2020, 252, 126539. https://doi.org/10.1016/j.chemosphere.2020.126539
dc.relation.references[16] Dudziak, M.; Werle, S.; Marszałek, A.; Sobek, S.; Magdziarz, A. Comparative Assessment of the Biomass Solar Pyrolysis Biochars Combustion Behavior and Zinc Zn(II) Adsorption. Energy 2022, 261, 125360. https://doi.org/10.1016/j.energy.2022.125360
dc.relation.references[17] Kaya, N.; Arslan, F.; Yildiz Uzun, Z. Production and Characterization of Carbon-Based Adsorbents from Waste Lignocellulosic Biomass: Their Effectiveness in Heavy Metal Removal. Fuller Nanotub 2020, 28, 769–780. https://doi.org/10.1080/1536383X.2020.1759556
dc.relation.references[18] Ramana, K. V.; Mohan, K. C.; Ravindhranath, K.; Babu, B. H. Bio-Sorbent Derived from Annona Squamosa for the Removal of Methyl Red Dye in Polluted Waters: A Study on Adsorption Potential. Chem. Chem. Technol. 2022, 16, 274–283. https://doi.org/10.23939/chcht16.02.274
dc.relation.references[19] Abdul Jabbar, M. F.; Rashid, S. A.; Naife, T. M. Adsorption of Zinc and Iron Ions From Aqueous Solution Using Waste Material as Adsorbent. Chem. Chem. Technol. 2023, 17, 887–893. https://doi.org/10.23939/chcht17.04.887
dc.relation.references[20] Sinha, R.; Kumar, R.; Sharma, P.; Kant, N.; Shang, J.; Aminabhavi, T. M. Removal of Hexavalent Chromium via Biochar-Based Adsorbents: State-of-the-Art, Challenges, and Future Perspectives. J Environ Manage 2022, 317, 115356. https://doi.org/10.1016/j.jenvman.2022.115356
dc.relation.references[21] Hama Aziz, K. H.; Kareem, R. Recent Advances in Water Remediation from Toxic Heavy Metals Using Biochar as a Green and Efficient Adsorbent: A Review. Case Stud Chem Environ Eng 2023, 8, 100495. https://doi.org/10.1016/j.cscee.2023.100495
dc.relation.references[22] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377–386. https://doi.org/10.23939/chcht16.03.377
dc.relation.references[23] Yuan, Z.; Sun, X.; Hua, J.; Zhu, Y.; Yuan, J.; Qiu, F. Upcycling Watermelon Peel Waste into a Sustainable Environment-Friendly Biochar for Assessment of Effective Adsorption Property. Arab J Sci Eng 2023, 48, 9035–9045. https://doi.org/10.1007/s13369-022-07397-x
dc.relation.references[24] Nguyen, T. H.; Loganathan, P.; Nguyen, T. V.; Vigneswaran, S.; Ha Nguyen, T. H.; Tran, H. N.; Nguyen, Q. B. Arsenic Removal by Pomelo Peel Biochar Coated with Iron. Chem Eng Res Des 2022, 186, 252–265. https://doi.org/10.1016/j.cherd.2022.07.022
dc.relation.references[25] Van Hien, N.; Valsami-Jones, E.; Vinh, N. C.; Phu, T. T.; Tam, N. T. T.; Lynch, I. Effectiveness of Different Biochar in Aqueous Zinc Removal: Correlation with Physicochemical Characteristics. Bioresour Technol Rep 2020, 11, 100466. https://doi.org/10.1016/j.biteb.2020.100466
dc.relation.references[26] Kaya, N.; Arslan, F.; Uzun, Z. Y.; Ceylan, S. Kinetic and Thermodynamic Studies on the Adsorption of Cu2 Ions from Aqueous Solution by Using Agricultural Waste-Derived Biochars. Water Sci Technol Water Supply 2020, 20, 3120–3140. https://doi.org/10.2166/ws.2020.193
dc.relation.references[27] Bacirhonde, P. M.; Dzade, N. Y.; Eya, H. I.; Kim, C. S.; Park, C. H. A Potential Peanut Shell Feedstock Pyrolyzed Biochar and Iron-Modified Peanut Shell Biochars for Heavy Metal Fixation in Acid Mine Drainage. ACS Earth Space Chem 2022, 6, 2651–2665. https://doi.org/10.1021/acsearthspacechem.2c00185
dc.relation.references[28] Švábová, M.; Bičáková, O.; Vorokhta, M. Biochar as an Effective Material for Acetone Sorption and the Effect of Surface Area on the Mechanism of Sorption. J Environ Manage 2023, 348, 119205. https://doi.org/10.1016/j.jenvman.2023.119205
dc.relation.references[29] Zhuang, Z.; Wang, L.; Tang, J. Efficient Removal of Volatile Organic Compound by Ball-Milled Biochars from Different Preparing Conditions. J Hazard Mater 2021, 406, 124676. https://doi.org/10.1016/j.jhazmat.2020.124676
dc.relation.references[30] Park, S.; Lee, J.-I.; Na, C.-K.; Kim, D.; Kim, J.-J.; Kim, D.-Y. Evaluation of the Adsorption Performance and Thermal Treatment-Associated Regeneration of Adsorbents for Formaldehyde Removal. J Air Waste Manage Assoc 2023, 74, 131–144. https://doi.org/10.1080/10962247.2023.2292205
dc.relation.references[31] Vikrant, K.; Kim, K. H.; Peng, W.; Ge, S.; Sik Ok, Y. Adsorption Performance of Standard Biochar Materials against Volatile Organic Compounds in Air: A Case Study Using Benzene and Methyl Ethyl Ketone. Chem Eng J 2020, 387, 123943. https://doi.org/10.1016/j.cej.2019.123943
dc.relation.references[32] Kua, H. W.; Pedapati, C.; Lee, R. V.; Kawi, S. Effect of Indoor Contamination on Carbon Dioxide Adsorption of Wood-Based Biochar – Lessons for Direct Air Capture. J Clean Prod 2019, 210, 860–871. https://doi.org/10.1016/j.jclepro.2018.10.206
dc.relation.references[33] Igalavithana, A. D.; Choi, S. W.; Dissanayake, P. D.; Shang, J.; Wang, C. H.; Yang, X.; Kim, S.; Tsang, D. C. W.; Lee, K. B.; Ok, Y. S. Gasification Biochar from Biowaste (Food Waste and Wood Waste) for Effective CO2 Adsorption. J Hazard Mater 2020, 391, 121147. https://doi.org/10.1016/j.jhazmat.2019.121147
dc.relation.references[34] Gbangbo, K. R.; Kouakou, A. R.; Ehouman, A. D.; Yao, B.; Goli Lou, G. V. E.; Gnaboa, Z.; Bailly, G. C. Influence of Water Content on Hydrogen Sulfide Adsorption in Biogas Purification with Musa Paradisiaca Biochar. Chem Afr 2023, 6, 657–665. https://doi.org/10.1007/s42250-023-00610-w
dc.relation.references[35] Wuri, M. A.; Pertiwiningrum, A.; Budiarto, R.; Gozan, M.; Harto, A. W. The Waste Recycling of Sugarcane Bagasse-Based Biochar for Biogas Purification. IOP Conf Ser Earth Environ Sci 2021, 940, 012029. https://doi.org/10.1088/1755-1315/940/1/012029
dc.relation.references[36] Lee, J. T. E.; Ok, Y. S.; Song, S.; Dissanayake, P. D.; Tian, H.; Tio, Z. K.; Cui, R.; Lim, E. Y.; Jong, M. C.; Hoy, S. H.; et. al. Biochar Utilisation in the Anaerobic Digestion of Food Waste for the Creation of a Circular Economy via Biogas Upgrading and Digestate Treatment. Bioresour Technol 2021, 333, 125190. https://doi.org/10.1016/j.biortech.2021.125190
dc.relation.references[37] Khan, A.; Szulejko, J. E.; Samaddar, P.; Kim, K. H.; Liu, B.; Maitlo, H. A.; Yang, X.; Ok, Y. S. The Potential of Biochar as Sorptive Media for Removal of Hazardous Benzene in Air. Chem Eng J 2019, 361, 1576–1585. https://doi.org/10.1016/j.cej.2018.10.193
dc.relation.references[38] Ran, Q.; Liu, K.; Du, Y.; Liu, C.; Fang, L.; Li, F. Integration with Carbon Capture Technology Enables a Positive Carbon Balance for Sustainable Rice Paddy Remediation with Calcium silicon Composites. Sci Total Environ 2024, 912, 169034. https://doi.org/10.1016/j.scitotenv.2023.169034
dc.relation.references[39] Sadegh, F.; Sadegh, N.; Wongniramaikul, W.; Apiratikul, R.; Choodum, A. Adsorption of Volatile Organic Compounds on Biochar: A Review. Process Saf Environ 2024, 182, 559–578. https://doi.org/10.1016/j.psep.2023.11.071
dc.relation.references[40] Dissanayake, P. D.; You, S.; Igalavithana, A. D.; Xia, Y.; Bhatnagar, A.; Gupta, S.; Kua, H. W.; Kim, S.; Kwon, J. H.; Tsang, D. C. W.; Ok, Y. S. Biochar-Based Adsorbents for Carbon Dioxide Capture: A Critical Review. Renew Sust Energ Rev 2020, 119, 109582. https://doi.org/10.1016/j.rser.2019.109582
dc.relation.references[41] Zhao, J.; Li, Y.; Dong, R. Recent Progress towards In-Situ Biogas Upgrading Technologies. Sci Total Environ 2021, 800, 149667. https://doi.org/10.1016/j.scitotenv.2021.149667
dc.relation.references[42] Notton, G.; Nivet, M. L.; Voyant, C.; Paoli, C.; Darras, C.; Motte, F.; Fouilloy, A. Intermittent and Stochastic Character of Renewable Energy Sources: Consequences, Cost of Intermittence and Benefit of Forecasting. Renew Sust Energ Rev 2018, 87, 96–105. https://doi.org/10.1016/j.rser.2018.02.007
dc.relation.references[43] Wang, D.; Liu, N.; Chen, F.; Wang, Y.; Mao, J. Progress and Prospects of Energy Storage Technology Research: Based on Multidimensional Comparison. J Energy Storage 2024, 75, 109710. https://doi.org/10.1016/j.est.2023.109710
dc.relation.references[44] Adetokun, B. B.; Oghorada, O.; Abubakar, S. J. afar. Superconducting Magnetic Energy Storage Systems: Prospects and Challenges for Renewable Energy Applications. J Energy Storage 2022, 55, 105663. https://doi.org/10.1016/j.est.2022.105663
dc.relation.references[45] Toyota. Toyota Mirai 2023 Brochure; 2023. https://www.toyota.com/content/dam/toyota/brochures/pdf/2023/mirai_ebrochure.pdf (accessed: 2023-12-01).
dc.relation.references[46] Moradi, R.; Groth, K. M. Hydrogen Storage and Delivery: Review of the State of the Art Technologies and Risk and Reliability Analysis. Int J Hydrogen Energy 2019, 44, 12254-12269. https://doi.org/10.1016/j.ijhydene.2019.03.041
dc.relation.references[47] US Department of Energy. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles (accessed: 2023-12-01).
dc.relation.references[48] Tarhan, C.; Çil, M. A. A Study on Hydrogen, the Clean Energy of the Future: Hydrogen Storage Methods. J Energy Storage 2021, 40, 102676. https://doi.org/10.1016/j.est.2021.102676
dc.relation.references[49] Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Hydrogen Energy, Economy and Storage: Review and Recommendation. Int J Hydrogen Energy 2019, 44, 15072–15086. https://doi.org/10.1016/j.ijhydene.2019.04.068
dc.relation.references[50] Czarna-Juszkiewicz, D.; Cader, J.; Wdowin, M. From Coal Ashes to Solid Sorbents for Hydrogen Storage. J Clean Prod 2020, 270, 122355. https://doi.org/10.1016/j.jclepro.2020.122355
dc.relation.references[51] Erdogan, F. O. Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents. Chem. Chem. Technol. 2019, 13, 129–135. https://doi.org/10.23939/chcht13.02.129
dc.relation.references[52] Saldan, I.; Stetsiv, Y.; Makogon, V.; Kovalyshyn, Y.; Yatsyshyn, M.; Reshetnyak, O. Physical Sorption of Molecular Hydrogen by Microporous Organic Polymers. Chem. Chem. Technol. 2019, 13, 85–94. https://doi.org/10.23939/chcht13.01.085
dc.relation.references[53] Chen, Z.; Kirlikovali, K. O.; Idrees, K. B.; Wasson, M. C.; Farha, O. K. Porous Materials for Hydrogen Storage. Chem 2022, 8, 693–716. https://doi.org/10.1016/j.chempr.2022.01.012
dc.relation.references[54] Desai, F. J.; Uddin, M. N.; Rahman, M. M.; Asmatulu, R. A Critical Review on Improving Hydrogen Storage Properties of Metal Hydride via Nanostructuring and Integrating Carbonaceous Materials. Int J Hydrogen Energy 2023, 48, 29256–29294. https://doi.org/10.1016/j.ijhydene.2023.04.029
dc.relation.references[55] Boateng, E.; Chen, A. Recent Advances in Nanomaterial-Based Solid-State Hydrogen Storage. Mater Today Adv 2020, 6, 100022. https://doi.org/10.1016/j.mtadv.2019.100022
dc.relation.references[56] Blankenship, T. S.; Balahmar, N.; Mokaya, R. Oxygen-Rich Microporous Carbons with Exceptional Hydrogen Storage Capacity. Nat Commun 2017, 8, 1545. https://doi.org/10.1038/s41467-017-01633-x
dc.relation.references[57] Deng, L.; Zhao, Y.; Sun, S.; Feng, D.; Zhang, W. Preparation of Corn Straw-Based Carbon by “Carbonization-KOH Activation” Two-Step Method: Gas–Solid Product Characteristics, Activation Mechanism and Hydrogen Storage Potential. Fuel 2024, 358, 130134. https://doi.org/10.1016/j.fuel.2023.130134
dc.relation.references[58] Deng, L.; Zhao, Y.; Sun, S.; Feng, D.; Zhang, W. Thermochemical Method for Controlling Pore Structure to Enhance Hydrogen Storage Capacity of Biochar. Int J Hydrogen Energy 2023, 48, 21799–21813. https://doi.org/10.1016/j.ijhydene.2023.03.084
dc.relation.references[59] Hu, W.; Li, Y.; Zheng, M.; Xiao, Y.; Dong, H.; Liang, Y.; Hu, H.; Liu, Y. Degradation of Biomass Components to Prepare Porous Carbon for Exceptional Hydrogen Storage Capacity. Int J Hydrogen Energy 2021, 46, 5418–5426. https://doi.org/10.1016/j.ijhydene.2020.11.015
dc.relation.references[60] Hirscher, M.; Zhang, L.; Oh, H. Nanoporous Adsorbents for Hydrogen Storage. Appl Phys A Mater Sci Process 2023, 129, 1–10. https://doi.org/10.1007/s00339-023-06397-4
dc.relation.references[61] Broom, D. P.; Webb, C. J.; Fanourgakis, G. S.; Froudakis, G. E.; Trikalitis, P. N.; Hirscher, M. Concepts for Improving Hydrogen Storage in Nanoporous Materials. Int J Hydrogen Energy 2019, 44, 7768–7779. https://doi.org/10.1016/j.ijhydene.2019.01.224
dc.relation.references[62] Huang, J.; Liang, Y.; Dong, H.; Hu, H.; Yu, P.; Peng, L.; Zheng, M.; Xiao, Y.; Liu, Y. Revealing Contribution of Pore Size to High Hydrogen Storage Capacity. Int J Hydrogen Energy 2018, 43, 18077–18082. https://doi.org/10.1016/j.ijhydene.2018.08.027
dc.relation.references[63] Geng, Z.; Zhang, C.; Wang, D.; Zhou, X.; Cai, M. Pore Size Effects of Nanoporous Carbons with Ultra-High Surface Area on High-Pressure Hydrogen Storage. J Energy Chem 2015, 24, 1–8. https://doi.org/10.1016/S2095-4956(15)60277-7
dc.relation.references[64] Farha, O. K.; Yazaydin, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. De Novo Synthesis of a Metal-Organic Framework Material Featuring Ultrahigh Surface Area and Gas Storage Capacities. Nat Chem 2010, 2, 944–948. https://doi.org/10.1038/nchem.834
dc.relation.references[65] Chen, Z.; Li, P.; Anderson, R.; Wang, X.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón, D. A.; Yildirim, T.; Stoddart, J. F.; Farha, O. K. Balancing Volumetric and Gravimetric Uptake in Highly Porous Materials for Clean Energy. Science 2020, 368, 297–303. https://doi.org/10.1126/science.aaz8881
dc.relation.references[66] Morandé, A.; Lillo, P.; Blanco, E.; Pazo, C.; Dongil, A. B.; Zarate, X.; Saavedra-Torres, M.; Schott, E.; Canales, R.; Videla, A.; Escalona, N. Modification of a Commercial Activated Carbon with Nitrogen and Boron: Hydrogen Storage Application. J Energy Storage 2023, 64, 107193. https://doi.org/10.1016/j.est.2023.107193
dc.relation.references[67] Rossetti, I.; Ramis, G.; Gallo, A.; Di Michele, A. Hydrogen Storage over Metal-Doped Activated Carbon. Int J Hydrogen Energy 2015, 40, 7609–7616. https://doi.org/10.1016/j.ijhydene.2015.04.064.
dc.relation.references[68] Yeboah, M. L.; Li, X.; Zhou, S. Facile Fabrication of Biochar from Palm Kernel Shell Waste and Its Novel Application to Magnesium-Based Materials for Hydrogen Storage. Materials 2020, 13, 625. https://doi.org/10.3390/ma13030625
dc.relation.references[69] Zhang, J.; Hou, Q.; Guo, X.; Yang, X. Modified MgH2 Hydrogen Storage Properties Based on Grapefruit Peel-Derived Biochar. Catalysts 2022, 12, 517. https://doi.org/10.3390/catal12050517
dc.relation.references[70] Rawat, S.; Boobalan, T.; Krishna, B. B.; Sathish, M.; Hotha, S.; Bhaskar, T. Biochar for Supercapacitor Application: A Comparative Study. Chem Asian J 2022, 17, e202200982. https://doi.org/10.1002/asia.202200982
dc.relation.references[71] Lu, B.; Hu, L.; Yin, H.; Xiao, W.; Wang, D. One-Step Molten Salt Carbonization (MSC) of Firwood Biomass for Capacitive Carbon. RSC Adv 2016, 6, 106485–106490. https://doi.org/10.1039/c6ra22191b
dc.relation.references[72] Raymundo‐Piñero, E.; Cadek, M.; Béguin, F. Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds. Adv Funct Mater 2009, 19, 1032–1039. https://doi.org/10.1002/adfm.200801057
dc.relation.references[73] Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S. From Dead Leaves to High Energy Density Supercapacitors. Energy Environ Sci 2013, 6, 1249–1259. https://doi.org/10.1039/c3ee22325f
dc.relation.references[74] Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H. First-Principles Study of Alkali Metal-Graphite Intercalation Compounds. J Power Sources 2013, 243, 585–587. https://doi.org/10.1016/j.jpowsour.2013.06.057
dc.relation.references[75] Shao, W.; Shi, H.; Jian, X.; Wu, Z. S.; Hu, F. Hard-Carbon Anodes for Sodium-Ion Batteries: Recent Status and Challenging Perspectives. Advanced Energy and Sustainability Research 2022, 3, 2200009. https://doi.org/10.1002/aesr.202200009
dc.relation.references[76] Yang, Y.; Wu, C.; He, X.; Zhao, J.; Yang, Z.; Li, L.; Wu, X.; Li, L.; Chou, S. Boosting the Development of Hard Carbon for Sodium‐Ion Batteries: Strategies to Optimize the Initial Coulombic Efficiency. Adv Funct Mater 2023, 34, 2302277. https://doi.org/10.1002/adfm.202302277
dc.relation.references[77] Chu, Y.; Zhang, J.; Zhang, Y.; Li, Q.; Jia, Y.; Dong, X.; Xiao, J.; Tao, Y.; Yang, Q. Reconfiguring Hard Carbons with Emerging Sodium‐Ion Batteries: A Perspective. Adv Mater 2023, 35, 2212186. https://doi.org/10.1002/adma.202212186
dc.relation.references[78] Wang, P.; Fan, L.; Yan, L.; Shi, Z. Low-Cost Water Caltrop Shell-Derived Hard Carbons with High Initial Coulombic Efficiency for Sodium-Ion Battery Anodes. J Alloys Compd 2019, 775, 1028–1035. https://doi.org/10.1016/j.jallcom.2018.10.180
dc.relation.references[79] Gomez-Martin, A.; Martinez-Fernandez, J.; Ruttert, M.; Winter, M.; Placke, T.; Ramirez-Rico, J. Correlation of Structure and Performance of Hard Carbons as Anodes for Sodium Ion Batteries. Chem Mater 2019, 31, 7288–7299. https://doi.org/10.1021/acs.chemmater.9b01768
dc.relation.references[80] Tang, Z.; Zhou, S.; Huang, Y.; Wang, H.; Zhang, R.; Wang, Q.; Sun, D.; Tang, Y.; Wang, H. Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na-Ion Batteries: Origins, Solutions, and Perspectives. Electrochem Energy Rev 2023, 6, 8. https://doi.org/10.1007/s41918-022-00178-y
dc.relation.references[81] Wan, Y.; Liu, Y.; Chao, D.; Li, W.; Zhao, D. Recent Advances in Hard Carbon Anodes with High Initial Coulombic Efficiency for Sodium-Ion Batteries. Nano Mater Sci 2023, 5, 189–201. https://doi.org/10.1016/j.nanoms.2022.02.001
dc.relation.references[82] Tang, Z.; Zhang, R.; Wang, H.; Zhou, S.; Pan, Z.; Huang, Y.; Sun, D.; Tang, Y.; Ji, X.; Amine, K.; Shao, M. Revealing the Closed Pore Formation of Waste Wood-Derived Hard Carbon for Advanced Sodium-Ion Battery. Nat Commun 2023, 14, 6024. https://doi.org/10.1038/s41467-023-39637-5
dc.relation.references[83] Zhou, S.; Tang, Z.; Pan, Z.; Huang, Y.; Zhao, L.; Zhang, X.; Sun, D.; Tang, Y.; Dhmees, A. S.; Wang, H. Regulating Closed Pore Structure Enables Significantly Improved Sodium Storage for Hard Carbon Pyrolyzing at Relatively Low Temperature. SusMat 2022, 2, 357–367. https://doi.org/10.1002/sus2.60
dc.relation.references[84] Jing, W.; Wang, M.; Li, Y.; Li, H. R.; Zhang, H.; Hu, S.; Wang, H.; He, Y. B. Pore Structure Engineering of Wood-Derived Hard Carbon Enables Their High-Capacity and Cycle-Stable Sodium Storage Properties. Electrochim Acta 2021, 391, 139000. https://doi.org/10.1016/j.electacta.2021.139000
dc.relation.references[85] Asfaw, H. D.; Gond, R.; Kotronia, A.; Tai, C. W.; Younesi, R. Bio-Derived Hard Carbon Nanosheets with High Rate Sodium-Ion Storage Characteristics. Sustain Mater Technol 2022, 32, e00407. https://doi.org/10.1016/j.susmat.2022.e00407
dc.relation.references[86] Zhu, Y.; Chen, M.; Li, Q.; Yuan, C.; Wang, C. A Porous Biomass-Derived Anode for High-Performance Sodium-Ion Batteries. Carbon 2018, 129, 695–701. https://doi.org/10.1016/j.carbon.2017.12.103
dc.relation.references[87] Patel, A.; Mishra, R.; Tiwari, R. K.; Tiwari, A.; Meghnani, D.; Singh, S. K.; Singh, R. K. Sustainable and Efficient Energy Storage: A Sodium Ion Battery Anode from Aegle Marmelos Shell Biowaste. J Energy Storage 2023, 72, 108424. https://doi.org/10.1016/j.est.2023.108424
dc.relation.references[88] Wang, Q.; Zhu, X.; Liu, Y.; Fang, Y.; Zhou, X.; Bao, J. Rice Husk-Derived Hard Carbons as High-Performance Anode Materials for Sodium-Ion Batteries. Carbon 2018, 127, 658–666. https://doi.org/10.1016/j.carbon.2017.11.054
dc.relation.references[89] Rybarczyk, M. K.; Li, Y.; Qiao, M.; Hu, Y. S.; Titirici, M. M.; Lieder, M. Hard Carbon Derived from Rice Husk as Low Cost Negative Electrodes in Na-Ion Batteries. J Energy Chem 2019, 29, 17–22. https://doi.org/10.1016/j.jechem.2018.01.025
dc.relation.references[90] Yu, K.; Wang, X.; Yang, H.; Bai, Y.; Wu, C. Insight to Defects Regulation on Sugarcane Waste-Derived Hard Carbon Anode for Sodium-Ion Batteries. J Energy Chem 2021, 55, 499–508. https://doi.org/10.1016/j.jechem.2020.07.025
dc.relation.references[91] Zhang, N.; Liu, Q.; Chen, W.; Wan, M.; Li, X.; Wang, L.; Xue, L.; Zhang, W. High Capacity Hard Carbon Derived from Lotus Stem as Anode for Sodium Ion Batteries. J Power Sources 2018, 378, 331–337. https://doi.org/10.1016/j.jpowsour.2017.12.054
dc.relation.references[92] Wu, F.; Zhang, M.; Bai, Y.; Wang, X.; Dong, R.; Wu, C. Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries. ACS Appl Mater Interfaces 2019, 11, 12554–12561. https://doi.org/10.1021/acsami.9b01419
dc.relation.references[93] Rao, Y. B.; Saisrinu, Y.; Khatua, S.; Bharathi, K. K.; Patro, L. N. Nitrogen Doped Soap-Nut Seeds Derived Hard Carbon as an Efficient Anode Material for Na-Ion Batteries. J Alloys Compd 2023, 968, 171917. https://doi.org/10.1016/j.jallcom.2023.171917
dc.relation.references[94] Medina, A.; Alcántara, R.; Tirado, J. L. A Facile Procedure to Improve the Performance of Food-Waste-Derived Carbons in Sodium-Ion Batteries. J Energy Storage 2023, 72, 1–9. https://doi.org/10.1016/j.est.2023.108768
dc.relation.references[95] Wei, H.; Cheng, H.; Yao, N.; Li, G.; Du, Z.; Luo, R.; Zheng, Z. Invasive Alien Plant Biomass-Derived Hard Carbon Anode for Sodium-Ion Batteries. Chemosphere 2023, 343, 140220. https://doi.org/10.1016/j.chemosphere.2023.140220
dc.relation.references[96] Kitsu Iglesias, L.; Antonio, E. N.; Martinez, T. D.; Zhang, L.; Zhuo, Z.; Weigand, S. J.; Guo, J.; Toney, M. F. Revealing the Sodium Storage Mechanisms in Hard Carbon Pores. Adv Energy Mater 2023, 13, 2302171. https://doi.org/10.1002/aenm.202302171
dc.relation.references[97] Yu, Y.; Ren, Z.; Shang, Q.; Han, J.; Li, L.; Chen, J.; Fakudze, S.; Tian, Z.; Liu, C. Ionic Liquid-Induced Low Temperature Graphitization of Cellulose-Derived Biochar for High Performance Sodium Storage. Surf Coat Technol 2021, 412, 127034. https://doi.org/10.1016/j.surfcoat.2021.127034
dc.relation.references[98] Sun, D.; Luo, B.; Wang, H.; Tang, Y.; Ji, X.; Wang, L. Engineering the Trap Effect of Residual Oxygen Atoms and Defects in Hard Carbon Anode towards High Initial Coulombic Efficiency. Nano Energy 2019, 64, 103937. https://doi.org/10.1016/j.nanoen.2019.103937
dc.relation.references[99] Pan, J.; Ma, J.; Liu, X.; Zhai, L.; Ouyang, X.; Liu, H. Effects of Different Types of Biochar on the Anaerobic Digestion of Chicken Manure. Bioresour Technol 2019, 275, 258–265. https://doi.org/10.1016/j.biortech.2018.12.068
dc.relation.references[100] Zhao, W.; Yang, H.; He, S.; Zhao, Q.; Wei, L. A Review of Biochar in Anaerobic Digestion to Improve Biogas Production: Performances, Mechanisms and Economic Assessments. Bioresour Technol 2021, 341, 125797. https://doi.org/10.1016/j.biortech.2021.125797
dc.relation.references[101] Zhang, M.; Wang, Y. Effects of Fe-Mn-Modified Biochar Addition on Anaerobic Digestion of Sewage Sludge: Biomethane Production, Heavy Metal Speciation and Performance Stability. Bioresour Technol 2020, 313, 123695. https://doi.org/10.1016/j.biortech.2020.123695
dc.relation.references[102] Li, J.; Zhang, M.; Ye, Z.; Yang, C. Effect of Manganese Oxide-Modified Biochar Addition on Methane Production and Heavy Metal Speciation during the Anaerobic Digestion of Sewage Sludge. J Environ Sci (China) 2019, 76, 267–277. https://doi.org/10.1016/j.jes.2018.05.009
dc.relation.references[103] Cheng, D.; Ngo, H. H.; Guo, W.; Chang, S. W.; Nguyen, D. D.; Nguyen, Q. A.; Zhang, J.; Liang, S. Improving Sulfonamide Antibiotics Removal from Swine Wastewater by Supplying a New Pomelo Peel Derived Biochar in an Anaerobic Membrane Bioreactor. Bioresour Technol 2021, 319,124160. https://doi.org/10.1016/j.biortech.2020.124160
dc.relation.references[104] Sugiarto, Y.; Sunyoto, N. M. S.; Zhu, M.; Jones, I.; Zhang, D. Effect of Biochar in Enhancing Hydrogen Production by Mesophilic Anaerobic Digestion of Food Wastes: The Role of Minerals. Int J Hydrogen Energy 2021, 46, 3695–3703. https://doi.org/10.1016/j.ijhydene.2020.10.256
dc.relation.references[105] Sakhiya, A. K.; Anand, A.; Kaushal, P. Production, Activation, and Applications of Biochar in Recent Times. Biochar 2020, 2, 253–285. https://doi.org/10.1007/s42773-020-00047-1
dc.relation.references[106] Li, M.; Zheng, Y.; Chen, Y.; Zhu, X. Biodiesel Production from Waste Cooking Oil Using a Heterogeneous Catalyst from Pyrolyzed Rice Husk. Bioresour Technol 2014, 154, 345–348. https://doi.org/10.1016/j.biortech.2013.12.070
dc.relation.references[107] Bazargan, A.; Kostić, M. D.; Stamenković, O. S.; Veljković, V. B.; McKay, G. A Calcium Oxide-Based Catalyst Derived from Palm Kernel Shell Gasification Residues for Biodiesel Production. Fuel 2015, 150, 519–525. https://doi.org/10.1016/j.fuel.2015.02.046
dc.relation.references[108] Awasthi, M. K.; Wang, Q.; Chen, H.; Wang, M.; Awasthi, S. K.; Ren, X.; Cai, H.; Li, R.; Zhang, Z. In-Vessel Co-Composting of Biosolid: Focusing on Mitigation of Greenhouse Gases Emissions and Nutrients Conservation. Renew Energy 2018, 129, 814–823. https://doi.org/10.1016/j.renene.2017.02.068
dc.relation.references[109] Senthilkumar, N.; Pannipara, M.; Al-Sehemi, A. G.; Gnana Kumar, G. PEDOT/NiFe2O4 Nanocomposites on Biochar as a Free-Standing Anode for High-Performance and Durable Microbial Fuel Cells. New J Chem 2019, 43, 7743–7750. https://doi.org/10.1039/c9nj00638a
dc.relation.references[110] Senthilkumar, K.; Naveenkumar, & M. Enhanced Performance Study of Microbial Fuel Cell Using Waste Biomass-Derived Carbon Electrode. Biomass Convers Biorefin 2023, 13, 5921–5929. https://doi.org/10.1007/s13399-021-01505-x
dc.relation.references[111] Yuan, H.; Deng, L.; Qi, Y.; Kobayashi, N.; Tang, J. Nonactivated and Activated Biochar Derived from Bananas as Alternative Cathode Catalyst in Microbial Fuel Cells. Sci World J 2014, 2014, 832850. https://doi.org/10.1155/2014/832850
dc.relation.references[112] Dong, J.; Wu, Y.; Wang, C.; Lu, H.; Li, Y. Three-Dimensional Electrodes Enhance Electricity Generation and Nitrogen Removal of Microbial Fuel Cells. Bioprocess Biosyst Eng 2020, 43, 2165–2174. https://doi.org/10.1007/s00449-020-02402-9
dc.relation.references[113] Nganda, A.; Srivastava, P.; Lamba, B. Y.; Pandey, A.; Kumar, M. Advances in the Fabrication, Modification, and Performance of Biochar, Red Mud, Calcium Oxide, and Bentonite Catalysts in Waste-to-Fuel Conversion. Environ Res 2023, 232, 116284. https://doi.org/10.1016/j.envres.2023.116284
dc.relation.references[114] Ramos, R.; Abdelkader‐fernández, V. K.; Matos, R.; Peixoto, A. F.; Fernandes, D. M. Metal‐Supported Biochar Catalysts for Sustainable Biorefinery, Electrocatalysis and Energy Storage Applications: A Review. Catalysts 2022, 12, 207. https://doi.org/10.3390/catal12020207
dc.relation.references[115] Zou, R.; Qian, M.; Wang, C.; Mateo, W.; Wang, Y.; Dai, L.; Lin, X.; Zhao, Y.; Huo, E.; Wang, L.; Zhang, X.; Kong, X.; Ruan, R.; Lei, H. Biochar: From by-Products of Agro-Industrial Lignocellulosic Waste to Tailored Carbon-Based Catalysts for Biomass Thermochemical Conversions. Chem Eng J 2022, 441, 135972. https://doi.org/10.1016/j.cej.2022.135972
dc.relation.references[116] Wang, S.; Li, H.; Wu, M. Advances in Metal/ Biochar Catalysts for Biomass Hydro-Upgrading: A Review. J Clean Prod 2021, 303, 126825. https://doi.org/10.1016/j.jclepro.2021.126825
dc.relation.references[117] Lyu, H.; Zhang, Q.; Shen, B. Application of Biochar and Its Composites in Catalysis. Chemosphere 2020, 240, 124842. https://doi.org/10.1016/j.chemosphere.2019.124842
dc.relation.references[118] Du, Z. Y.; Zhang, Z. H.; Xu, C.; Wang, X. B.; Li, W. Y. Lowerature Steam Reforming of Toluene and Biomass Tar over Biochar-Supported Ni Nanoparticles. ACS Sustain Chem Eng 2019, 7, 3111–3119. https://doi.org/10.1021/acssuschemeng.8b04872
dc.relation.references[119] Wang, Y.; Huang, L.; Zhang, T.; Wang, Q. Hydrogen-Rich Syngas Production from Biomass Pyrolysis and Catalytic Reforming Using Biochar-Based Catalysts. Fuel 2022, 313, 123006. https://doi.org/10.1016/j.fuel.2021.123006
dc.relation.references[120] Yang, G.; Hu, Q.; Hu, J.; Yang, H.; Yan, S.; Chen, Y.; Wang, X.; Chen, H. Hydrogen-Rich Syngas Production from Biomass Gasification Using Biochar-Based Nanocatalysts. Bioresour Technol 2023, 379, 129005. https://doi.org/10.1016/j.biortech.2023.129005
dc.relation.references[121] Liu, H.; Meng, H.; Shen, Y.; Feng, J.; Cong, H.; Shen, X.; Xing, H.; Song, W.; Li, J.; Ge, Y. International Journal of Hydrogen Energy Investigation into Application of Biochar as a Catalyst during Pyrolysis-Catalytic Reforming of Rice Husk : The Role of K Specie and Steam in Upgrading Syngas Quality. Int J Hydrogen Energy 2024, 55, 14–25. https://doi.org/10.1016/j.ijhydene.2023.10.113
dc.relation.references[122] Ren, J.; Liu, Y. L. Direct Conversion of Syngas Produced from Steam Reforming of Toluene into Methane over a Ni/Biochar Catalyst. ACS Sustain Chem Eng 2021, 9, 11212–11222. https://doi.org/10.1021/acssuschemeng.1c03497
dc.relation.references[123] Yang, H.; Cui, Y.; Jin, Y.; Lu, X.; Han, T.; Sandström, L.; Jönsson, P. G.; Yang, W. Evaluation of Engineered Biochar-Based Catalysts for Syngas Production in a Biomass Pyrolysis and Catalytic Reforming Process. Energ Fuel 2023, 37, 5942–5952. https://doi.org/10.1021/acs.energyfuels.3c00410
dc.relation.references[124] Tian, B.; Dong, K.; Guo, F.; Mao, S.; Bai, J.; Shu, R.; Qian, L.; Liu, Q. Catalytic Conversion of Toluene as a Biomass Tar Model Compound Using Monolithic Biochar-Based Catalysts Decorated with Carbon Nanotubes and Graphic Carbon Covered Co-Ni Alloy Nanoparticles. Fuel 2022, 324, 124585. https://doi.org/10.1016/j.fuel.2022.124585
dc.relation.references[125] Zeng, C.; Jiang, Y.; Xu, R.; Han, L.; Zhang, X. Phenols-Enriched Biofuel and H2-Rich Gas from Catalytic Fast Pyrolysis/Gasification of Agricultural Biomass over a Novel Heavy Metals-Containing Livestock Manure Biochar Catalyst. J Anal Appl Pyrolysis 2022, 167, 105680. https://doi.org/10.1016/j.jaap.2022.105680
dc.relation.references[126] Han, L.; Zhang, B.; Chen, L.; Feng, Y.; Yang, Y.; Sun, K. Impact of Biochar Amendment on Soil Aggregation Varied with Incubation Duration and Biochar Pyrolysis Temperature. Biochar 2021, 3, 339–347. https://doi.org/10.1007/s42773-021-00097-z
dc.relation.references[127] Hien, T. T. T.; Tsubota, T.; Taniguchi, T.; Shinogi, Y. Enhancing Soil Water Holding Capacity and Provision of a Potassium Source via Optimization of the Pyrolysis of Bamboo Biochar. Biochar 2021, 3, 51–61. https://doi.org/10.1007/s42773-020-00071-1
dc.relation.references[128] Chang, Y.; Rossi, L.; Zotarelli, L.; Gao, B.; Shahid, M. A.; Sarkhosh, A. Biochar Improves Soil Physical Characteristics and Strengthens Root Architecture in Muscadine Grape (Vitis Rotundifolia L.). Chem Biol Technol Agric 2021, 8, 1–11. https://doi.org/10.1186/s40538-020-00204-5
dc.relation.references[129] Han, Z.; Xu, P.; Li, Z.; Lin, H.; Zhu, C.; Wang, J.; Zou, J. Microbial Diversity and the Abundance of Keystone Species Drive the Response of Soil Multifunctionality to Organic Substitution and Biochar Amendment in a Tea Plantation. GCB Bioenergy 2022, 14, 481–495. https://doi.org/10.1111/GCBB.12926
dc.relation.references[130] Dey, S.; Purakayastha, T. J.; Sarkar, B.; Rinklebe, J.; Kumar, S.; Chakraborty, R.; Datta, A.; Lal, K.; Shivay, Y. S. Enhancing Cation and Anion Exchange Capacity of Rice Straw Biochar by Chemical Modification for Increased Plant Nutrient Retention. Sci Total Environ 2023, 886, 163681. https://doi.org/10.1016/J.SCITOTENV.2023.163681
dc.relation.references[131] Chen, C.; Zhu, H.; Lv, Q.; Tang, Q. Impact of Biochar on Red Paddy Soil Physical and Hydraulic Properties and Rice Yield over 3 Years. J Soils Sediments 2022, 22, 607–616. https://doi.org/10.1007/s11368-021-03090-y
dc.relation.references[132] Egamberdieva, D.; Alaylar, B.; Kistaubayeva, A.; Wirth, S.; Bellingrath-Kimura, S. D. Biochar for Improving Soil Biological Properties and Mitigating Salt Stress in Plants on Salt-Affected Soils. Commun Soil Sci Plant Anal 2022, 53, 140–152. https://doi.org/10.1080/00103624.2021.1993884
dc.relation.references[133] Zheng, J.; Luan, L.; Luo, Y.; Fan, J.; Xu, Q.; Sun, B.; Jiang, Y. Biochar and Lime Amendments Promote Soil Nitrification and Nitrogen Use Efficiency by Differentially Mediating Ammonia-Oxidizer Community in an Acidic Soil. Appl Soil Ecol 2022, 180, 104619. https://doi.org/10.1016/J.APSOIL.2022.104619
dc.relation.references[134] Pouangam Ngalani, G.; Dzemze Kagho, F.; Peguy, N. N. C.; Prudent, P.; Ondo, J. A.; Ngameni, E. Effects of Coffee Husk and Cocoa Pods Biochar on the Chemical Properties of an Acid Soil from West Cameroon. Arch Agron Soil Sci 2023, 69, 744–758. https://doi.org/10.1080/03650340.2022.2033733
dc.relation.references[135] Poveda, J.; Martínez-Gómez, Á.; Fenoll, C.; Escobar, C. The Use of Biochar for Plant Pathogen Control. Phytopathology 2021, 111, 1490–1499. https://doi.org/10.1094/PHYTO-06-20-0248-RVW
dc.relation.references[136] Wang, K.; Hou, J.; Zhang, S.; Hu, W.; Yi, G.; Chen, W.; Cheng, L.; Zhang, Q. Preparation of a New Biochar-Based Microbial Fertilizer: Nutrient Release Patterns and Synergistic Mechanisms to Improve Soil Fertility. Sci Total Environ 2023, 860, 160478. https://doi.org/10.1016/j.scitotenv.2022.160478
dc.relation.references[137] Bolan, S.; Hou, D.; Wang, L.; Hale, L.; Egamberdieva, D.; Tammeorg, P.; Li, R.; Wang, B.; Xu, J.; Wang, T.; Sun, H.; Padhye, L. P.; Wang, H.; Siddique, K. H. M.; Rinklebe, J.; Kirkham, M. B.; Bolan, N. The Potential of Biochar as a Microbial Carrier for Agricultural and Environmental Applications. Sci Total Environ 2023, 886, 163968. https://doi.org/10.1016/j.scitotenv.2023.163968
dc.relation.references[138] Nobile, C.; Lebrun, M.; Védère, C.; Honvault, N.; Aubertin, M. L.; Faucon, M. P.; Girardin, C.; Houot, S.; Kervroëdan, L.; Dulaurent, A. M.; Rumpel, C.; Houben, D. Biochar and Compost Addition Increases Soil Organic Carbon Content and Substitutes P and K Fertilizer in Three French Cropping Systems. Agron Sustain Dev 2022, 42, 1–15. https://doi.org/10.1007/s13593-022-00848-7
dc.relation.references[139] Labanya, R.; Srivastava, P. C.; Pachauri, S. P.; Shukla, A. K.; Shrivastava, M.; Srivastava, P. Valorisation of Phyto-Biochars as Slow Release Micronutrients and Sulphur Carrier for Agriculture. Environ Technol 2023, 44, 2431–2440. https://doi.org/10.1080/09593330.2022.2029953
dc.relation.references[140] Nsubuga, D.; Kabenge, I.; Zziwa, A.; Yiga, V. A.; Mpendo, Y.; Harbert, M.; Kizza, R.; Banadda, N.; Wydra, K. D. Optimization of Adsorbent Dose and Contact Time for the Production of Jackfruit Waste Nutrient-Enriched Biochar. Waste Dispos Sustain Energy 2023, 5, 63–74. https://doi.org/10.1007/s42768-022-00123-1
dc.relation.references[141] Skrzypczak, D.; Szopa, D.; Mikula, K.; Izydorczyk, G.; Baśladyńska, S.; Hoppe, V.; Pstrowska, K.; Wzorek, Z.; Kominko, H.; Kułażyński, M.; Moustakas, K.; Chojnacka, K.; Witek – Krowiak, A. Tannery Waste-Derived Biochar as a Carrier of Micronutrients Essential to Plants. Chemosphere 2022, 294, 133720. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133720
dc.relation.references[142] Mustaffa, M. R. A. F.; Pandian, K.; Chitraputhirapillai, S.; Kuppusamy, S.; Dhanushkodi, K. Synthesis of Biochar-Embedded Slow-Release Nitrogen Fertilizers: Mesocosm and Field Scale Evaluation for Nitrogen Use Efficiency, Growth and Rice Yield. Soil Use Manag 2023, 40, e12959. https://doi.org/10.1111/SUM.12959
dc.relation.references[143] Rashid, M.; Hussain, Q.; Hayat, R.; Ahmad, M.; Azeem, M.; Alvi, S.; Chaudhry, A. N.; Masood, S.; Khalid, R.; Jehan, S.; Rehman, O. ur. Deashed Biochar as N-Carrier Extended the N-Release by Inhibiting N-Losses in Calcareous Soils. Biomass Convers Biorefin 2023, 13, 9549–9564. https://doi.org/10.1007/s13399-023-04250-5
dc.relation.references[144] Zhao, C.; Xu, J.; Bi, H.; Shang, Y.; Shao, Q. A Slow-Release Fertilizer of Urea Prepared via Biochar-Coating with Nano-SiO2-Starch-Polyvinyl Alcohol: Formulation and Release Simulation. Environ Technol Innov 2023, 32, 103264. https://doi.org/10.1016/J.ETI.2023.103264
dc.relation.references[145] Patel, A. K.; Singhania, R. R.; Pal, A.; Chen, C. W.; Pandey, A.; Dong, C. Di. Advances on Tailored Biochar for Bioremediation of Antibiotics, Pesticides and Polycyclic Aromatic Hydrocarbon Pollutants from Aqueous and Solid Phases. Sci Total Environ 2022, 817, 153054. https://doi.org/10.1016/j.scitotenv.2022.153054
dc.relation.references[146] Palansooriya, K. N.; Li, J.; Dissanayake, P. D.; Suvarna, M.; Li, L.; Yuan, X.; Sarkar, B.; Tsang, D. C. W.; Rinklebe, J.; Wang, X.; Ok, Y. S. Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning. Environ Sci Technol 2022, 56, 4187–4198. https://doi.org/10.1021/acs.est.1c08302
dc.relation.references[147] Rúa-Díaz, S.; Forjan, R.; Lago-Vila, M.; Cerqueira, B.; Arco-Lázaro, E.; Marcet, P.; Baragaño, D.; Gallego, J. L. R.; Covelo, E. F. Pyrolysis Temperature Influences the Capacity of Biochar to Immobilize Copper and Arsenic in Mining Soil Remediation. Environ Sci Pollut R 2023, 30, 32882–32893. https://doi.org/10.1007/s11356-022-24492-6
dc.relation.references[148] Liang, J.; Chang, J.; Xie, J.; Yang, L.; Sheteiwy, M. S.; Moustafa, A. R. A.; Zaghloul, M. S.; Ren, H. Microorganisms and Biochar Improve the Remediation Efficiency of Paspalum Vaginatum and Pennisetum Alopecuroides on Cadmium-Contaminated Soil. Toxics 2023, 11, 582. https://doi.org/10.3390/toxics11070582
dc.relation.references[149] Northvolt. Northvolt develops state-of-the-art sodium-ion battery validated at 160 Wh/kg. https://northvolt.com/articles/northvolt-sodium-ion/ (accessed 2023-12-01)
dc.relation.referencesen[1] Jayakumar, M.; Hamda, A. S.; Abo, L. D.; Daba, B. J.; Venkatesa Prabhu, S.; Rangaraju, M.; Jabesa, A.; Periyasamy, S.; Suresh, S.; Baskar, G. Comprehensive Review on Lignocellulosic Biomass Derived Biochar Production, Characterization, Utilization and Applications. Chemosphere 2023, 345, 140515. https://doi.org/10.1016/j.chemosphere.2023.140515
dc.relation.referencesen[2] Rawat, S.; Wang, C. T.; Lay, C. H.; Hotha, S.; Bhaskar, T. Sustainable Biochar for Advanced Electrochemical/Energy Storage Applications. J Energy Storage 2023, 63, 107115. https://doi.org/10.1016/j.est.2023.107115
dc.relation.referencesen[3] Khiari, B.; Jeguirim, M.; Limousy, L.; Bennici, S. Biomass Derived Chars for Energy Applications. Renew. Sustain. Energy Rev. 2019, 108, 253–273. https://doi.org/10.1016/j.rser.2019.03.057
dc.relation.referencesen[4] Liu, W. J.; Jiang, H.; Yu, H. Q. Emerging Applications of Biochar-Based Materials for Energy Storage and Conversion. Energy Environ Sci 2019, 12, 1751–1779. https://doi.org/10.1039/P.9ee00206e
dc.relation.referencesen[5] Igalavithana, A. D.; You, S.; Zhang, L.; Shang, J.; Lehmann, J.; Wang, X.; Zhu, Y. G.; Tsang, D. C. W.; Park, Y. K.; Hou, D.; et al. Progress, Barriers, and Prospects for Achieving a "Hydrogen Society" and Opportunities for Biochar Technology. ACS ES and T Engineering 2022, 2, 1987–2001. https://doi.org/10.1021/acsestengg.1c00510
dc.relation.referencesen[6] Sawalha, H.; Bader, A.; Sarsour, J.; Al-Jabari, M.; Rene, E. R. Removal of Dye (Methylene Blue) from Wastewater Using Bio-Char Derived from Agricultural Residues in Palestine: Performance and Isotherm Analysis. Processes 2022, 10, 2039. https://doi.org/10.3390/pr10102039
dc.relation.referencesen[7] Nguyen, T.H.; Nguyen, X.C.; Nguyen, D.L.T.; Nguyen, D.D.; Vo, T.Y.B.; Vo, N.Q.; Nguyen, T.D.; Viet, L.; Ngo, H.H.; Vo, D.-V. N.; et al. Converting Biomass of Agrowastes and Invasive Plant into Alternative Materials for Water Remediation. Biomass Convers Biorefin 2023, 13, 5391-5406. https://link.springer.com/article/10.1007/s13399-021-01526-6
dc.relation.referencesen[8] del Pozo, C.; Rego, F.; Yang, Y.; Puy, N.; Bartrolí, J.; Fàbregas, E.; Bridgwater, A. V. Converting Coffee Silverskin to Value-Added Products by a Slow Pyrolysis-Based Biorefinery Process. Fuel Process Technol 2021, 214, 106708. https://doi.org/10.1016/j.fuproc.2020.106708
dc.relation.referencesen[9] Appiah-Ntiamoah, R.; Tilahun, K. M.; Mengesha, D. N.; Weldesemat, N. T.; Ruello, J. L.; Egualle, F. K.; Ganje, P.; Kim, H. Carbonyl-Interfaced-Biochar Derived from Unique Capillary Structures via One-Step Carbonization with Selective Methyl Blue Adsorption Capability. J Clean Prod 2023, 410, 137291. https://doi.org/10.1016/j.jclepro.2023.137291
dc.relation.referencesen[10] Chen, L.; Mi, B.; He, J.; Li, Y.; Zhou, Z.; Wu, F. Functionalized Biochars with Highly-Efficient Malachite Green Adsorption Property Produced from Banana Peels via Microwave-Assisted Pyrolysis. Bioresour Technol 2023, 376, 128840. https://doi.org/10.1016/j.biortech.2023.128840
dc.relation.referencesen[11] Shukla, S.; Khan, R.; Srivastava, M. M.; Zahmatkesh, S. Valorization of Waste Watermelon Rinds as a Bio-Adsorbent for Efficient Removal of Methylene Blue Dye from Aqueous Solutions. Appl Biochem Biotechnol 2023. https://doi.org/10.1007/s12010-023-04448-3 (accessed: 2023-12-01).
dc.relation.referencesen[12] Pinky, N. S.; Bin Mobarak, M.; Mustafi, S.; Zesanur Rahman, M.; Nahar, A.; Saha, T.; Mohammed Bahadur, N. Facile Preparation of Micro-Porous Biochar from Bangladeshi Sprouted Agricultural Waste (Corncob) via in-House Built Heating Chamber for Cationic Dye Removal. Arab J Chem 2023, 16, 105080. https://doi.org/10.1016/j.arabjc.2023.105080
dc.relation.referencesen[13] Ogunlusi, G. O.; Amos, O. D.; Olatunji, O. F.; Adenuga, A. A. Equilibrium, Kinetic, and Thermodynamic Studies of the Adsorption of Anionic and Cationic Dyes from Aqueous Solution Using Agricultural Waste Biochar. J Iran Chem Soc 2023, 20, 817–830. https://doi.org/10.1007/s13738-022-02721-6
dc.relation.referencesen[14] Nithyalakshmi, B.; Saraswathi, R. Removal of Colorants from Wastewater Using Biochar Derived from Leaf Waste. Biomass Convers Biorefin 2023, 13, 1311–1327. https://doi.org/10.1007/s13399-021-01776-4
dc.relation.referencesen[15] Xiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D. C. W.; Ok, Y. S.; Gao, B. Biochar Technology in Wastewater Treatment: A Critical Review. Chemosphere 2020, 252, 126539. https://doi.org/10.1016/j.chemosphere.2020.126539
dc.relation.referencesen[16] Dudziak, M.; Werle, S.; Marszałek, A.; Sobek, S.; Magdziarz, A. Comparative Assessment of the Biomass Solar Pyrolysis Biochars Combustion Behavior and Zinc Zn(II) Adsorption. Energy 2022, 261, 125360. https://doi.org/10.1016/j.energy.2022.125360
dc.relation.referencesen[17] Kaya, N.; Arslan, F.; Yildiz Uzun, Z. Production and Characterization of Carbon-Based Adsorbents from Waste Lignocellulosic Biomass: Their Effectiveness in Heavy Metal Removal. Fuller Nanotub 2020, 28, 769–780. https://doi.org/10.1080/1536383X.2020.1759556
dc.relation.referencesen[18] Ramana, K. V.; Mohan, K. C.; Ravindhranath, K.; Babu, B. H. Bio-Sorbent Derived from Annona Squamosa for the Removal of Methyl Red Dye in Polluted Waters: A Study on Adsorption Potential. Chem. Chem. Technol. 2022, 16, 274–283. https://doi.org/10.23939/chcht16.02.274
dc.relation.referencesen[19] Abdul Jabbar, M. F.; Rashid, S. A.; Naife, T. M. Adsorption of Zinc and Iron Ions From Aqueous Solution Using Waste Material as Adsorbent. Chem. Chem. Technol. 2023, 17, 887–893. https://doi.org/10.23939/chcht17.04.887
dc.relation.referencesen[20] Sinha, R.; Kumar, R.; Sharma, P.; Kant, N.; Shang, J.; Aminabhavi, T. M. Removal of Hexavalent Chromium via Biochar-Based Adsorbents: State-of-the-Art, Challenges, and Future Perspectives. J Environ Manage 2022, 317, 115356. https://doi.org/10.1016/j.jenvman.2022.115356
dc.relation.referencesen[21] Hama Aziz, K. H.; Kareem, R. Recent Advances in Water Remediation from Toxic Heavy Metals Using Biochar as a Green and Efficient Adsorbent: A Review. Case Stud Chem Environ Eng 2023, 8, 100495. https://doi.org/10.1016/j.cscee.2023.100495
dc.relation.referencesen[22] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377–386. https://doi.org/10.23939/chcht16.03.377
dc.relation.referencesen[23] Yuan, Z.; Sun, X.; Hua, J.; Zhu, Y.; Yuan, J.; Qiu, F. Upcycling Watermelon Peel Waste into a Sustainable Environment-Friendly Biochar for Assessment of Effective Adsorption Property. Arab J Sci Eng 2023, 48, 9035–9045. https://doi.org/10.1007/s13369-022-07397-x
dc.relation.referencesen[24] Nguyen, T. H.; Loganathan, P.; Nguyen, T. V.; Vigneswaran, S.; Ha Nguyen, T. H.; Tran, H. N.; Nguyen, Q. B. Arsenic Removal by Pomelo Peel Biochar Coated with Iron. Chem Eng Res Des 2022, 186, 252–265. https://doi.org/10.1016/j.cherd.2022.07.022
dc.relation.referencesen[25] Van Hien, N.; Valsami-Jones, E.; Vinh, N. C.; Phu, T. T.; Tam, N. T. T.; Lynch, I. Effectiveness of Different Biochar in Aqueous Zinc Removal: Correlation with Physicochemical Characteristics. Bioresour Technol Rep 2020, 11, 100466. https://doi.org/10.1016/j.biteb.2020.100466
dc.relation.referencesen[26] Kaya, N.; Arslan, F.; Uzun, Z. Y.; Ceylan, S. Kinetic and Thermodynamic Studies on the Adsorption of Cu2 Ions from Aqueous Solution by Using Agricultural Waste-Derived Biochars. Water Sci Technol Water Supply 2020, 20, 3120–3140. https://doi.org/10.2166/ws.2020.193
dc.relation.referencesen[27] Bacirhonde, P. M.; Dzade, N. Y.; Eya, H. I.; Kim, C. S.; Park, C. H. A Potential Peanut Shell Feedstock Pyrolyzed Biochar and Iron-Modified Peanut Shell Biochars for Heavy Metal Fixation in Acid Mine Drainage. ACS Earth Space Chem 2022, 6, 2651–2665. https://doi.org/10.1021/acsearthspacechem.2c00185
dc.relation.referencesen[28] Švábová, M.; Bičáková, O.; Vorokhta, M. Biochar as an Effective Material for Acetone Sorption and the Effect of Surface Area on the Mechanism of Sorption. J Environ Manage 2023, 348, 119205. https://doi.org/10.1016/j.jenvman.2023.119205
dc.relation.referencesen[29] Zhuang, Z.; Wang, L.; Tang, J. Efficient Removal of Volatile Organic Compound by Ball-Milled Biochars from Different Preparing Conditions. J Hazard Mater 2021, 406, 124676. https://doi.org/10.1016/j.jhazmat.2020.124676
dc.relation.referencesen[30] Park, S.; Lee, J.-I.; Na, C.-K.; Kim, D.; Kim, J.-J.; Kim, D.-Y. Evaluation of the Adsorption Performance and Thermal Treatment-Associated Regeneration of Adsorbents for Formaldehyde Removal. J Air Waste Manage Assoc 2023, 74, 131–144. https://doi.org/10.1080/10962247.2023.2292205
dc.relation.referencesen[31] Vikrant, K.; Kim, K. H.; Peng, W.; Ge, S.; Sik Ok, Y. Adsorption Performance of Standard Biochar Materials against Volatile Organic Compounds in Air: A Case Study Using Benzene and Methyl Ethyl Ketone. Chem Eng J 2020, 387, 123943. https://doi.org/10.1016/j.cej.2019.123943
dc.relation.referencesen[32] Kua, H. W.; Pedapati, C.; Lee, R. V.; Kawi, S. Effect of Indoor Contamination on Carbon Dioxide Adsorption of Wood-Based Biochar – Lessons for Direct Air Capture. J Clean Prod 2019, 210, 860–871. https://doi.org/10.1016/j.jclepro.2018.10.206
dc.relation.referencesen[33] Igalavithana, A. D.; Choi, S. W.; Dissanayake, P. D.; Shang, J.; Wang, C. H.; Yang, X.; Kim, S.; Tsang, D. C. W.; Lee, K. B.; Ok, Y. S. Gasification Biochar from Biowaste (Food Waste and Wood Waste) for Effective CO2 Adsorption. J Hazard Mater 2020, 391, 121147. https://doi.org/10.1016/j.jhazmat.2019.121147
dc.relation.referencesen[34] Gbangbo, K. R.; Kouakou, A. R.; Ehouman, A. D.; Yao, B.; Goli Lou, G. V. E.; Gnaboa, Z.; Bailly, G. C. Influence of Water Content on Hydrogen Sulfide Adsorption in Biogas Purification with Musa Paradisiaca Biochar. Chem Afr 2023, 6, 657–665. https://doi.org/10.1007/s42250-023-00610-w
dc.relation.referencesen[35] Wuri, M. A.; Pertiwiningrum, A.; Budiarto, R.; Gozan, M.; Harto, A. W. The Waste Recycling of Sugarcane Bagasse-Based Biochar for Biogas Purification. IOP Conf Ser Earth Environ Sci 2021, 940, 012029. https://doi.org/10.1088/1755-1315/940/1/012029
dc.relation.referencesen[36] Lee, J. T. E.; Ok, Y. S.; Song, S.; Dissanayake, P. D.; Tian, H.; Tio, Z. K.; Cui, R.; Lim, E. Y.; Jong, M. C.; Hoy, S. H.; et. al. Biochar Utilisation in the Anaerobic Digestion of Food Waste for the Creation of a Circular Economy via Biogas Upgrading and Digestate Treatment. Bioresour Technol 2021, 333, 125190. https://doi.org/10.1016/j.biortech.2021.125190
dc.relation.referencesen[37] Khan, A.; Szulejko, J. E.; Samaddar, P.; Kim, K. H.; Liu, B.; Maitlo, H. A.; Yang, X.; Ok, Y. S. The Potential of Biochar as Sorptive Media for Removal of Hazardous Benzene in Air. Chem Eng J 2019, 361, 1576–1585. https://doi.org/10.1016/j.cej.2018.10.193
dc.relation.referencesen[38] Ran, Q.; Liu, K.; Du, Y.; Liu, C.; Fang, L.; Li, F. Integration with Carbon Capture Technology Enables a Positive Carbon Balance for Sustainable Rice Paddy Remediation with Calcium silicon Composites. Sci Total Environ 2024, 912, 169034. https://doi.org/10.1016/j.scitotenv.2023.169034
dc.relation.referencesen[39] Sadegh, F.; Sadegh, N.; Wongniramaikul, W.; Apiratikul, R.; Choodum, A. Adsorption of Volatile Organic Compounds on Biochar: A Review. Process Saf Environ 2024, 182, 559–578. https://doi.org/10.1016/j.psep.2023.11.071
dc.relation.referencesen[40] Dissanayake, P. D.; You, S.; Igalavithana, A. D.; Xia, Y.; Bhatnagar, A.; Gupta, S.; Kua, H. W.; Kim, S.; Kwon, J. H.; Tsang, D. C. W.; Ok, Y. S. Biochar-Based Adsorbents for Carbon Dioxide Capture: A Critical Review. Renew Sust Energ Rev 2020, 119, 109582. https://doi.org/10.1016/j.rser.2019.109582
dc.relation.referencesen[41] Zhao, J.; Li, Y.; Dong, R. Recent Progress towards In-Situ Biogas Upgrading Technologies. Sci Total Environ 2021, 800, 149667. https://doi.org/10.1016/j.scitotenv.2021.149667
dc.relation.referencesen[42] Notton, G.; Nivet, M. L.; Voyant, C.; Paoli, C.; Darras, C.; Motte, F.; Fouilloy, A. Intermittent and Stochastic Character of Renewable Energy Sources: Consequences, Cost of Intermittence and Benefit of Forecasting. Renew Sust Energ Rev 2018, 87, 96–105. https://doi.org/10.1016/j.rser.2018.02.007
dc.relation.referencesen[43] Wang, D.; Liu, N.; Chen, F.; Wang, Y.; Mao, J. Progress and Prospects of Energy Storage Technology Research: Based on Multidimensional Comparison. J Energy Storage 2024, 75, 109710. https://doi.org/10.1016/j.est.2023.109710
dc.relation.referencesen[44] Adetokun, B. B.; Oghorada, O.; Abubakar, S. J. afar. Superconducting Magnetic Energy Storage Systems: Prospects and Challenges for Renewable Energy Applications. J Energy Storage 2022, 55, 105663. https://doi.org/10.1016/j.est.2022.105663
dc.relation.referencesen[45] Toyota. Toyota Mirai 2023 Brochure; 2023. https://www.toyota.com/content/dam/toyota/brochures/pdf/2023/mirai_ebrochure.pdf (accessed: 2023-12-01).
dc.relation.referencesen[46] Moradi, R.; Groth, K. M. Hydrogen Storage and Delivery: Review of the State of the Art Technologies and Risk and Reliability Analysis. Int J Hydrogen Energy 2019, 44, 12254-12269. https://doi.org/10.1016/j.ijhydene.2019.03.041
dc.relation.referencesen[47] US Department of Energy. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles (accessed: 2023-12-01).
dc.relation.referencesen[48] Tarhan, C.; Çil, M. A. A Study on Hydrogen, the Clean Energy of the Future: Hydrogen Storage Methods. J Energy Storage 2021, 40, 102676. https://doi.org/10.1016/j.est.2021.102676
dc.relation.referencesen[49] Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Hydrogen Energy, Economy and Storage: Review and Recommendation. Int J Hydrogen Energy 2019, 44, 15072–15086. https://doi.org/10.1016/j.ijhydene.2019.04.068
dc.relation.referencesen[50] Czarna-Juszkiewicz, D.; Cader, J.; Wdowin, M. From Coal Ashes to Solid Sorbents for Hydrogen Storage. J Clean Prod 2020, 270, 122355. https://doi.org/10.1016/j.jclepro.2020.122355
dc.relation.referencesen[51] Erdogan, F. O. Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents. Chem. Chem. Technol. 2019, 13, 129–135. https://doi.org/10.23939/chcht13.02.129
dc.relation.referencesen[52] Saldan, I.; Stetsiv, Y.; Makogon, V.; Kovalyshyn, Y.; Yatsyshyn, M.; Reshetnyak, O. Physical Sorption of Molecular Hydrogen by Microporous Organic Polymers. Chem. Chem. Technol. 2019, 13, 85–94. https://doi.org/10.23939/chcht13.01.085
dc.relation.referencesen[53] Chen, Z.; Kirlikovali, K. O.; Idrees, K. B.; Wasson, M. C.; Farha, O. K. Porous Materials for Hydrogen Storage. Chem 2022, 8, 693–716. https://doi.org/10.1016/j.chempr.2022.01.012
dc.relation.referencesen[54] Desai, F. J.; Uddin, M. N.; Rahman, M. M.; Asmatulu, R. A Critical Review on Improving Hydrogen Storage Properties of Metal Hydride via Nanostructuring and Integrating Carbonaceous Materials. Int J Hydrogen Energy 2023, 48, 29256–29294. https://doi.org/10.1016/j.ijhydene.2023.04.029
dc.relation.referencesen[55] Boateng, E.; Chen, A. Recent Advances in Nanomaterial-Based Solid-State Hydrogen Storage. Mater Today Adv 2020, 6, 100022. https://doi.org/10.1016/j.mtadv.2019.100022
dc.relation.referencesen[56] Blankenship, T. S.; Balahmar, N.; Mokaya, R. Oxygen-Rich Microporous Carbons with Exceptional Hydrogen Storage Capacity. Nat Commun 2017, 8, 1545. https://doi.org/10.1038/s41467-017-01633-x
dc.relation.referencesen[57] Deng, L.; Zhao, Y.; Sun, S.; Feng, D.; Zhang, W. Preparation of Corn Straw-Based Carbon by "Carbonization-KOH Activation" Two-Step Method: Gas–Solid Product Characteristics, Activation Mechanism and Hydrogen Storage Potential. Fuel 2024, 358, 130134. https://doi.org/10.1016/j.fuel.2023.130134
dc.relation.referencesen[58] Deng, L.; Zhao, Y.; Sun, S.; Feng, D.; Zhang, W. Thermochemical Method for Controlling Pore Structure to Enhance Hydrogen Storage Capacity of Biochar. Int J Hydrogen Energy 2023, 48, 21799–21813. https://doi.org/10.1016/j.ijhydene.2023.03.084
dc.relation.referencesen[59] Hu, W.; Li, Y.; Zheng, M.; Xiao, Y.; Dong, H.; Liang, Y.; Hu, H.; Liu, Y. Degradation of Biomass Components to Prepare Porous Carbon for Exceptional Hydrogen Storage Capacity. Int J Hydrogen Energy 2021, 46, 5418–5426. https://doi.org/10.1016/j.ijhydene.2020.11.015
dc.relation.referencesen[60] Hirscher, M.; Zhang, L.; Oh, H. Nanoporous Adsorbents for Hydrogen Storage. Appl Phys A Mater Sci Process 2023, 129, 1–10. https://doi.org/10.1007/s00339-023-06397-4
dc.relation.referencesen[61] Broom, D. P.; Webb, C. J.; Fanourgakis, G. S.; Froudakis, G. E.; Trikalitis, P. N.; Hirscher, M. Concepts for Improving Hydrogen Storage in Nanoporous Materials. Int J Hydrogen Energy 2019, 44, 7768–7779. https://doi.org/10.1016/j.ijhydene.2019.01.224
dc.relation.referencesen[62] Huang, J.; Liang, Y.; Dong, H.; Hu, H.; Yu, P.; Peng, L.; Zheng, M.; Xiao, Y.; Liu, Y. Revealing Contribution of Pore Size to High Hydrogen Storage Capacity. Int J Hydrogen Energy 2018, 43, 18077–18082. https://doi.org/10.1016/j.ijhydene.2018.08.027
dc.relation.referencesen[63] Geng, Z.; Zhang, C.; Wang, D.; Zhou, X.; Cai, M. Pore Size Effects of Nanoporous Carbons with Ultra-High Surface Area on High-Pressure Hydrogen Storage. J Energy Chem 2015, 24, 1–8. https://doi.org/10.1016/S2095-4956(15)60277-7
dc.relation.referencesen[64] Farha, O. K.; Yazaydin, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. De Novo Synthesis of a Metal-Organic Framework Material Featuring Ultrahigh Surface Area and Gas Storage Capacities. Nat Chem 2010, 2, 944–948. https://doi.org/10.1038/nchem.834
dc.relation.referencesen[65] Chen, Z.; Li, P.; Anderson, R.; Wang, X.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón, D. A.; Yildirim, T.; Stoddart, J. F.; Farha, O. K. Balancing Volumetric and Gravimetric Uptake in Highly Porous Materials for Clean Energy. Science 2020, 368, 297–303. https://doi.org/10.1126/science.aaz8881
dc.relation.referencesen[66] Morandé, A.; Lillo, P.; Blanco, E.; Pazo, C.; Dongil, A. B.; Zarate, X.; Saavedra-Torres, M.; Schott, E.; Canales, R.; Videla, A.; Escalona, N. Modification of a Commercial Activated Carbon with Nitrogen and Boron: Hydrogen Storage Application. J Energy Storage 2023, 64, 107193. https://doi.org/10.1016/j.est.2023.107193
dc.relation.referencesen[67] Rossetti, I.; Ramis, G.; Gallo, A.; Di Michele, A. Hydrogen Storage over Metal-Doped Activated Carbon. Int J Hydrogen Energy 2015, 40, 7609–7616. https://doi.org/10.1016/j.ijhydene.2015.04.064.
dc.relation.referencesen[68] Yeboah, M. L.; Li, X.; Zhou, S. Facile Fabrication of Biochar from Palm Kernel Shell Waste and Its Novel Application to Magnesium-Based Materials for Hydrogen Storage. Materials 2020, 13, 625. https://doi.org/10.3390/ma13030625
dc.relation.referencesen[69] Zhang, J.; Hou, Q.; Guo, X.; Yang, X. Modified MgH2 Hydrogen Storage Properties Based on Grapefruit Peel-Derived Biochar. Catalysts 2022, 12, 517. https://doi.org/10.3390/catal12050517
dc.relation.referencesen[70] Rawat, S.; Boobalan, T.; Krishna, B. B.; Sathish, M.; Hotha, S.; Bhaskar, T. Biochar for Supercapacitor Application: A Comparative Study. Chem Asian J 2022, 17, e202200982. https://doi.org/10.1002/asia.202200982
dc.relation.referencesen[71] Lu, B.; Hu, L.; Yin, H.; Xiao, W.; Wang, D. One-Step Molten Salt Carbonization (MSC) of Firwood Biomass for Capacitive Carbon. RSC Adv 2016, 6, 106485–106490. https://doi.org/10.1039/P.6ra22191b
dc.relation.referencesen[72] Raymundo‐Piñero, E.; Cadek, M.; Béguin, F. Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds. Adv Funct Mater 2009, 19, 1032–1039. https://doi.org/10.1002/adfm.200801057
dc.relation.referencesen[73] Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S. From Dead Leaves to High Energy Density Supercapacitors. Energy Environ Sci 2013, 6, 1249–1259. https://doi.org/10.1039/P.3ee22325f
dc.relation.referencesen[74] Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H. First-Principles Study of Alkali Metal-Graphite Intercalation Compounds. J Power Sources 2013, 243, 585–587. https://doi.org/10.1016/j.jpowsour.2013.06.057
dc.relation.referencesen[75] Shao, W.; Shi, H.; Jian, X.; Wu, Z. S.; Hu, F. Hard-Carbon Anodes for Sodium-Ion Batteries: Recent Status and Challenging Perspectives. Advanced Energy and Sustainability Research 2022, 3, 2200009. https://doi.org/10.1002/aesr.202200009
dc.relation.referencesen[76] Yang, Y.; Wu, C.; He, X.; Zhao, J.; Yang, Z.; Li, L.; Wu, X.; Li, L.; Chou, S. Boosting the Development of Hard Carbon for Sodium‐Ion Batteries: Strategies to Optimize the Initial Coulombic Efficiency. Adv Funct Mater 2023, 34, 2302277. https://doi.org/10.1002/adfm.202302277
dc.relation.referencesen[77] Chu, Y.; Zhang, J.; Zhang, Y.; Li, Q.; Jia, Y.; Dong, X.; Xiao, J.; Tao, Y.; Yang, Q. Reconfiguring Hard Carbons with Emerging Sodium‐Ion Batteries: A Perspective. Adv Mater 2023, 35, 2212186. https://doi.org/10.1002/adma.202212186
dc.relation.referencesen[78] Wang, P.; Fan, L.; Yan, L.; Shi, Z. Low-Cost Water Caltrop Shell-Derived Hard Carbons with High Initial Coulombic Efficiency for Sodium-Ion Battery Anodes. J Alloys Compd 2019, 775, 1028–1035. https://doi.org/10.1016/j.jallcom.2018.10.180
dc.relation.referencesen[79] Gomez-Martin, A.; Martinez-Fernandez, J.; Ruttert, M.; Winter, M.; Placke, T.; Ramirez-Rico, J. Correlation of Structure and Performance of Hard Carbons as Anodes for Sodium Ion Batteries. Chem Mater 2019, 31, 7288–7299. https://doi.org/10.1021/acs.chemmater.9b01768
dc.relation.referencesen[80] Tang, Z.; Zhou, S.; Huang, Y.; Wang, H.; Zhang, R.; Wang, Q.; Sun, D.; Tang, Y.; Wang, H. Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na-Ion Batteries: Origins, Solutions, and Perspectives. Electrochem Energy Rev 2023, 6, 8. https://doi.org/10.1007/s41918-022-00178-y
dc.relation.referencesen[81] Wan, Y.; Liu, Y.; Chao, D.; Li, W.; Zhao, D. Recent Advances in Hard Carbon Anodes with High Initial Coulombic Efficiency for Sodium-Ion Batteries. Nano Mater Sci 2023, 5, 189–201. https://doi.org/10.1016/j.nanoms.2022.02.001
dc.relation.referencesen[82] Tang, Z.; Zhang, R.; Wang, H.; Zhou, S.; Pan, Z.; Huang, Y.; Sun, D.; Tang, Y.; Ji, X.; Amine, K.; Shao, M. Revealing the Closed Pore Formation of Waste Wood-Derived Hard Carbon for Advanced Sodium-Ion Battery. Nat Commun 2023, 14, 6024. https://doi.org/10.1038/s41467-023-39637-5
dc.relation.referencesen[83] Zhou, S.; Tang, Z.; Pan, Z.; Huang, Y.; Zhao, L.; Zhang, X.; Sun, D.; Tang, Y.; Dhmees, A. S.; Wang, H. Regulating Closed Pore Structure Enables Significantly Improved Sodium Storage for Hard Carbon Pyrolyzing at Relatively Low Temperature. SusMat 2022, 2, 357–367. https://doi.org/10.1002/sus2.60
dc.relation.referencesen[84] Jing, W.; Wang, M.; Li, Y.; Li, H. R.; Zhang, H.; Hu, S.; Wang, H.; He, Y. B. Pore Structure Engineering of Wood-Derived Hard Carbon Enables Their High-Capacity and Cycle-Stable Sodium Storage Properties. Electrochim Acta 2021, 391, 139000. https://doi.org/10.1016/j.electacta.2021.139000
dc.relation.referencesen[85] Asfaw, H. D.; Gond, R.; Kotronia, A.; Tai, C. W.; Younesi, R. Bio-Derived Hard Carbon Nanosheets with High Rate Sodium-Ion Storage Characteristics. Sustain Mater Technol 2022, 32, e00407. https://doi.org/10.1016/j.susmat.2022.e00407
dc.relation.referencesen[86] Zhu, Y.; Chen, M.; Li, Q.; Yuan, C.; Wang, C. A Porous Biomass-Derived Anode for High-Performance Sodium-Ion Batteries. Carbon 2018, 129, 695–701. https://doi.org/10.1016/j.carbon.2017.12.103
dc.relation.referencesen[87] Patel, A.; Mishra, R.; Tiwari, R. K.; Tiwari, A.; Meghnani, D.; Singh, S. K.; Singh, R. K. Sustainable and Efficient Energy Storage: A Sodium Ion Battery Anode from Aegle Marmelos Shell Biowaste. J Energy Storage 2023, 72, 108424. https://doi.org/10.1016/j.est.2023.108424
dc.relation.referencesen[88] Wang, Q.; Zhu, X.; Liu, Y.; Fang, Y.; Zhou, X.; Bao, J. Rice Husk-Derived Hard Carbons as High-Performance Anode Materials for Sodium-Ion Batteries. Carbon 2018, 127, 658–666. https://doi.org/10.1016/j.carbon.2017.11.054
dc.relation.referencesen[89] Rybarczyk, M. K.; Li, Y.; Qiao, M.; Hu, Y. S.; Titirici, M. M.; Lieder, M. Hard Carbon Derived from Rice Husk as Low Cost Negative Electrodes in Na-Ion Batteries. J Energy Chem 2019, 29, 17–22. https://doi.org/10.1016/j.jechem.2018.01.025
dc.relation.referencesen[90] Yu, K.; Wang, X.; Yang, H.; Bai, Y.; Wu, C. Insight to Defects Regulation on Sugarcane Waste-Derived Hard Carbon Anode for Sodium-Ion Batteries. J Energy Chem 2021, 55, 499–508. https://doi.org/10.1016/j.jechem.2020.07.025
dc.relation.referencesen[91] Zhang, N.; Liu, Q.; Chen, W.; Wan, M.; Li, X.; Wang, L.; Xue, L.; Zhang, W. High Capacity Hard Carbon Derived from Lotus Stem as Anode for Sodium Ion Batteries. J Power Sources 2018, 378, 331–337. https://doi.org/10.1016/j.jpowsour.2017.12.054
dc.relation.referencesen[92] Wu, F.; Zhang, M.; Bai, Y.; Wang, X.; Dong, R.; Wu, C. Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries. ACS Appl Mater Interfaces 2019, 11, 12554–12561. https://doi.org/10.1021/acsami.9b01419
dc.relation.referencesen[93] Rao, Y. B.; Saisrinu, Y.; Khatua, S.; Bharathi, K. K.; Patro, L. N. Nitrogen Doped Soap-Nut Seeds Derived Hard Carbon as an Efficient Anode Material for Na-Ion Batteries. J Alloys Compd 2023, 968, 171917. https://doi.org/10.1016/j.jallcom.2023.171917
dc.relation.referencesen[94] Medina, A.; Alcántara, R.; Tirado, J. L. A Facile Procedure to Improve the Performance of Food-Waste-Derived Carbons in Sodium-Ion Batteries. J Energy Storage 2023, 72, 1–9. https://doi.org/10.1016/j.est.2023.108768
dc.relation.referencesen[95] Wei, H.; Cheng, H.; Yao, N.; Li, G.; Du, Z.; Luo, R.; Zheng, Z. Invasive Alien Plant Biomass-Derived Hard Carbon Anode for Sodium-Ion Batteries. Chemosphere 2023, 343, 140220. https://doi.org/10.1016/j.chemosphere.2023.140220
dc.relation.referencesen[96] Kitsu Iglesias, L.; Antonio, E. N.; Martinez, T. D.; Zhang, L.; Zhuo, Z.; Weigand, S. J.; Guo, J.; Toney, M. F. Revealing the Sodium Storage Mechanisms in Hard Carbon Pores. Adv Energy Mater 2023, 13, 2302171. https://doi.org/10.1002/aenm.202302171
dc.relation.referencesen[97] Yu, Y.; Ren, Z.; Shang, Q.; Han, J.; Li, L.; Chen, J.; Fakudze, S.; Tian, Z.; Liu, C. Ionic Liquid-Induced Low Temperature Graphitization of Cellulose-Derived Biochar for High Performance Sodium Storage. Surf Coat Technol 2021, 412, 127034. https://doi.org/10.1016/j.surfcoat.2021.127034
dc.relation.referencesen[98] Sun, D.; Luo, B.; Wang, H.; Tang, Y.; Ji, X.; Wang, L. Engineering the Trap Effect of Residual Oxygen Atoms and Defects in Hard Carbon Anode towards High Initial Coulombic Efficiency. Nano Energy 2019, 64, 103937. https://doi.org/10.1016/j.nanoen.2019.103937
dc.relation.referencesen[99] Pan, J.; Ma, J.; Liu, X.; Zhai, L.; Ouyang, X.; Liu, H. Effects of Different Types of Biochar on the Anaerobic Digestion of Chicken Manure. Bioresour Technol 2019, 275, 258–265. https://doi.org/10.1016/j.biortech.2018.12.068
dc.relation.referencesen[100] Zhao, W.; Yang, H.; He, S.; Zhao, Q.; Wei, L. A Review of Biochar in Anaerobic Digestion to Improve Biogas Production: Performances, Mechanisms and Economic Assessments. Bioresour Technol 2021, 341, 125797. https://doi.org/10.1016/j.biortech.2021.125797
dc.relation.referencesen[101] Zhang, M.; Wang, Y. Effects of Fe-Mn-Modified Biochar Addition on Anaerobic Digestion of Sewage Sludge: Biomethane Production, Heavy Metal Speciation and Performance Stability. Bioresour Technol 2020, 313, 123695. https://doi.org/10.1016/j.biortech.2020.123695
dc.relation.referencesen[102] Li, J.; Zhang, M.; Ye, Z.; Yang, C. Effect of Manganese Oxide-Modified Biochar Addition on Methane Production and Heavy Metal Speciation during the Anaerobic Digestion of Sewage Sludge. J Environ Sci (China) 2019, 76, 267–277. https://doi.org/10.1016/j.jes.2018.05.009
dc.relation.referencesen[103] Cheng, D.; Ngo, H. H.; Guo, W.; Chang, S. W.; Nguyen, D. D.; Nguyen, Q. A.; Zhang, J.; Liang, S. Improving Sulfonamide Antibiotics Removal from Swine Wastewater by Supplying a New Pomelo Peel Derived Biochar in an Anaerobic Membrane Bioreactor. Bioresour Technol 2021, 319,124160. https://doi.org/10.1016/j.biortech.2020.124160
dc.relation.referencesen[104] Sugiarto, Y.; Sunyoto, N. M. S.; Zhu, M.; Jones, I.; Zhang, D. Effect of Biochar in Enhancing Hydrogen Production by Mesophilic Anaerobic Digestion of Food Wastes: The Role of Minerals. Int J Hydrogen Energy 2021, 46, 3695–3703. https://doi.org/10.1016/j.ijhydene.2020.10.256
dc.relation.referencesen[105] Sakhiya, A. K.; Anand, A.; Kaushal, P. Production, Activation, and Applications of Biochar in Recent Times. Biochar 2020, 2, 253–285. https://doi.org/10.1007/s42773-020-00047-1
dc.relation.referencesen[106] Li, M.; Zheng, Y.; Chen, Y.; Zhu, X. Biodiesel Production from Waste Cooking Oil Using a Heterogeneous Catalyst from Pyrolyzed Rice Husk. Bioresour Technol 2014, 154, 345–348. https://doi.org/10.1016/j.biortech.2013.12.070
dc.relation.referencesen[107] Bazargan, A.; Kostić, M. D.; Stamenković, O. S.; Veljković, V. B.; McKay, G. A Calcium Oxide-Based Catalyst Derived from Palm Kernel Shell Gasification Residues for Biodiesel Production. Fuel 2015, 150, 519–525. https://doi.org/10.1016/j.fuel.2015.02.046
dc.relation.referencesen[108] Awasthi, M. K.; Wang, Q.; Chen, H.; Wang, M.; Awasthi, S. K.; Ren, X.; Cai, H.; Li, R.; Zhang, Z. In-Vessel Co-Composting of Biosolid: Focusing on Mitigation of Greenhouse Gases Emissions and Nutrients Conservation. Renew Energy 2018, 129, 814–823. https://doi.org/10.1016/j.renene.2017.02.068
dc.relation.referencesen[109] Senthilkumar, N.; Pannipara, M.; Al-Sehemi, A. G.; Gnana Kumar, G. PEDOT/NiFe2O4 Nanocomposites on Biochar as a Free-Standing Anode for High-Performance and Durable Microbial Fuel Cells. New J Chem 2019, 43, 7743–7750. https://doi.org/10.1039/P.9nj00638a
dc.relation.referencesen[110] Senthilkumar, K.; Naveenkumar, & M. Enhanced Performance Study of Microbial Fuel Cell Using Waste Biomass-Derived Carbon Electrode. Biomass Convers Biorefin 2023, 13, 5921–5929. https://doi.org/10.1007/s13399-021-01505-x
dc.relation.referencesen[111] Yuan, H.; Deng, L.; Qi, Y.; Kobayashi, N.; Tang, J. Nonactivated and Activated Biochar Derived from Bananas as Alternative Cathode Catalyst in Microbial Fuel Cells. Sci World J 2014, 2014, 832850. https://doi.org/10.1155/2014/832850
dc.relation.referencesen[112] Dong, J.; Wu, Y.; Wang, C.; Lu, H.; Li, Y. Three-Dimensional Electrodes Enhance Electricity Generation and Nitrogen Removal of Microbial Fuel Cells. Bioprocess Biosyst Eng 2020, 43, 2165–2174. https://doi.org/10.1007/s00449-020-02402-9
dc.relation.referencesen[113] Nganda, A.; Srivastava, P.; Lamba, B. Y.; Pandey, A.; Kumar, M. Advances in the Fabrication, Modification, and Performance of Biochar, Red Mud, Calcium Oxide, and Bentonite Catalysts in Waste-to-Fuel Conversion. Environ Res 2023, 232, 116284. https://doi.org/10.1016/j.envres.2023.116284
dc.relation.referencesen[114] Ramos, R.; Abdelkader‐fernández, V. K.; Matos, R.; Peixoto, A. F.; Fernandes, D. M. Metal‐Supported Biochar Catalysts for Sustainable Biorefinery, Electrocatalysis and Energy Storage Applications: A Review. Catalysts 2022, 12, 207. https://doi.org/10.3390/catal12020207
dc.relation.referencesen[115] Zou, R.; Qian, M.; Wang, C.; Mateo, W.; Wang, Y.; Dai, L.; Lin, X.; Zhao, Y.; Huo, E.; Wang, L.; Zhang, X.; Kong, X.; Ruan, R.; Lei, H. Biochar: From by-Products of Agro-Industrial Lignocellulosic Waste to Tailored Carbon-Based Catalysts for Biomass Thermochemical Conversions. Chem Eng J 2022, 441, 135972. https://doi.org/10.1016/j.cej.2022.135972
dc.relation.referencesen[116] Wang, S.; Li, H.; Wu, M. Advances in Metal/ Biochar Catalysts for Biomass Hydro-Upgrading: A Review. J Clean Prod 2021, 303, 126825. https://doi.org/10.1016/j.jclepro.2021.126825
dc.relation.referencesen[117] Lyu, H.; Zhang, Q.; Shen, B. Application of Biochar and Its Composites in Catalysis. Chemosphere 2020, 240, 124842. https://doi.org/10.1016/j.chemosphere.2019.124842
dc.relation.referencesen[118] Du, Z. Y.; Zhang, Z. H.; Xu, C.; Wang, X. B.; Li, W. Y. Lowerature Steam Reforming of Toluene and Biomass Tar over Biochar-Supported Ni Nanoparticles. ACS Sustain Chem Eng 2019, 7, 3111–3119. https://doi.org/10.1021/acssuschemeng.8b04872
dc.relation.referencesen[119] Wang, Y.; Huang, L.; Zhang, T.; Wang, Q. Hydrogen-Rich Syngas Production from Biomass Pyrolysis and Catalytic Reforming Using Biochar-Based Catalysts. Fuel 2022, 313, 123006. https://doi.org/10.1016/j.fuel.2021.123006
dc.relation.referencesen[120] Yang, G.; Hu, Q.; Hu, J.; Yang, H.; Yan, S.; Chen, Y.; Wang, X.; Chen, H. Hydrogen-Rich Syngas Production from Biomass Gasification Using Biochar-Based Nanocatalysts. Bioresour Technol 2023, 379, 129005. https://doi.org/10.1016/j.biortech.2023.129005
dc.relation.referencesen[121] Liu, H.; Meng, H.; Shen, Y.; Feng, J.; Cong, H.; Shen, X.; Xing, H.; Song, W.; Li, J.; Ge, Y. International Journal of Hydrogen Energy Investigation into Application of Biochar as a Catalyst during Pyrolysis-Catalytic Reforming of Rice Husk : The Role of K Specie and Steam in Upgrading Syngas Quality. Int J Hydrogen Energy 2024, 55, 14–25. https://doi.org/10.1016/j.ijhydene.2023.10.113
dc.relation.referencesen[122] Ren, J.; Liu, Y. L. Direct Conversion of Syngas Produced from Steam Reforming of Toluene into Methane over a Ni/Biochar Catalyst. ACS Sustain Chem Eng 2021, 9, 11212–11222. https://doi.org/10.1021/acssuschemeng.1c03497
dc.relation.referencesen[123] Yang, H.; Cui, Y.; Jin, Y.; Lu, X.; Han, T.; Sandström, L.; Jönsson, P. G.; Yang, W. Evaluation of Engineered Biochar-Based Catalysts for Syngas Production in a Biomass Pyrolysis and Catalytic Reforming Process. Energ Fuel 2023, 37, 5942–5952. https://doi.org/10.1021/acs.energyfuels.3c00410
dc.relation.referencesen[124] Tian, B.; Dong, K.; Guo, F.; Mao, S.; Bai, J.; Shu, R.; Qian, L.; Liu, Q. Catalytic Conversion of Toluene as a Biomass Tar Model Compound Using Monolithic Biochar-Based Catalysts Decorated with Carbon Nanotubes and Graphic Carbon Covered Co-Ni Alloy Nanoparticles. Fuel 2022, 324, 124585. https://doi.org/10.1016/j.fuel.2022.124585
dc.relation.referencesen[125] Zeng, C.; Jiang, Y.; Xu, R.; Han, L.; Zhang, X. Phenols-Enriched Biofuel and H2-Rich Gas from Catalytic Fast Pyrolysis/Gasification of Agricultural Biomass over a Novel Heavy Metals-Containing Livestock Manure Biochar Catalyst. J Anal Appl Pyrolysis 2022, 167, 105680. https://doi.org/10.1016/j.jaap.2022.105680
dc.relation.referencesen[126] Han, L.; Zhang, B.; Chen, L.; Feng, Y.; Yang, Y.; Sun, K. Impact of Biochar Amendment on Soil Aggregation Varied with Incubation Duration and Biochar Pyrolysis Temperature. Biochar 2021, 3, 339–347. https://doi.org/10.1007/s42773-021-00097-z
dc.relation.referencesen[127] Hien, T. T. T.; Tsubota, T.; Taniguchi, T.; Shinogi, Y. Enhancing Soil Water Holding Capacity and Provision of a Potassium Source via Optimization of the Pyrolysis of Bamboo Biochar. Biochar 2021, 3, 51–61. https://doi.org/10.1007/s42773-020-00071-1
dc.relation.referencesen[128] Chang, Y.; Rossi, L.; Zotarelli, L.; Gao, B.; Shahid, M. A.; Sarkhosh, A. Biochar Improves Soil Physical Characteristics and Strengthens Root Architecture in Muscadine Grape (Vitis Rotundifolia L.). Chem Biol Technol Agric 2021, 8, 1–11. https://doi.org/10.1186/s40538-020-00204-5
dc.relation.referencesen[129] Han, Z.; Xu, P.; Li, Z.; Lin, H.; Zhu, C.; Wang, J.; Zou, J. Microbial Diversity and the Abundance of Keystone Species Drive the Response of Soil Multifunctionality to Organic Substitution and Biochar Amendment in a Tea Plantation. GCB Bioenergy 2022, 14, 481–495. https://doi.org/10.1111/GCBB.12926
dc.relation.referencesen[130] Dey, S.; Purakayastha, T. J.; Sarkar, B.; Rinklebe, J.; Kumar, S.; Chakraborty, R.; Datta, A.; Lal, K.; Shivay, Y. S. Enhancing Cation and Anion Exchange Capacity of Rice Straw Biochar by Chemical Modification for Increased Plant Nutrient Retention. Sci Total Environ 2023, 886, 163681. https://doi.org/10.1016/J.SCITOTENV.2023.163681
dc.relation.referencesen[131] Chen, C.; Zhu, H.; Lv, Q.; Tang, Q. Impact of Biochar on Red Paddy Soil Physical and Hydraulic Properties and Rice Yield over 3 Years. J Soils Sediments 2022, 22, 607–616. https://doi.org/10.1007/s11368-021-03090-y
dc.relation.referencesen[132] Egamberdieva, D.; Alaylar, B.; Kistaubayeva, A.; Wirth, S.; Bellingrath-Kimura, S. D. Biochar for Improving Soil Biological Properties and Mitigating Salt Stress in Plants on Salt-Affected Soils. Commun Soil Sci Plant Anal 2022, 53, 140–152. https://doi.org/10.1080/00103624.2021.1993884
dc.relation.referencesen[133] Zheng, J.; Luan, L.; Luo, Y.; Fan, J.; Xu, Q.; Sun, B.; Jiang, Y. Biochar and Lime Amendments Promote Soil Nitrification and Nitrogen Use Efficiency by Differentially Mediating Ammonia-Oxidizer Community in an Acidic Soil. Appl Soil Ecol 2022, 180, 104619. https://doi.org/10.1016/J.APSOIL.2022.104619
dc.relation.referencesen[134] Pouangam Ngalani, G.; Dzemze Kagho, F.; Peguy, N. N. C.; Prudent, P.; Ondo, J. A.; Ngameni, E. Effects of Coffee Husk and Cocoa Pods Biochar on the Chemical Properties of an Acid Soil from West Cameroon. Arch Agron Soil Sci 2023, 69, 744–758. https://doi.org/10.1080/03650340.2022.2033733
dc.relation.referencesen[135] Poveda, J.; Martínez-Gómez, Á.; Fenoll, C.; Escobar, C. The Use of Biochar for Plant Pathogen Control. Phytopathology 2021, 111, 1490–1499. https://doi.org/10.1094/PHYTO-06-20-0248-RVW
dc.relation.referencesen[136] Wang, K.; Hou, J.; Zhang, S.; Hu, W.; Yi, G.; Chen, W.; Cheng, L.; Zhang, Q. Preparation of a New Biochar-Based Microbial Fertilizer: Nutrient Release Patterns and Synergistic Mechanisms to Improve Soil Fertility. Sci Total Environ 2023, 860, 160478. https://doi.org/10.1016/j.scitotenv.2022.160478
dc.relation.referencesen[137] Bolan, S.; Hou, D.; Wang, L.; Hale, L.; Egamberdieva, D.; Tammeorg, P.; Li, R.; Wang, B.; Xu, J.; Wang, T.; Sun, H.; Padhye, L. P.; Wang, H.; Siddique, K. H. M.; Rinklebe, J.; Kirkham, M. B.; Bolan, N. The Potential of Biochar as a Microbial Carrier for Agricultural and Environmental Applications. Sci Total Environ 2023, 886, 163968. https://doi.org/10.1016/j.scitotenv.2023.163968
dc.relation.referencesen[138] Nobile, C.; Lebrun, M.; Védère, C.; Honvault, N.; Aubertin, M. L.; Faucon, M. P.; Girardin, C.; Houot, S.; Kervroëdan, L.; Dulaurent, A. M.; Rumpel, C.; Houben, D. Biochar and Compost Addition Increases Soil Organic Carbon Content and Substitutes P and K Fertilizer in Three French Cropping Systems. Agron Sustain Dev 2022, 42, 1–15. https://doi.org/10.1007/s13593-022-00848-7
dc.relation.referencesen[139] Labanya, R.; Srivastava, P. C.; Pachauri, S. P.; Shukla, A. K.; Shrivastava, M.; Srivastava, P. Valorisation of Phyto-Biochars as Slow Release Micronutrients and Sulphur Carrier for Agriculture. Environ Technol 2023, 44, 2431–2440. https://doi.org/10.1080/09593330.2022.2029953
dc.relation.referencesen[140] Nsubuga, D.; Kabenge, I.; Zziwa, A.; Yiga, V. A.; Mpendo, Y.; Harbert, M.; Kizza, R.; Banadda, N.; Wydra, K. D. Optimization of Adsorbent Dose and Contact Time for the Production of Jackfruit Waste Nutrient-Enriched Biochar. Waste Dispos Sustain Energy 2023, 5, 63–74. https://doi.org/10.1007/s42768-022-00123-1
dc.relation.referencesen[141] Skrzypczak, D.; Szopa, D.; Mikula, K.; Izydorczyk, G.; Baśladyńska, S.; Hoppe, V.; Pstrowska, K.; Wzorek, Z.; Kominko, H.; Kułażyński, M.; Moustakas, K.; Chojnacka, K.; Witek – Krowiak, A. Tannery Waste-Derived Biochar as a Carrier of Micronutrients Essential to Plants. Chemosphere 2022, 294, 133720. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133720
dc.relation.referencesen[142] Mustaffa, M. R. A. F.; Pandian, K.; Chitraputhirapillai, S.; Kuppusamy, S.; Dhanushkodi, K. Synthesis of Biochar-Embedded Slow-Release Nitrogen Fertilizers: Mesocosm and Field Scale Evaluation for Nitrogen Use Efficiency, Growth and Rice Yield. Soil Use Manag 2023, 40, e12959. https://doi.org/10.1111/SUM.12959
dc.relation.referencesen[143] Rashid, M.; Hussain, Q.; Hayat, R.; Ahmad, M.; Azeem, M.; Alvi, S.; Chaudhry, A. N.; Masood, S.; Khalid, R.; Jehan, S.; Rehman, O. ur. Deashed Biochar as N-Carrier Extended the N-Release by Inhibiting N-Losses in Calcareous Soils. Biomass Convers Biorefin 2023, 13, 9549–9564. https://doi.org/10.1007/s13399-023-04250-5
dc.relation.referencesen[144] Zhao, C.; Xu, J.; Bi, H.; Shang, Y.; Shao, Q. A Slow-Release Fertilizer of Urea Prepared via Biochar-Coating with Nano-SiO2-Starch-Polyvinyl Alcohol: Formulation and Release Simulation. Environ Technol Innov 2023, 32, 103264. https://doi.org/10.1016/J.ETI.2023.103264
dc.relation.referencesen[145] Patel, A. K.; Singhania, R. R.; Pal, A.; Chen, C. W.; Pandey, A.; Dong, C. Di. Advances on Tailored Biochar for Bioremediation of Antibiotics, Pesticides and Polycyclic Aromatic Hydrocarbon Pollutants from Aqueous and Solid Phases. Sci Total Environ 2022, 817, 153054. https://doi.org/10.1016/j.scitotenv.2022.153054
dc.relation.referencesen[146] Palansooriya, K. N.; Li, J.; Dissanayake, P. D.; Suvarna, M.; Li, L.; Yuan, X.; Sarkar, B.; Tsang, D. C. W.; Rinklebe, J.; Wang, X.; Ok, Y. S. Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning. Environ Sci Technol 2022, 56, 4187–4198. https://doi.org/10.1021/acs.est.1c08302
dc.relation.referencesen[147] Rúa-Díaz, S.; Forjan, R.; Lago-Vila, M.; Cerqueira, B.; Arco-Lázaro, E.; Marcet, P.; Baragaño, D.; Gallego, J. L. R.; Covelo, E. F. Pyrolysis Temperature Influences the Capacity of Biochar to Immobilize Copper and Arsenic in Mining Soil Remediation. Environ Sci Pollut R 2023, 30, 32882–32893. https://doi.org/10.1007/s11356-022-24492-6
dc.relation.referencesen[148] Liang, J.; Chang, J.; Xie, J.; Yang, L.; Sheteiwy, M. S.; Moustafa, A. R. A.; Zaghloul, M. S.; Ren, H. Microorganisms and Biochar Improve the Remediation Efficiency of Paspalum Vaginatum and Pennisetum Alopecuroides on Cadmium-Contaminated Soil. Toxics 2023, 11, 582. https://doi.org/10.3390/toxics11070582
dc.relation.referencesen[149] Northvolt. Northvolt develops state-of-the-art sodium-ion battery validated at 160 Wh/kg. https://northvolt.com/articles/northvolt-sodium-ion/ (accessed 2023-12-01)
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2023.140515
dc.relation.urihttps://doi.org/10.1016/j.est.2023.107115
dc.relation.urihttps://doi.org/10.1016/j.rser.2019.03.057
dc.relation.urihttps://doi.org/10.1039/c9ee00206e
dc.relation.urihttps://doi.org/10.1021/acsestengg.1c00510
dc.relation.urihttps://doi.org/10.3390/pr10102039
dc.relation.urihttps://link.springer.com/article/10.1007/s13399-021-01526-6
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2020.106708
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2023.137291
dc.relation.urihttps://doi.org/10.1016/j.biortech.2023.128840
dc.relation.urihttps://doi.org/10.1007/s12010-023-04448-3
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2023.105080
dc.relation.urihttps://doi.org/10.1007/s13738-022-02721-6
dc.relation.urihttps://doi.org/10.1007/s13399-021-01776-4
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2020.126539
dc.relation.urihttps://doi.org/10.1016/j.energy.2022.125360
dc.relation.urihttps://doi.org/10.1080/1536383X.2020.1759556
dc.relation.urihttps://doi.org/10.23939/chcht16.02.274
dc.relation.urihttps://doi.org/10.23939/chcht17.04.887
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2022.115356
dc.relation.urihttps://doi.org/10.1016/j.cscee.2023.100495
dc.relation.urihttps://doi.org/10.23939/chcht16.03.377
dc.relation.urihttps://doi.org/10.1007/s13369-022-07397-x
dc.relation.urihttps://doi.org/10.1016/j.cherd.2022.07.022
dc.relation.urihttps://doi.org/10.1016/j.biteb.2020.100466
dc.relation.urihttps://doi.org/10.2166/ws.2020.193
dc.relation.urihttps://doi.org/10.1021/acsearthspacechem.2c00185
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2023.119205
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2020.124676
dc.relation.urihttps://doi.org/10.1080/10962247.2023.2292205
dc.relation.urihttps://doi.org/10.1016/j.cej.2019.123943
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2018.10.206
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2019.121147
dc.relation.urihttps://doi.org/10.1007/s42250-023-00610-w
dc.relation.urihttps://doi.org/10.1088/1755-1315/940/1/012029
dc.relation.urihttps://doi.org/10.1016/j.biortech.2021.125190
dc.relation.urihttps://doi.org/10.1016/j.cej.2018.10.193
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2023.169034
dc.relation.urihttps://doi.org/10.1016/j.psep.2023.11.071
dc.relation.urihttps://doi.org/10.1016/j.rser.2019.109582
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2021.149667
dc.relation.urihttps://doi.org/10.1016/j.rser.2018.02.007
dc.relation.urihttps://doi.org/10.1016/j.est.2023.109710
dc.relation.urihttps://doi.org/10.1016/j.est.2022.105663
dc.relation.urihttps://www.toyota.com/content/dam/toyota/brochures/pdf/2023/mirai_ebrochure.pdf
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2019.03.041
dc.relation.urihttps://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles
dc.relation.urihttps://doi.org/10.1016/j.est.2021.102676
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2019.04.068
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.122355
dc.relation.urihttps://doi.org/10.23939/chcht13.02.129
dc.relation.urihttps://doi.org/10.23939/chcht13.01.085
dc.relation.urihttps://doi.org/10.1016/j.chempr.2022.01.012
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2023.04.029
dc.relation.urihttps://doi.org/10.1016/j.mtadv.2019.100022
dc.relation.urihttps://doi.org/10.1038/s41467-017-01633-x
dc.relation.urihttps://doi.org/10.1016/j.fuel.2023.130134
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2023.03.084
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2020.11.015
dc.relation.urihttps://doi.org/10.1007/s00339-023-06397-4
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2019.01.224
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2018.08.027
dc.relation.urihttps://doi.org/10.1016/S2095-4956(15)60277-7
dc.relation.urihttps://doi.org/10.1038/nchem.834
dc.relation.urihttps://doi.org/10.1126/science.aaz8881
dc.relation.urihttps://doi.org/10.1016/j.est.2023.107193
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2015.04.064
dc.relation.urihttps://doi.org/10.3390/ma13030625
dc.relation.urihttps://doi.org/10.3390/catal12050517
dc.relation.urihttps://doi.org/10.1002/asia.202200982
dc.relation.urihttps://doi.org/10.1039/c6ra22191b
dc.relation.urihttps://doi.org/10.1002/adfm.200801057
dc.relation.urihttps://doi.org/10.1039/c3ee22325f
dc.relation.urihttps://doi.org/10.1016/j.jpowsour.2013.06.057
dc.relation.urihttps://doi.org/10.1002/aesr.202200009
dc.relation.urihttps://doi.org/10.1002/adfm.202302277
dc.relation.urihttps://doi.org/10.1002/adma.202212186
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2018.10.180
dc.relation.urihttps://doi.org/10.1021/acs.chemmater.9b01768
dc.relation.urihttps://doi.org/10.1007/s41918-022-00178-y
dc.relation.urihttps://doi.org/10.1016/j.nanoms.2022.02.001
dc.relation.urihttps://doi.org/10.1038/s41467-023-39637-5
dc.relation.urihttps://doi.org/10.1002/sus2.60
dc.relation.urihttps://doi.org/10.1016/j.electacta.2021.139000
dc.relation.urihttps://doi.org/10.1016/j.susmat.2022.e00407
dc.relation.urihttps://doi.org/10.1016/j.carbon.2017.12.103
dc.relation.urihttps://doi.org/10.1016/j.est.2023.108424
dc.relation.urihttps://doi.org/10.1016/j.carbon.2017.11.054
dc.relation.urihttps://doi.org/10.1016/j.jechem.2018.01.025
dc.relation.urihttps://doi.org/10.1016/j.jechem.2020.07.025
dc.relation.urihttps://doi.org/10.1016/j.jpowsour.2017.12.054
dc.relation.urihttps://doi.org/10.1021/acsami.9b01419
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2023.171917
dc.relation.urihttps://doi.org/10.1016/j.est.2023.108768
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2023.140220
dc.relation.urihttps://doi.org/10.1002/aenm.202302171
dc.relation.urihttps://doi.org/10.1016/j.surfcoat.2021.127034
dc.relation.urihttps://doi.org/10.1016/j.nanoen.2019.103937
dc.relation.urihttps://doi.org/10.1016/j.biortech.2018.12.068
dc.relation.urihttps://doi.org/10.1016/j.biortech.2021.125797
dc.relation.urihttps://doi.org/10.1016/j.biortech.2020.123695
dc.relation.urihttps://doi.org/10.1016/j.jes.2018.05.009
dc.relation.urihttps://doi.org/10.1016/j.biortech.2020.124160
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2020.10.256
dc.relation.urihttps://doi.org/10.1007/s42773-020-00047-1
dc.relation.urihttps://doi.org/10.1016/j.biortech.2013.12.070
dc.relation.urihttps://doi.org/10.1016/j.fuel.2015.02.046
dc.relation.urihttps://doi.org/10.1016/j.renene.2017.02.068
dc.relation.urihttps://doi.org/10.1039/c9nj00638a
dc.relation.urihttps://doi.org/10.1007/s13399-021-01505-x
dc.relation.urihttps://doi.org/10.1155/2014/832850
dc.relation.urihttps://doi.org/10.1007/s00449-020-02402-9
dc.relation.urihttps://doi.org/10.1016/j.envres.2023.116284
dc.relation.urihttps://doi.org/10.3390/catal12020207
dc.relation.urihttps://doi.org/10.1016/j.cej.2022.135972
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2021.126825
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2019.124842
dc.relation.urihttps://doi.org/10.1021/acssuschemeng.8b04872
dc.relation.urihttps://doi.org/10.1016/j.fuel.2021.123006
dc.relation.urihttps://doi.org/10.1016/j.biortech.2023.129005
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2023.10.113
dc.relation.urihttps://doi.org/10.1021/acssuschemeng.1c03497
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.3c00410
dc.relation.urihttps://doi.org/10.1016/j.fuel.2022.124585
dc.relation.urihttps://doi.org/10.1016/j.jaap.2022.105680
dc.relation.urihttps://doi.org/10.1007/s42773-021-00097-z
dc.relation.urihttps://doi.org/10.1007/s42773-020-00071-1
dc.relation.urihttps://doi.org/10.1186/s40538-020-00204-5
dc.relation.urihttps://doi.org/10.1111/GCBB.12926
dc.relation.urihttps://doi.org/10.1016/J.SCITOTENV.2023.163681
dc.relation.urihttps://doi.org/10.1007/s11368-021-03090-y
dc.relation.urihttps://doi.org/10.1080/00103624.2021.1993884
dc.relation.urihttps://doi.org/10.1016/J.APSOIL.2022.104619
dc.relation.urihttps://doi.org/10.1080/03650340.2022.2033733
dc.relation.urihttps://doi.org/10.1094/PHYTO-06-20-0248-RVW
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2022.160478
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2023.163968
dc.relation.urihttps://doi.org/10.1007/s13593-022-00848-7
dc.relation.urihttps://doi.org/10.1080/09593330.2022.2029953
dc.relation.urihttps://doi.org/10.1007/s42768-022-00123-1
dc.relation.urihttps://doi.org/10.1016/J.CHEMOSPHERE.2022.133720
dc.relation.urihttps://doi.org/10.1111/SUM.12959
dc.relation.urihttps://doi.org/10.1007/s13399-023-04250-5
dc.relation.urihttps://doi.org/10.1016/J.ETI.2023.103264
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2022.153054
dc.relation.urihttps://doi.org/10.1021/acs.est.1c08302
dc.relation.urihttps://doi.org/10.1007/s11356-022-24492-6
dc.relation.urihttps://doi.org/10.3390/toxics11070582
dc.relation.urihttps://northvolt.com/articles/northvolt-sodium-ion/
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Pstrowska K., Łużny R., Fałtynowicz H., Jaroszewska K., Postawa K., Pyshyev S., Witek-Krowiak A., 2024
dc.subjectкарбонізація
dc.subjectвугілля
dc.subjectсорбент
dc.subjectкаталізатор
dc.subjectсільське господарство
dc.subjectcarbonization
dc.subjectchar
dc.subjectsorbent
dc.subjectcatalyst
dc.subjectagriculture
dc.titleUnlocking Sustainability: A Comprehensive Review of Up-Recycling Biomass Waste into Biochar for Environmental Solutions
dc.title.alternativeРозкриття сталого розвитку: всебічний огляд переробки відходів біомаси на біовугілля для екологічних рішень
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n2_Pstrowska_K-Unlocking_Sustainability_211-231.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n2_Pstrowska_K-Unlocking_Sustainability_211-231__COVER.png
Size:
530.27 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: