On modeling a lexicographic weighted maxmin–minmax approach for fuzzy linear goal programming

dc.citation.epage194
dc.citation.issue1
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage186
dc.contributor.affiliationБританський університет в Єгипті
dc.contributor.affiliationThe British University in Egypt
dc.contributor.authorІскандер, М. Г.
dc.contributor.authorIskander, M. G.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:54:50Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цій статті пропонується новий підхід до вирішення нечіткого цільового програмування. У цьому підході одночасно використовуються методи зваженого maxmin і зваженого minmax. Відносна вага призначається кожній нечіткій цілі відповідно до пріоритетів особи, яка приймає рішення. Модель для кожного з двох методів вказана окремо; тому дві моделі об’єднані в одну. Крім того, для забезпечення ефективних розв’язків застосовано техніку лексикографічної максимізації. У такий спосіб запропонований підхід дозволяє особі, яка приймає рішення, знайти компроміс між двома методами. Крім того, запропонований підхід може бути реалізований для увігнутих кусково-лінійних функцій належності. Цей тип функції належності представлений за допомогою оператора min. Ефективність запропонованого підходу проілюстровано на числовому прикладі.
dc.description.abstractIn this paper, a novel approach for solving fuzzy goal programming is proposed. This approach utilizes the weighted maxmin and weighted minmax methods simultaneously. Relative weight is assigned to each fuzzy goal according to the preference of the decision maker. A model for each of the two methods is separately stated; hence the two models are merged into one. Moreover, the lexicographic maximization technique is applied to guarantee efficient solutions. Therefore, the proposed approach allows the decision maker to compromise between the two methods. Furthermore, the proposed approach can be implemented to concave piecewise linear membership functions. This type of membership function is represented using the min-operator. The effectiveness of the proposed approach is illustrated by a numerical example.
dc.format.extent186-194
dc.format.pages9
dc.identifier.citationIskander M. G. On modeling a lexicographic weighted maxmin–minmax approach for fuzzy linear goal programming / M. G. Iskander // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 186–194.
dc.identifier.citationenIskander M. G. On modeling a lexicographic weighted maxmin–minmax approach for fuzzy linear goal programming / M. G. Iskander // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 186–194.
dc.identifier.doi10.23939/mmc2023.01.186
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63489
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 1 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 1 (10), 2023
dc.relation.references[1] Zimmermann H. J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems. 1 (1), 45–55 (1978).
dc.relation.references[2] Hannan E. L. On fuzzy goal programming. Decision Sciences. 12 (3), 522–531 (1981).
dc.relation.references[3] Yaghoobi M. A., Tamiz M. A method for solving fuzzy goal programming problems based on MINMAX approach. European Journal of Operational Research. 177 (3), 1580–1590 (2007).
dc.relation.references[4] Yang T., Ignizio J. P., Kim H.-J. Fuzzy programming with nonlinear membership functions: Piecewise linear approximation. Fuzzy Sets and Systems. 41 (1), 39–53 (1991).
dc.relation.references[5] Kim J. S., Whang K.-S. A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function. European Journal of Operational Research. 107 (3), 614–624 (1998).
dc.relation.references[6] Lin C.-C. A weighted max–min model for fuzzy goal programming. Fuzzy Sets and Systems. 142 (3), 407–420 (2004).
dc.relation.references[7] Iskander M. G. Using the weighted max–min approach for stochastic fuzzy goal programming: A case of fuzzy weights. Applied Mathematics and Computation. 188 (1), 456–461 (2007).
dc.relation.references[8] Amid A., Ghodsypour S. H., O’Brien C. A weighted max–min model for fuzzy multi-objective supplier selection in a supply chain. International Journal of Production Economics. 131 (1), 139–145 (2011).
dc.relation.references[9] Iskander M. G. A suggested approach for solving weighted goal programming problem. American Journal of Computational and Applied Mathematics. 2 (2), 55–57 (2012).
dc.relation.references[10] Cheng H., Huang W., Zhou Q., Cai J. Solving fuzzy multi-objective linear programming problems using deviation degree measures and weighted max–min method. Applied Mathematical Modelling. 37 (10–11), 6855–6869 (2013).
dc.relation.references[11] Iskander M. G. A joint maxmin-lexicographic maximisation approach in fuzzy goal programming using dominance possibility and necessity criteria. International Journal of Multicriteria Decision Making. 8 (1), 1–12 (2019).
dc.relation.references[12] Umarusman N. Min–max goal programming approach for solving multi-objective de novo programming problems. International Journal of Operations Research. 10 (2), 92–99 (2013).
dc.relation.references[13] Banik S., Bhattacharya D. A note on min–max goal programming approach for solving multi-objective de novo programming problems. International Journal of Operational Research. 37 (1), 32–47 (2020).
dc.relation.references[14] Umarusman N. Fuzzy goal programming problem based on minmax approach for optimal system design. Alphanumeric Journal. 6 (1), 177–192 (2018).
dc.relation.references[15] Zangiabadi M., Maleki H. R. Fuzzy goal programming for multiobjective transportation problems. Journal of Applied Mathematics and Computing. 24 (1), 449–460 (2007).
dc.relation.references[16] Venkatasubbaiah K., Acharyulu S. G., Mouli K. C. Fuzzy goal programming method for solving multiobjective transportation problems. Global Journal of Research in Engineering. 11 (3), 4–10 (2011).
dc.relation.references[17] Ikeagwuani C. C., Nwonu D. C., Onah H. N. Min–max fuzzy goal programming – Taguchi model for multiple additives optimization in expansive soil improvement. International Journal for Numerical and Analytical Methods in Geomechanics. 45 (4), 431–456 (2021).
dc.relation.references[18] Raskin L., Sira O., Sagaydachny D. Multi-criteria optimization in terms of fuzzy criteria definitions. Mathematical Modeling and Computing. 5 (2), 207–220 (2018).
dc.relation.references[19] Ak¨oz O., Petrovic D. A Fuzzy goal programming method with imprecise goal hierarchy. European Journal of Operational Research. 181 (3), 1427–1433 (2007).
dc.relation.references[20] Ogryczak W. Comments on properties of the minmax solutions in goal programming. European Journal of Operational Research. 132 (1), 17–21 (2001).
dc.relation.referencesen[1] Zimmermann H. J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems. 1 (1), 45–55 (1978).
dc.relation.referencesen[2] Hannan E. L. On fuzzy goal programming. Decision Sciences. 12 (3), 522–531 (1981).
dc.relation.referencesen[3] Yaghoobi M. A., Tamiz M. A method for solving fuzzy goal programming problems based on MINMAX approach. European Journal of Operational Research. 177 (3), 1580–1590 (2007).
dc.relation.referencesen[4] Yang T., Ignizio J. P., Kim H.-J. Fuzzy programming with nonlinear membership functions: Piecewise linear approximation. Fuzzy Sets and Systems. 41 (1), 39–53 (1991).
dc.relation.referencesen[5] Kim J. S., Whang K.-S. A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function. European Journal of Operational Research. 107 (3), 614–624 (1998).
dc.relation.referencesen[6] Lin C.-C. A weighted max–min model for fuzzy goal programming. Fuzzy Sets and Systems. 142 (3), 407–420 (2004).
dc.relation.referencesen[7] Iskander M. G. Using the weighted max–min approach for stochastic fuzzy goal programming: A case of fuzzy weights. Applied Mathematics and Computation. 188 (1), 456–461 (2007).
dc.relation.referencesen[8] Amid A., Ghodsypour S. H., O’Brien C. A weighted max–min model for fuzzy multi-objective supplier selection in a supply chain. International Journal of Production Economics. 131 (1), 139–145 (2011).
dc.relation.referencesen[9] Iskander M. G. A suggested approach for solving weighted goal programming problem. American Journal of Computational and Applied Mathematics. 2 (2), 55–57 (2012).
dc.relation.referencesen[10] Cheng H., Huang W., Zhou Q., Cai J. Solving fuzzy multi-objective linear programming problems using deviation degree measures and weighted max–min method. Applied Mathematical Modelling. 37 (10–11), 6855–6869 (2013).
dc.relation.referencesen[11] Iskander M. G. A joint maxmin-lexicographic maximisation approach in fuzzy goal programming using dominance possibility and necessity criteria. International Journal of Multicriteria Decision Making. 8 (1), 1–12 (2019).
dc.relation.referencesen[12] Umarusman N. Min–max goal programming approach for solving multi-objective de novo programming problems. International Journal of Operations Research. 10 (2), 92–99 (2013).
dc.relation.referencesen[13] Banik S., Bhattacharya D. A note on min–max goal programming approach for solving multi-objective de novo programming problems. International Journal of Operational Research. 37 (1), 32–47 (2020).
dc.relation.referencesen[14] Umarusman N. Fuzzy goal programming problem based on minmax approach for optimal system design. Alphanumeric Journal. 6 (1), 177–192 (2018).
dc.relation.referencesen[15] Zangiabadi M., Maleki H. R. Fuzzy goal programming for multiobjective transportation problems. Journal of Applied Mathematics and Computing. 24 (1), 449–460 (2007).
dc.relation.referencesen[16] Venkatasubbaiah K., Acharyulu S. G., Mouli K. C. Fuzzy goal programming method for solving multiobjective transportation problems. Global Journal of Research in Engineering. 11 (3), 4–10 (2011).
dc.relation.referencesen[17] Ikeagwuani C. C., Nwonu D. C., Onah H. N. Min–max fuzzy goal programming – Taguchi model for multiple additives optimization in expansive soil improvement. International Journal for Numerical and Analytical Methods in Geomechanics. 45 (4), 431–456 (2021).
dc.relation.referencesen[18] Raskin L., Sira O., Sagaydachny D. Multi-criteria optimization in terms of fuzzy criteria definitions. Mathematical Modeling and Computing. 5 (2), 207–220 (2018).
dc.relation.referencesen[19] Ak¨oz O., Petrovic D. A Fuzzy goal programming method with imprecise goal hierarchy. European Journal of Operational Research. 181 (3), 1427–1433 (2007).
dc.relation.referencesen[20] Ogryczak W. Comments on properties of the minmax solutions in goal programming. European Journal of Operational Research. 132 (1), 17–21 (2001).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectпрограмування нечітких цілей
dc.subjectзважений maxmin
dc.subjectзважений minmax
dc.subjectлексикографічна максимізація
dc.subjectефективність
dc.subjectfuzzy goal programming
dc.subjectweighted maxmin
dc.subjectweighted minmax
dc.subjectlexicographic maximization
dc.subjectefficiency
dc.titleOn modeling a lexicographic weighted maxmin–minmax approach for fuzzy linear goal programming
dc.title.alternativeПро моделювання лексикографічного зваженого maxmin-minmax підходу для нечіткого лінійного цільового програмування
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n1_Iskander_M_G-On_modeling_a_lexicographic_186-194.pdf
Size:
891.65 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n1_Iskander_M_G-On_modeling_a_lexicographic_186-194__COVER.png
Size:
467.43 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: