On modeling a lexicographic weighted maxmin–minmax approach for fuzzy linear goal programming
dc.citation.epage | 194 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 186 | |
dc.contributor.affiliation | Британський університет в Єгипті | |
dc.contributor.affiliation | The British University in Egypt | |
dc.contributor.author | Іскандер, М. Г. | |
dc.contributor.author | Iskander, M. G. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T11:54:50Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У цій статті пропонується новий підхід до вирішення нечіткого цільового програмування. У цьому підході одночасно використовуються методи зваженого maxmin і зваженого minmax. Відносна вага призначається кожній нечіткій цілі відповідно до пріоритетів особи, яка приймає рішення. Модель для кожного з двох методів вказана окремо; тому дві моделі об’єднані в одну. Крім того, для забезпечення ефективних розв’язків застосовано техніку лексикографічної максимізації. У такий спосіб запропонований підхід дозволяє особі, яка приймає рішення, знайти компроміс між двома методами. Крім того, запропонований підхід може бути реалізований для увігнутих кусково-лінійних функцій належності. Цей тип функції належності представлений за допомогою оператора min. Ефективність запропонованого підходу проілюстровано на числовому прикладі. | |
dc.description.abstract | In this paper, a novel approach for solving fuzzy goal programming is proposed. This approach utilizes the weighted maxmin and weighted minmax methods simultaneously. Relative weight is assigned to each fuzzy goal according to the preference of the decision maker. A model for each of the two methods is separately stated; hence the two models are merged into one. Moreover, the lexicographic maximization technique is applied to guarantee efficient solutions. Therefore, the proposed approach allows the decision maker to compromise between the two methods. Furthermore, the proposed approach can be implemented to concave piecewise linear membership functions. This type of membership function is represented using the min-operator. The effectiveness of the proposed approach is illustrated by a numerical example. | |
dc.format.extent | 186-194 | |
dc.format.pages | 9 | |
dc.identifier.citation | Iskander M. G. On modeling a lexicographic weighted maxmin–minmax approach for fuzzy linear goal programming / M. G. Iskander // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 186–194. | |
dc.identifier.citationen | Iskander M. G. On modeling a lexicographic weighted maxmin–minmax approach for fuzzy linear goal programming / M. G. Iskander // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 186–194. | |
dc.identifier.doi | 10.23939/mmc2023.01.186 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63489 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 1 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (10), 2023 | |
dc.relation.references | [1] Zimmermann H. J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems. 1 (1), 45–55 (1978). | |
dc.relation.references | [2] Hannan E. L. On fuzzy goal programming. Decision Sciences. 12 (3), 522–531 (1981). | |
dc.relation.references | [3] Yaghoobi M. A., Tamiz M. A method for solving fuzzy goal programming problems based on MINMAX approach. European Journal of Operational Research. 177 (3), 1580–1590 (2007). | |
dc.relation.references | [4] Yang T., Ignizio J. P., Kim H.-J. Fuzzy programming with nonlinear membership functions: Piecewise linear approximation. Fuzzy Sets and Systems. 41 (1), 39–53 (1991). | |
dc.relation.references | [5] Kim J. S., Whang K.-S. A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function. European Journal of Operational Research. 107 (3), 614–624 (1998). | |
dc.relation.references | [6] Lin C.-C. A weighted max–min model for fuzzy goal programming. Fuzzy Sets and Systems. 142 (3), 407–420 (2004). | |
dc.relation.references | [7] Iskander M. G. Using the weighted max–min approach for stochastic fuzzy goal programming: A case of fuzzy weights. Applied Mathematics and Computation. 188 (1), 456–461 (2007). | |
dc.relation.references | [8] Amid A., Ghodsypour S. H., O’Brien C. A weighted max–min model for fuzzy multi-objective supplier selection in a supply chain. International Journal of Production Economics. 131 (1), 139–145 (2011). | |
dc.relation.references | [9] Iskander M. G. A suggested approach for solving weighted goal programming problem. American Journal of Computational and Applied Mathematics. 2 (2), 55–57 (2012). | |
dc.relation.references | [10] Cheng H., Huang W., Zhou Q., Cai J. Solving fuzzy multi-objective linear programming problems using deviation degree measures and weighted max–min method. Applied Mathematical Modelling. 37 (10–11), 6855–6869 (2013). | |
dc.relation.references | [11] Iskander M. G. A joint maxmin-lexicographic maximisation approach in fuzzy goal programming using dominance possibility and necessity criteria. International Journal of Multicriteria Decision Making. 8 (1), 1–12 (2019). | |
dc.relation.references | [12] Umarusman N. Min–max goal programming approach for solving multi-objective de novo programming problems. International Journal of Operations Research. 10 (2), 92–99 (2013). | |
dc.relation.references | [13] Banik S., Bhattacharya D. A note on min–max goal programming approach for solving multi-objective de novo programming problems. International Journal of Operational Research. 37 (1), 32–47 (2020). | |
dc.relation.references | [14] Umarusman N. Fuzzy goal programming problem based on minmax approach for optimal system design. Alphanumeric Journal. 6 (1), 177–192 (2018). | |
dc.relation.references | [15] Zangiabadi M., Maleki H. R. Fuzzy goal programming for multiobjective transportation problems. Journal of Applied Mathematics and Computing. 24 (1), 449–460 (2007). | |
dc.relation.references | [16] Venkatasubbaiah K., Acharyulu S. G., Mouli K. C. Fuzzy goal programming method for solving multiobjective transportation problems. Global Journal of Research in Engineering. 11 (3), 4–10 (2011). | |
dc.relation.references | [17] Ikeagwuani C. C., Nwonu D. C., Onah H. N. Min–max fuzzy goal programming – Taguchi model for multiple additives optimization in expansive soil improvement. International Journal for Numerical and Analytical Methods in Geomechanics. 45 (4), 431–456 (2021). | |
dc.relation.references | [18] Raskin L., Sira O., Sagaydachny D. Multi-criteria optimization in terms of fuzzy criteria definitions. Mathematical Modeling and Computing. 5 (2), 207–220 (2018). | |
dc.relation.references | [19] Ak¨oz O., Petrovic D. A Fuzzy goal programming method with imprecise goal hierarchy. European Journal of Operational Research. 181 (3), 1427–1433 (2007). | |
dc.relation.references | [20] Ogryczak W. Comments on properties of the minmax solutions in goal programming. European Journal of Operational Research. 132 (1), 17–21 (2001). | |
dc.relation.referencesen | [1] Zimmermann H. J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems. 1 (1), 45–55 (1978). | |
dc.relation.referencesen | [2] Hannan E. L. On fuzzy goal programming. Decision Sciences. 12 (3), 522–531 (1981). | |
dc.relation.referencesen | [3] Yaghoobi M. A., Tamiz M. A method for solving fuzzy goal programming problems based on MINMAX approach. European Journal of Operational Research. 177 (3), 1580–1590 (2007). | |
dc.relation.referencesen | [4] Yang T., Ignizio J. P., Kim H.-J. Fuzzy programming with nonlinear membership functions: Piecewise linear approximation. Fuzzy Sets and Systems. 41 (1), 39–53 (1991). | |
dc.relation.referencesen | [5] Kim J. S., Whang K.-S. A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function. European Journal of Operational Research. 107 (3), 614–624 (1998). | |
dc.relation.referencesen | [6] Lin C.-C. A weighted max–min model for fuzzy goal programming. Fuzzy Sets and Systems. 142 (3), 407–420 (2004). | |
dc.relation.referencesen | [7] Iskander M. G. Using the weighted max–min approach for stochastic fuzzy goal programming: A case of fuzzy weights. Applied Mathematics and Computation. 188 (1), 456–461 (2007). | |
dc.relation.referencesen | [8] Amid A., Ghodsypour S. H., O’Brien C. A weighted max–min model for fuzzy multi-objective supplier selection in a supply chain. International Journal of Production Economics. 131 (1), 139–145 (2011). | |
dc.relation.referencesen | [9] Iskander M. G. A suggested approach for solving weighted goal programming problem. American Journal of Computational and Applied Mathematics. 2 (2), 55–57 (2012). | |
dc.relation.referencesen | [10] Cheng H., Huang W., Zhou Q., Cai J. Solving fuzzy multi-objective linear programming problems using deviation degree measures and weighted max–min method. Applied Mathematical Modelling. 37 (10–11), 6855–6869 (2013). | |
dc.relation.referencesen | [11] Iskander M. G. A joint maxmin-lexicographic maximisation approach in fuzzy goal programming using dominance possibility and necessity criteria. International Journal of Multicriteria Decision Making. 8 (1), 1–12 (2019). | |
dc.relation.referencesen | [12] Umarusman N. Min–max goal programming approach for solving multi-objective de novo programming problems. International Journal of Operations Research. 10 (2), 92–99 (2013). | |
dc.relation.referencesen | [13] Banik S., Bhattacharya D. A note on min–max goal programming approach for solving multi-objective de novo programming problems. International Journal of Operational Research. 37 (1), 32–47 (2020). | |
dc.relation.referencesen | [14] Umarusman N. Fuzzy goal programming problem based on minmax approach for optimal system design. Alphanumeric Journal. 6 (1), 177–192 (2018). | |
dc.relation.referencesen | [15] Zangiabadi M., Maleki H. R. Fuzzy goal programming for multiobjective transportation problems. Journal of Applied Mathematics and Computing. 24 (1), 449–460 (2007). | |
dc.relation.referencesen | [16] Venkatasubbaiah K., Acharyulu S. G., Mouli K. C. Fuzzy goal programming method for solving multiobjective transportation problems. Global Journal of Research in Engineering. 11 (3), 4–10 (2011). | |
dc.relation.referencesen | [17] Ikeagwuani C. C., Nwonu D. C., Onah H. N. Min–max fuzzy goal programming – Taguchi model for multiple additives optimization in expansive soil improvement. International Journal for Numerical and Analytical Methods in Geomechanics. 45 (4), 431–456 (2021). | |
dc.relation.referencesen | [18] Raskin L., Sira O., Sagaydachny D. Multi-criteria optimization in terms of fuzzy criteria definitions. Mathematical Modeling and Computing. 5 (2), 207–220 (2018). | |
dc.relation.referencesen | [19] Ak¨oz O., Petrovic D. A Fuzzy goal programming method with imprecise goal hierarchy. European Journal of Operational Research. 181 (3), 1427–1433 (2007). | |
dc.relation.referencesen | [20] Ogryczak W. Comments on properties of the minmax solutions in goal programming. European Journal of Operational Research. 132 (1), 17–21 (2001). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | програмування нечітких цілей | |
dc.subject | зважений maxmin | |
dc.subject | зважений minmax | |
dc.subject | лексикографічна максимізація | |
dc.subject | ефективність | |
dc.subject | fuzzy goal programming | |
dc.subject | weighted maxmin | |
dc.subject | weighted minmax | |
dc.subject | lexicographic maximization | |
dc.subject | efficiency | |
dc.title | On modeling a lexicographic weighted maxmin–minmax approach for fuzzy linear goal programming | |
dc.title.alternative | Про моделювання лексикографічного зваженого maxmin-minmax підходу для нечіткого лінійного цільового програмування | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1