Peculiarities of Phase Formation in Sol-Gel Powders of the CaO–ZrO2–Nb2O5–SiO2 System
dc.citation.epage | 502 | |
dc.citation.issue | 3 | |
dc.citation.spage | 495 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Danylo Halytsky Lviv National Medical University | |
dc.contributor.author | Lutsyuk, Iryna | |
dc.contributor.author | Gavryshkevych, Yaryna | |
dc.contributor.author | Vakhula, Yaroslav | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:52:06Z | |
dc.date.available | 2024-02-12T08:52:06Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Встановлено фазовий склад порошків ксерогелів системи СаО–ZrO2–Nb2O5–SiO2 після термооброблення за 1273 К із різним вмістом Nb2O5. Визначено температури фізико-хімічних процесів, що відбуваються під час нагрівання порошків. Встановлено, що за повної заміни ZrO2 на Nb2O5 має місце утворення ніобійвмісних фаз зі зміною структури порошків. | |
dc.description.abstract | The phase composition of xerogel powders of the CaO–ZrO2–Nb2O5–SiO2 system after heat treatment at 1273 K with different Nb2O5 content was established. The temperatures of the physical and chemical processes occurring during the powders heating were determined. It was found that the complete replacement of ZrO2 by Nb2O5 resulted in the formation of niobium-containing phases with a change in the structure of the powders. | |
dc.format.extent | 495-502 | |
dc.format.pages | 8 | |
dc.identifier.citation | Lutsyuk I. Peculiarities of Phase Formation in Sol-Gel Powders of the CaO–ZrO2–Nb2O5–SiO2 System / Iryna Lutsyuk, Yaryna Gavryshkevych, Yaroslav Vakhula // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 495–502. | |
dc.identifier.citationen | Lutsyuk I. Peculiarities of Phase Formation in Sol-Gel Powders of the CaO–ZrO2–Nb2O5–SiO2 System / Iryna Lutsyuk, Yaryna Gavryshkevych, Yaroslav Vakhula // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 495–502. | |
dc.identifier.doi | doi.org/10.23939/chcht17.03.495 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61280 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (17), 2023 | |
dc.relation.references | [1] Rotstein, I.; Salehrabi, R.; Forrest, J. L. Endodontic Treatment Outcome: Survey of Oral Health Care Professionals. J. Endod. 2006, 32, 399-403. https://doi.org/10.1016/j.joen.2005.10.056 | |
dc.relation.references | [2] Baino, F.; Novajra, G.; Miguez-Pacheco, V.; Boccaccini, A. R.; Vitale-Brovarone, C. Bioactive Glasses: Special Applications Out-side the Skeletal System. J. Non Cryst. Solids 2016, 432, 15-30. https://doi.org/10.1016/j.jnoncrysol.2015.02.015 | |
dc.relation.references | [3] Dubok, V. A. Bioceramics – Yesterday, Today, Tomorrow. Powder Metall. Met. Ceram. 2000, 39, 381-394. https://doi.org/10.1023/A:1026617607548 | |
dc.relation.references | [4] Yang, Q.; Lu, D. Premixed Biological Hydraulic Cement Paste Composition and Using the Same. US 2008/O299.093 A1, 04 December 2008. | |
dc.relation.references | [5] El-Saady Badawy, R.; Mohamed, D.A. Evaluation of New Bioceramic Endodontic Sealers: An in vitro Study. Dent Med Probl 2022, 59, 85-92. https://doi.org/10.17219/dmp/133954 | |
dc.relation.references | [6] Chellapandian, K.; Reddy, T. V. K.; Venkatesh, V.; Annapura-ni, A. Bioceramic Root Canal Sealers: A Review. Int. J. Health Sci. 2022, 6, 5693-5706. https://doi.org/10.53730/ijhs.v6nS3.7214 | |
dc.relation.references | [7] Kohli, M.R.; Karabucak, B. Bioceramic Usage in Endodontics. Bioceramics 2019. https://www.aae.org/specialty/communique/bioceramic-usage-in-endodontics | |
dc.relation.references | [8] Chybowski, EA; Glickman, GN; Patel, Y.; Fleury, A.; Solo-mon, E.; He, J. Clinical Outcome of Non-Surgical Root Canal Treatment Using a Single-cone Technique with Endosequence Bioceramic Sealer: A Retrospective Analysis. J Endod. 2018, 44, 941-945. https://doi.org/10.1016/j.joen.2018.02.019 | |
dc.relation.references | [9] Candeiro, G. T.; Correia, F. C.; Duarte, M. A.; Ribeiro-Siqueira, D. C.; Gavini, G. Evaluation of Radiopacity, pH, Release of Calcium Ions, and Flow of a Bioceramic Root Canal Sealer. J Endod. 2012, 38, 842-845. https://doi.org/10.1016/j.joen.2012.02.029 | |
dc.relation.references | [10] Hench, L. L. Genetic Design of Bioactive Glass. J. Eur. Ceram. Soc. 2009, 29, 1257-1265. https://doi.org/10.1016/j.jeurceramsoc.2008.08.002 | |
dc.relation.references | [11] Bertolini, M. J.; Palma-Dibb, R. G.; Zaghete, M. A.; Gimenes, R. Evaluation of Glass Ionomer Cements Properties Obtained from Niobium Silicate Glasses Prepared by Chemical Process. J Non Cryst Solids 2005, 351, 466-471. https://doi.org/10.1016/j.jnoncrysol.2005.01.040 | |
dc.relation.references | [12] Fliberg, S. R.; Silberberg, Y.; Oliver, M. K.; Andrejco, M. J.; Saifi, M. A.; Smith P. W. Ultrafast All‐Optical Switching in a Dual‐Core Fiber Nonlinear Coupler. Appl. Phys. Lett. 1987, 51, 1135-1137. https://doi.org/10.1063/1.98762 | |
dc.relation.references | [13] Cardinal, T.; Fargin, E.; Le Flem, G. Non Linear Optical Prop-erties of Some Niobium (V) Oxide Glasses. Eur. J. Solids State Inorg. Chem. 1996, 33, 597-605. | |
dc.relation.references | [14] Samuneve, B.; Kralchev, St.; Dimitrof, V. Structure and Opti-cal Properties of Niobium Silicate Glasses. J. Non Cryst. Solids 1991, 129, 54-63. https://doi.org/10.1016/0022-3093(91)90080-P | |
dc.relation.references | [15] Graca, M. P. F.; Valente, M. A.; Ferreira da Silva, M. G. Electrical Properties of Lithium Niobium Silicate Glasses. J. Non Cryst. Solids 2003, 325, 267-274. https://doi.org/10.1016/S0022-3093(03)00314-4 | |
dc.relation.references | [16] Lutsyuk, І.; Vakhula, Ya.; Tupis, І.; Iliuchok, І. Catalytic Action of Nitric Acid on The Hydrolysis of ETS-40 Ethyl Silicate. Chem. Сhem. Technol. 2021, 15, 475-478. https://doi.org/10.23939/chcht15.04.475 | |
dc.relation.referencesen | [1] Rotstein, I.; Salehrabi, R.; Forrest, J. L. Endodontic Treatment Outcome: Survey of Oral Health Care Professionals. J. Endod. 2006, 32, 399-403. https://doi.org/10.1016/j.joen.2005.10.056 | |
dc.relation.referencesen | [2] Baino, F.; Novajra, G.; Miguez-Pacheco, V.; Boccaccini, A. R.; Vitale-Brovarone, C. Bioactive Glasses: Special Applications Out-side the Skeletal System. J. Non Cryst. Solids 2016, 432, 15-30. https://doi.org/10.1016/j.jnoncrysol.2015.02.015 | |
dc.relation.referencesen | [3] Dubok, V. A. Bioceramics – Yesterday, Today, Tomorrow. Powder Metall. Met. Ceram. 2000, 39, 381-394. https://doi.org/10.1023/A:1026617607548 | |
dc.relation.referencesen | [4] Yang, Q.; Lu, D. Premixed Biological Hydraulic Cement Paste Composition and Using the Same. US 2008/O299.093 A1, 04 December 2008. | |
dc.relation.referencesen | [5] El-Saady Badawy, R.; Mohamed, D.A. Evaluation of New Bioceramic Endodontic Sealers: An in vitro Study. Dent Med Probl 2022, 59, 85-92. https://doi.org/10.17219/dmp/133954 | |
dc.relation.referencesen | [6] Chellapandian, K.; Reddy, T. V. K.; Venkatesh, V.; Annapura-ni, A. Bioceramic Root Canal Sealers: A Review. Int. J. Health Sci. 2022, 6, 5693-5706. https://doi.org/10.53730/ijhs.v6nS3.7214 | |
dc.relation.referencesen | [7] Kohli, M.R.; Karabucak, B. Bioceramic Usage in Endodontics. Bioceramics 2019. https://www.aae.org/specialty/communique/bioceramic-usage-in-endodontics | |
dc.relation.referencesen | [8] Chybowski, EA; Glickman, GN; Patel, Y.; Fleury, A.; Solo-mon, E.; He, J. Clinical Outcome of Non-Surgical Root Canal Treatment Using a Single-cone Technique with Endosequence Bioceramic Sealer: A Retrospective Analysis. J Endod. 2018, 44, 941-945. https://doi.org/10.1016/j.joen.2018.02.019 | |
dc.relation.referencesen | [9] Candeiro, G. T.; Correia, F. C.; Duarte, M. A.; Ribeiro-Siqueira, D. C.; Gavini, G. Evaluation of Radiopacity, pH, Release of Calcium Ions, and Flow of a Bioceramic Root Canal Sealer. J Endod. 2012, 38, 842-845. https://doi.org/10.1016/j.joen.2012.02.029 | |
dc.relation.referencesen | [10] Hench, L. L. Genetic Design of Bioactive Glass. J. Eur. Ceram. Soc. 2009, 29, 1257-1265. https://doi.org/10.1016/j.jeurceramsoc.2008.08.002 | |
dc.relation.referencesen | [11] Bertolini, M. J.; Palma-Dibb, R. G.; Zaghete, M. A.; Gimenes, R. Evaluation of Glass Ionomer Cements Properties Obtained from Niobium Silicate Glasses Prepared by Chemical Process. J Non Cryst Solids 2005, 351, 466-471. https://doi.org/10.1016/j.jnoncrysol.2005.01.040 | |
dc.relation.referencesen | [12] Fliberg, S. R.; Silberberg, Y.; Oliver, M. K.; Andrejco, M. J.; Saifi, M. A.; Smith P. W. Ultrafast All‐Optical Switching in a Dual‐Core Fiber Nonlinear Coupler. Appl. Phys. Lett. 1987, 51, 1135-1137. https://doi.org/10.1063/1.98762 | |
dc.relation.referencesen | [13] Cardinal, T.; Fargin, E.; Le Flem, G. Non Linear Optical Prop-erties of Some Niobium (V) Oxide Glasses. Eur. J. Solids State Inorg. Chem. 1996, 33, 597-605. | |
dc.relation.referencesen | [14] Samuneve, B.; Kralchev, St.; Dimitrof, V. Structure and Opti-cal Properties of Niobium Silicate Glasses. J. Non Cryst. Solids 1991, 129, 54-63. https://doi.org/10.1016/0022-3093(91)90080-P | |
dc.relation.referencesen | [15] Graca, M. P. F.; Valente, M. A.; Ferreira da Silva, M. G. Electrical Properties of Lithium Niobium Silicate Glasses. J. Non Cryst. Solids 2003, 325, 267-274. https://doi.org/10.1016/S0022-3093(03)00314-4 | |
dc.relation.referencesen | [16] Lutsyuk, I.; Vakhula, Ya.; Tupis, I.; Iliuchok, I. Catalytic Action of Nitric Acid on The Hydrolysis of ETS-40 Ethyl Silicate. Chem. Shem. Technol. 2021, 15, 475-478. https://doi.org/10.23939/chcht15.04.475 | |
dc.relation.uri | https://doi.org/10.1016/j.joen.2005.10.056 | |
dc.relation.uri | https://doi.org/10.1016/j.jnoncrysol.2015.02.015 | |
dc.relation.uri | https://doi.org/10.1023/A:1026617607548 | |
dc.relation.uri | https://doi.org/10.17219/dmp/133954 | |
dc.relation.uri | https://doi.org/10.53730/ijhs.v6nS3.7214 | |
dc.relation.uri | https://www.aae.org/specialty/communique/bioceramic-usage-in-endodontics | |
dc.relation.uri | https://doi.org/10.1016/j.joen.2018.02.019 | |
dc.relation.uri | https://doi.org/10.1016/j.joen.2012.02.029 | |
dc.relation.uri | https://doi.org/10.1016/j.jeurceramsoc.2008.08.002 | |
dc.relation.uri | https://doi.org/10.1016/j.jnoncrysol.2005.01.040 | |
dc.relation.uri | https://doi.org/10.1063/1.98762 | |
dc.relation.uri | https://doi.org/10.1016/0022-3093(91)90080-P | |
dc.relation.uri | https://doi.org/10.1016/S0022-3093(03)00314-4 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.04.475 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Lutsyuk I., Gavryshkevych Ya., Vakhula Ya., 2023 | |
dc.subject | фазоутворення | |
dc.subject | золь-гель технологія | |
dc.subject | ніобію та цирконію оксиди | |
dc.subject | порошки | |
dc.subject | phase formation | |
dc.subject | sol-gel technology | |
dc.subject | niobium and zirconium oxides | |
dc.subject | powder | |
dc.title | Peculiarities of Phase Formation in Sol-Gel Powders of the CaO–ZrO2–Nb2O5–SiO2 System | |
dc.title.alternative | Особливості фазоутворення в золь-гель порошках системи CaO–ZrO2–Nb2O5–SiO2 System | |
dc.type | Article |
Files
License bundle
1 - 1 of 1