Numerical solutions and stability analysis of unsteady hybrid nanofluid flow over a shrinking sheet with heat generation

dc.citation.epage1229
dc.citation.issue4
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage1222
dc.contributor.affiliationТехнічний університет Малайзії
dc.contributor.affiliationУніверситет Бабеш-Бойяї
dc.contributor.affiliationUniversiti Teknikal Malaysia
dc.contributor.affiliationBabes-Bolyai University
dc.contributor.authorРахман, Н. А.
dc.contributor.authorХашііє, Н. С.
dc.contributor.authorХамза, К. Б.
dc.contributor.authorВайні, І.
dc.contributor.authorРослі, М. А. М.
dc.contributor.authorПоп, І.
dc.contributor.authorRahman, N. A.
dc.contributor.authorKhashiie, N. S.
dc.contributor.authorHamzah, K. B.
dc.contributor.authorWaini, I.
dc.contributor.authorRosli, M. A. M.
dc.contributor.authorPop, I.
dc.coverage.placenameЛьвів
dc.date.accessioned2025-03-10T09:21:58Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДослідження зосереджено на створенні декількох чисельних розв’язків і аналізі стійкості для випадку нестаціонарної гібридної нанорідини мідь-глинозем/вода на листі, що стискається. Розглядаються ефект всмоктування та виділення тепла як потенційні фактори, що сприяють прогресу теплопередачі. Вихідна модель, а саме рівняння в частинних похідних розроблені на основі припущень про граничний шар, які потім перетворюються на набір звичайних (подібних) диференціальних рівнянь. Розв’язувач bvp4c використовується для пошуку всіх можливих розв’язків і проведення аналізу стійкості розв’язків, які генеруються. Всмоктування викликає рух нагрітих частинок рідини до стінки, що призводить до збільшення швидкості та теплопередачі, а також до зниження температури. Доведено, що перший розв’язок є стійким дійсним розв’язком порівняно з іншим розв’язком.
dc.description.abstractThe study focuses on the generation of multiple numerical solutions and stability analysis for the case of an unsteady copper-alumina/water hybrid nanofluid subjected to a shrinking sheet. Heat generation as the potential contributing factor in the heat transfer progress is considered as well as the suction effect. The governing model (partial differential equations) is developed based on the boundary layer assumptions, which then are transformed into a set of ordinary (similarity) differential equations. The bvp4c solver is used to search all possible solutions and conduct the stability analysis for the generating solutions. Suction induces the movement of heated fluid particles towards the wall, resulting in increased velocity and heat transfer and a decrease in temperature. The first solution is proved to be the stable real solution as compared to the other solution.
dc.format.extent1222-1229
dc.format.pages8
dc.identifier.citationNumerical solutions and stability analysis of unsteady hybrid nanofluid flow over a shrinking sheet with heat generation / N. A. Rahman, N. S. Khashiie, K. B. Hamzah, I. Waini, M. A. M. Rosli, I. Pop // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1222–1229.
dc.identifier.citationenNumerical solutions and stability analysis of unsteady hybrid nanofluid flow over a shrinking sheet with heat generation / N. A. Rahman, N. S. Khashiie, K. B. Hamzah, I. Waini, M. A. M. Rosli, I. Pop // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1222–1229.
dc.identifier.doidoi.org/10.23939/mmc2023.04.1222
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64075
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 4 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 4 (10), 2023
dc.relation.references[1] Duangthongsuk W., Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Experimental Thermal and Fluid Science. 33 (4), 706–714 (2009).
dc.relation.references[2] Sheikholeslami M., Sadoughi M. K. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. International Journal of Heat and Mass Transfer. 116, 909–919 (2018).
dc.relation.references[3] Jacobsen C., Garc´ıa-Moreno P. J., Mendes A. C., Mateiu R. V., Chronakis I. S. Use of electrohydrodynamic processing for encapsulation of sensitive bioactive compounds and applications in food. Annual Review of Food Science and Technology. 9 (1), 525–549 (2018).
dc.relation.references[4] Minea A. A., El-Maghlany W. M. Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison. Renewable Energy. 120, 350–364 (2018).
dc.relation.references[5] Aglawe K. R., Yadav R. K., Thool S. B. Preparation, applications and challenges of nanofluids in electronic cooling: A systematic review. Materials Today: Proceedings. 43 (1), 366–372 (2021).
dc.relation.references[6] Hafeez M. B., Amin R., Nisar K. S., Jamshed W., Abdel-Aty A. H., Khashan M. M. Heat transfer enhancement through nanofluids with applications in automobile radiator. Case Studies in Thermal Engineering. 27, 101192 (2021).
dc.relation.references[7] Kumar V., Sarkar J., Yan W. M. Thermal-hydraulic behavior of lotus like structured rGO-ZnO composite dispersed hybrid nanofluid in mini channel heat sink. International Journal of Thermal Sciences. 164, 106886 (2021).
dc.relation.references[8] Gawusu S., Zhang X. Hydrodynamics analysis of Taylor flow in oil and gas pipelines under constant heat flux. Heat and Mass Transfer. 57 (3), 515–527 (2021).
dc.relation.references[9] Anandika R., Puneeth V., Manjunatha S., Chamkha A. J. Thermal optimisation through multilayer convective flow of CuO-MWCNT hybrid nanofluid in a composite porous annulus. International Journal of Ambient Energy. 43 (1), 6463–6473 (2022).
dc.relation.references[10] Sreedevi P., Sudarsana Reddy P., Chamkha A. Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation. SN Applied Sciences. 2 (7), 1222 (2020).
dc.relation.references[11] Khan U., Waini I., Ishak A., Pop I. Unsteady hybrid nanofluid flow over a radially permeable shrinking/stretching surface. Journal of Molecular Liquids. 331, 115752 (2021).
dc.relation.references[12] Waini I., Ishak A., Pop I. Unsteady hybrid nanofluid flow on a stagnation point of a permeable rigid surface. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift f¨ur Angewandte Mathematik und Mechanik. 101 (6), e202000193 (2021).
dc.relation.references[13] Zainal N. A., Nazar R., Naganthran K., Pop I. Unsteady EMHD stagnation point flow over a stretching/shrinking sheet in a hybrid Al2O3-Cu/H2O nanofluid. International Communications in Heat and Mass Transfer. 123, 105205 (2021).
dc.relation.references[14] Zainal N. A., Nazar R., Naganthran K., Pop I. Unsteady MHD Mixed Convection Flow in Hybrid Nanofluid at Three-Dimensional Stagnation Point. Mathematics. 9 (5), 549 (2021).
dc.relation.references[15] Khan M. S., Mei S., Fernandez-Gamiz U., Noeiaghdam S., Shah S. A., Khan A. Numerical analysis of unsteady hybrid nanofluid flow comprising CNTs-ferrousoxide/water with variable magnetic field. Nanomaterials. 12 (2), 180 (2022).
dc.relation.references[16] Jusoh R., Nazar R., Pop I. Impact of heat generation/absorption on the unsteady magnetohydrodynamic stagnation point flow and heat transfer of nanofluids. International Journal of Numerical Methods for Heat & Fluid Flow. 30 (2), 557–574 (2020).
dc.relation.references[17] Joshi N., Upreti H., Pandey A. K., Kumar M. Heat and mass transfer assessment of magnetic hybrid nanofluid flow via bidirectional porous surface with volumetric heat generation. International Journal of Applied and Computational Mathematics. 7 (3), 64 (2021).
dc.relation.references[18] Wahid N. S., Arifin N. M., Khashi’ie N. S., Pop I. Hybrid nanofluid slip flow over an exponentially stretching/shrinking permeable sheet with heat generation. Mathematics. 9 (1), 30 (2020).
dc.relation.references[19] Waini I., Ishak A., Pop I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. International Journal of Heat and Mass Transfer. 136, 288–297 (2019).
dc.relation.references[20] Kumbhakar B., Nandi S. Unsteady MHD radiative-dissipative flow of Cu-Al2O3/H2O hybrid nanofluid past a stretching sheet with slip and convective conditions: A regression analysis. Mathematics and Computers in Simulation. 194, 563–587 (2019).
dc.relation.references[21] Takabi B., Salehi S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advances in Mechanical Engineering. 6, 147059 (2014).
dc.relation.references[22] Oztop H. F., Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International journal of heat and fluid flow. 29 (5), 1326–1336 (2008).
dc.relation.referencesen[1] Duangthongsuk W., Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Experimental Thermal and Fluid Science. 33 (4), 706–714 (2009).
dc.relation.referencesen[2] Sheikholeslami M., Sadoughi M. K. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. International Journal of Heat and Mass Transfer. 116, 909–919 (2018).
dc.relation.referencesen[3] Jacobsen C., Garc´ıa-Moreno P. J., Mendes A. C., Mateiu R. V., Chronakis I. S. Use of electrohydrodynamic processing for encapsulation of sensitive bioactive compounds and applications in food. Annual Review of Food Science and Technology. 9 (1), 525–549 (2018).
dc.relation.referencesen[4] Minea A. A., El-Maghlany W. M. Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison. Renewable Energy. 120, 350–364 (2018).
dc.relation.referencesen[5] Aglawe K. R., Yadav R. K., Thool S. B. Preparation, applications and challenges of nanofluids in electronic cooling: A systematic review. Materials Today: Proceedings. 43 (1), 366–372 (2021).
dc.relation.referencesen[6] Hafeez M. B., Amin R., Nisar K. S., Jamshed W., Abdel-Aty A. H., Khashan M. M. Heat transfer enhancement through nanofluids with applications in automobile radiator. Case Studies in Thermal Engineering. 27, 101192 (2021).
dc.relation.referencesen[7] Kumar V., Sarkar J., Yan W. M. Thermal-hydraulic behavior of lotus like structured rGO-ZnO composite dispersed hybrid nanofluid in mini channel heat sink. International Journal of Thermal Sciences. 164, 106886 (2021).
dc.relation.referencesen[8] Gawusu S., Zhang X. Hydrodynamics analysis of Taylor flow in oil and gas pipelines under constant heat flux. Heat and Mass Transfer. 57 (3), 515–527 (2021).
dc.relation.referencesen[9] Anandika R., Puneeth V., Manjunatha S., Chamkha A. J. Thermal optimisation through multilayer convective flow of CuO-MWCNT hybrid nanofluid in a composite porous annulus. International Journal of Ambient Energy. 43 (1), 6463–6473 (2022).
dc.relation.referencesen[10] Sreedevi P., Sudarsana Reddy P., Chamkha A. Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation. SN Applied Sciences. 2 (7), 1222 (2020).
dc.relation.referencesen[11] Khan U., Waini I., Ishak A., Pop I. Unsteady hybrid nanofluid flow over a radially permeable shrinking/stretching surface. Journal of Molecular Liquids. 331, 115752 (2021).
dc.relation.referencesen[12] Waini I., Ishak A., Pop I. Unsteady hybrid nanofluid flow on a stagnation point of a permeable rigid surface. ZAMM – Journal of Applied Mathematics and Mechanics, Zeitschrift f¨ur Angewandte Mathematik und Mechanik. 101 (6), e202000193 (2021).
dc.relation.referencesen[13] Zainal N. A., Nazar R., Naganthran K., Pop I. Unsteady EMHD stagnation point flow over a stretching/shrinking sheet in a hybrid Al2O3-Cu/H2O nanofluid. International Communications in Heat and Mass Transfer. 123, 105205 (2021).
dc.relation.referencesen[14] Zainal N. A., Nazar R., Naganthran K., Pop I. Unsteady MHD Mixed Convection Flow in Hybrid Nanofluid at Three-Dimensional Stagnation Point. Mathematics. 9 (5), 549 (2021).
dc.relation.referencesen[15] Khan M. S., Mei S., Fernandez-Gamiz U., Noeiaghdam S., Shah S. A., Khan A. Numerical analysis of unsteady hybrid nanofluid flow comprising CNTs-ferrousoxide/water with variable magnetic field. Nanomaterials. 12 (2), 180 (2022).
dc.relation.referencesen[16] Jusoh R., Nazar R., Pop I. Impact of heat generation/absorption on the unsteady magnetohydrodynamic stagnation point flow and heat transfer of nanofluids. International Journal of Numerical Methods for Heat & Fluid Flow. 30 (2), 557–574 (2020).
dc.relation.referencesen[17] Joshi N., Upreti H., Pandey A. K., Kumar M. Heat and mass transfer assessment of magnetic hybrid nanofluid flow via bidirectional porous surface with volumetric heat generation. International Journal of Applied and Computational Mathematics. 7 (3), 64 (2021).
dc.relation.referencesen[18] Wahid N. S., Arifin N. M., Khashi’ie N. S., Pop I. Hybrid nanofluid slip flow over an exponentially stretching/shrinking permeable sheet with heat generation. Mathematics. 9 (1), 30 (2020).
dc.relation.referencesen[19] Waini I., Ishak A., Pop I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. International Journal of Heat and Mass Transfer. 136, 288–297 (2019).
dc.relation.referencesen[20] Kumbhakar B., Nandi S. Unsteady MHD radiative-dissipative flow of Cu-Al2O3/H2O hybrid nanofluid past a stretching sheet with slip and convective conditions: A regression analysis. Mathematics and Computers in Simulation. 194, 563–587 (2019).
dc.relation.referencesen[21] Takabi B., Salehi S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advances in Mechanical Engineering. 6, 147059 (2014).
dc.relation.referencesen[22] Oztop H. F., Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International journal of heat and fluid flow. 29 (5), 1326–1336 (2008).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectгібридна нанорідина
dc.subjectвиділення тепла
dc.subjectтеплопередача
dc.subjectмножинні розв’язки
dc.subjectнестаціонарний потік
dc.subjecthybrid nanofluid
dc.subjectheat generation
dc.subjectheat transfer
dc.subjectmultiple solutions
dc.subjectunsteady flow
dc.titleNumerical solutions and stability analysis of unsteady hybrid nanofluid flow over a shrinking sheet with heat generation
dc.title.alternativeЧисельні розв’язки та аналіз стійкості нестаціонарного гібридного потоку нанорідини по листу, що стискається, із виділенням тепла
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n4_Rahman_N_A-Numerical_solutions_1222-1229.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n4_Rahman_N_A-Numerical_solutions_1222-1229__COVER.png
Size:
438.95 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: