Interaction Effect of Operating Parameters during Oxidation of Different Dyes via the Fenton Process. Application of the Plackett-Burmann Design

dc.citation.epage163
dc.citation.issue1
dc.citation.spage154
dc.contributor.affiliationBadji Mokhtar University of Annaba
dc.contributor.authorDjeghader, Imene
dc.contributor.authorBendebane, Farida
dc.contributor.authorIsmail, Fadhel
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T10:29:34Z
dc.date.available2024-02-09T10:29:34Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractВивчено ефект взаємодії між вісьмома робочими параметрами, які можуть істотно впливати на деградацію трьох органічних барвників, що мають різну структуру (Cibacron зелений, метиленовий синій і метилоранж). Оцінювання ефекту виконано статистично за допомогою скринінгового методу Плакетта-Бермана. Придатність моделі перевірено з визначенням коефіцієнта R2. Проаналізовано та проілюстровані параметри процесу, які вплинули на ефективність деградації барвників; найважливіші значення (p та F) для трьох барвників довели придатність моделі. Показано, що отримані результати взаємодії параметрів дають можливість виділити ключовий фактор для підвищення ефективності процесу Фентона.
dc.description.abstractThe interaction effect of eight operating factors on the degradation of three organic dyes of different structures (Cibacron green, methylene blue and methyl orange) has been studied. Effect had been evaluated statistically using the Plackett-Burman screening design which ex-tracted valuable information on the most important parameters and their interactions. The goodness of the model fit was checked by the determination of the coefficient R2. The process factors, which affected the degradation efficiency of dyes, were then analyzed and illustrated; the most important valuei (p and F) for three dyes proved the validity of the model. The results of interactions between the factors allow to understand and study the impact of each parameter on the elimination of dyes and to distinguish the key factor to upgrade the efficiency of the Fenton process.
dc.format.extent154-163
dc.format.pages10
dc.identifier.citationDjeghader I. Interaction Effect of Operating Parameters during Oxidation of Different Dyes via the Fenton Process. Application of the Plackett-Burmann Design / Imene Djeghader, Farida Bendebane, Fadhel Ismail // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 154–163.
dc.identifier.citationenDjeghader I. Interaction Effect of Operating Parameters during Oxidation of Different Dyes via the Fenton Process. Application of the Plackett-Burmann Design / Imene Djeghader, Farida Bendebane, Fadhel Ismail // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 154–163.
dc.identifier.doidoi.org/10.23939/chcht17.01.154
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61215
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (17), 2023
dc.relation.references[1] Fenton, H.J.H., Jackson, H.J. I. – The Oxidation of Polyhydric Alcohols in Presence of Iron. J. Chem. Soc. Trans. 1899, 75, 1-11. https://doi.org/10.1039/CT8997500001
dc.relation.references[2] Fenton, H.J.H., Jones, H.O. VII. – The Oxidation of Organic Acids in Presence of Ferrous Iron. Part I. J. Chem. Soc. Trans. 1900, 77, 69-76. https://doi.org/10.1039/CT9007700069
dc.relation.references[3] Li, W.; Xu, L. Research Methods for the Degradation Mechan-ism of Organic Pollutants in Wastewater. Acta Chim. Sinica 2019, 77, 705-716. https://doi.org/10.6023/A19030073
dc.relation.references[4] Su, S.; Liu, Y.; Liu X.; Jin, W.; Zhao, Y. Transformation Pathway and Degradation Mechanism of Methylene Blue Through Β-Feooh@GO Catalyzed Photo-Fenton-Like System. Chemosphere 2019, 218, 83-92. https://doi.org/10.1016/j.chemosphere.2018.11.098
dc.relation.references[5] Jegan Durai, N.; Gopalakrishna, G.V. T.; Padmanaban, V.C.; Selvaraju N. Oxidative Removal of Stabilized Landfill Leachate by Fenton's Process: Process Modeling, Optimization & Analysis of Degraded Products. RCS Adv. 2020, 10, 3916-3925. https://doi.org/10.1039/C9RA09415F
dc.relation.references[6] Elhalil, A.; Tounsadi, H.; Elmoubarki R.; Mahjoubi, F.Z.; Far-nane M.; Sadiq, M.; Abdennouri, M.; Qourzal, S.;Barka, N. Factorial Experimental Design for The Optimization of Catalytic Degradation of Malachite Green Dye in Aqueous Solution by Fenton Process. Water Resour. Ind. 2016, 15, 41-48. https://doi.org/10.1016/j.wri.2016.07.002
dc.relation.references[7] Jian-Hui Sun, J.-H.; Sun S.-P.; Wang G.-L.; Qiao L.-P. Degradation of Azo Dye Amido Black 10B in Aqueous Solution by Fenton Oxidation Process. Dyes Pigm. 2007, 74, 647-652. https://doi.org/10.1016/j.dyepig.2006.04.006
dc.relation.references[8] Sillanpää, M., Ncibi, M.C., Matilainen, A. Advanced Oxidation Processes for The Removal of Natural Organic Matter from Drink-ing Water Sources: A Comprehensive Review. J. Environ. Manage. 2018, 208, 56-76. https://doi.org/10.1016/j.jenvman.2017.12.009
dc.relation.references[9] Khue, D.N.; Lam, T.D.; Van Chat, N.; Bach, V.Q.; Minch, D.B.; Loi, V.D.; Van Anh, N. Simultaneous Degradation of 2,4,6-Trinitrophenyl-N-Methylnitramine (Tetryl) and Hexahydro-1,3,5-Trinitro-1,3,5 Triazine (RDX) in Polluted Wastewater Using Some Advanced Oxidation Processes. J. Ind. Eng. Chem. 2014, 20, 1468-1475. https://doi.org/10.1016/j.jiec.2013.07.033
dc.relation.references[10] Oh, S.Y.; Yoon, H.S.; Jeong, T.Y.; Kim, S.D. Evaluation of Remediation Processes for Explosive-Contaminated Soils: Kinetics and Microtox® Bioassay. J. Chem. Technol. Biotechnol. 2016, 91, 928-937. https://doi.org/10.1002/jctb.4658
dc.relation.references[11] Ghernaout, D.; Elboughdiri, N.; Ghareba, S. Fenton Technolo-gy for Wastewater Treatment: Dares and Trends. OALib. J. 2020, 7, e6045. https://doi.org/10.4236/oalib.1106045
dc.relation.references[12] Karthikeyan, S.; Titus, A.; Gnanamani, A.; Mandal, A.B.; Sekaran, G. Treatment of Textile Wastewater by Homogeneous and Heterogeneous Fenton Oxidation Processes. Desalination 2011, 281, 438-445. https://doi.org/10.1016/j.desal.2011.08.019
dc.relation.references[13] Hermosilla, D.; Merayo, N.; Gascó, A.; Blanco, Á. The Application of Advanced Oxidation Technologies to The Treatment of Effluents from The Pulp and Paper Industry: A Review. Environ. Sci. Pollut. Res. 2015, 22, 168-191. https://doi.org/10.1007/s11356-014-3516-1
dc.relation.references[14] Ma, C.; Feng, S.; Zhou, J.; Chen, R.; Wei, Y.; Liu, X.; Wang, S. Enhancement of H2O2 Decomposition Efficiency by The Co-Catalytic Effect of Iron Phosphide on The Fenton Reaction for The Degradation of Methylene Blue. Appl. Catal. B 2019, 259, 118015. https://doi.org/10.1016/j.apcatb.2019.118015
dc.relation.references[15] Munoz, M.; De Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J. Preparation of Magnetite-Based Catalysts and Their Application in Heterogeneous Fenton Oxidation – A Review. Appl. Catal. B 2015, 176–177, 249-265. https://doi.org/10.1016/j.apcatb.2015.04.003
dc.relation.references[16] Pan, X.; Cheng, S.; Su, T.; Zuo, G.; Zhao, W.; Qi, X.; Wei, W.; Dong, W. Fenton-Like Catalyst Fe3O4@Polydopamine-MnO2 for Enhancing Removal of Methylene Blue in Wastewater. Colloids Surf. B 2019, 181, 226-233. https://doi.org/10.1016/j.colsurfb.2019.05.048
dc.relation.references[17] Esmaeili, N.; Mohammadi, P.; Abbaszadeh, M.; Sheibani, H. Au Nanoparticles Decorated on Magnetic Nanocomposite (GO-Fe3O4/Dop/Au) as A Recoverable Catalyst for Degradation of Methylene Blue and Methyl Orange in Water. Int. J. Hydrog. Energy 2019, 44, 23002-23009. https://doi.org/10.1016/j.ijhydene.2019.07.025
dc.relation.references[18] Antony, J. 3 - Understanding Key Interactions in Processes. Design of Experiments for Engineers and Scientists, 2nd ed.; Elsevi-er, 2014, pp 19-32. https://doi.org/10.1016/B978-0-08-099417-8.00003-1
dc.relation.references[19] Iida, Y.; Yasui, K.; Tuziuti, T.; Sivakumar M. Sonochemistry and Its Dosimetry. Microchem. J. 2005, 80, 159-164. https://doi.org/10.1016/j.microc.2004.07.016
dc.relation.references[20] Ge, J.; Qu, J.: Degradation of Azo Dye Acid Red B on Manganese Dioxide in The Absence and Presence of Ultrasonic Irradiation. J. Hazard Mater. 2003, 100, 197-207. https://doi.org/10.1016/S0304-3894(03)00105-5
dc.relation.references[21] Joglekar, A.M.; May, A.T. Product Excellence Through Design of Experiments. Cereal Foods World 1987, 32, 857-868.
dc.relation.references[22] Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (Oh/O−) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513. https://doi.org/10.1063/1.555805
dc.relation.references[23] Kavitha, V.; Palanivelu, K. Destruction of Cresols by Fenton Oxidation Process. Water Res. 2005, 39, 3062-3072. https://doi.org/10.1016/j.watres.2005.05.011
dc.relation.references[24] Luo, W.; Abbas, M.E.; Zhu, L.; Deng, K.; Tang, H. Rapid Quantitative Determination of Hydrogen Peroxide by Oxidation Decolorization of Methyl Orange Using a Fenton Reaction System. Anal. Chim. Acta 2008, 629(1-2), 1-5. https://doi.org/10.1016/j.aca.2008.09.009
dc.relation.references[25] Youssef, N.A.; Shaban, S.A.; Ibrahim, F.A.; Mahmoud, A.S. Degradation of Methyl Orange Using Fenton Catalytic Reaction. Egypt. J. Pet. 2016, 25, 317-321. https://doi.org/10.1016/j.ejpe.2015.07.017
dc.relation.references[26] Hashemian, S.; Tabatabaee, M.; Gafari, M. Fenton Oxidation of Methyl Violet in Aqueous Solution. J. Chem. 2013, 2013, Article ID 509097. https://doi.org/10.1155/2013/509097
dc.relation.references[27] Hashemian, S. Fenton-Like Oxidation of Malachite Green Solutions: Kinetic and Thermodynamic Study. J. Chem. 2013, 2013, Article ID 809318. https://doi.org/10.1155/2013/809318
dc.relation.references[28] de Souza, D.R.; Mendonça Duarte, E.T.F.; de Souza Girardi, G.; Velani, V.; da Hora Machado, A.E.; Sattler, C.; de Oliveira, L.; de Miranda, J.A. Study of Kinetic Parameters Related to The Degradation of an Industrial Effluent Using Fenton-Like Reactions. J. Photochem. Photobiol. A 2006, 179, 269. https://doi.org/10.1016/j.jphotochem.2005.08.025
dc.relation.references[29] Xu, H.Y.; Prasad, M.; Liu, Y. Schorl: A Novel Catalyst in Mineral-Catalyzed Fenton-Like System for Dyeing Wastewater Discoloration. J. Hazard. Mater. 2009, 165, 1186-1192. https://doi.org/10.1016/j.jhazmat.2008.10.108
dc.relation.references[30] Sirtori, C.; Zapata, A.; Oller, I.; Gerniak, W.; Agüera, A.; Malato, S. Solar Photo-Fenton as Finishing Step for Biological Treatment of a Pharmaceutical Wastewater. Environ. Sci. Technol. 2009, 43, 1185-1191. https://doi.org/10.1021/es802550y
dc.relation.references[31] Bacardit, J.; Stötzner, J.; Chamarro E.; Esplugas, S. Effect of Salinity on the Photo-Fenton Process. Ind. Eng. Chem.Res. 2007, 46, 7615-7619. https://doi.org/10.1021/ie070154o
dc.relation.references[32] Dong, Y.; Chen, J.; Li, C.; Zhu, H. Decoloration of Three Azo Dyes in Water by Photocatalysis of Fe(III)–Oxalate Complex-es/H2O2 in the Presence of Inorganic Salts. Dyes Pigm. 2007, 73, 261-268. https://doi.org/10.1016/j.dyepig.2005.12.007
dc.relation.references[33] El-Fass, M.M.; Badawy, N.A.; El-Bayaa, A.A.; Moursy, N.S. The Influence of Simple Electrolyte on the Behaviour of Some Acid Dyes in Aqueous Media. Bull. Korean Chem. Soc. 1995, 16(5), 458-461.
dc.relation.referencesen[1] Fenton, H.J.H., Jackson, H.J. I, The Oxidation of Polyhydric Alcohols in Presence of Iron. J. Chem. Soc. Trans. 1899, 75, 1-11. https://doi.org/10.1039/CT8997500001
dc.relation.referencesen[2] Fenton, H.J.H., Jones, H.O. VII, The Oxidation of Organic Acids in Presence of Ferrous Iron. Part I. J. Chem. Soc. Trans. 1900, 77, 69-76. https://doi.org/10.1039/CT9007700069
dc.relation.referencesen[3] Li, W.; Xu, L. Research Methods for the Degradation Mechan-ism of Organic Pollutants in Wastewater. Acta Chim. Sinica 2019, 77, 705-716. https://doi.org/10.6023/A19030073
dc.relation.referencesen[4] Su, S.; Liu, Y.; Liu X.; Jin, W.; Zhao, Y. Transformation Pathway and Degradation Mechanism of Methylene Blue Through B-Feooh@GO Catalyzed Photo-Fenton-Like System. Chemosphere 2019, 218, 83-92. https://doi.org/10.1016/j.chemosphere.2018.11.098
dc.relation.referencesen[5] Jegan Durai, N.; Gopalakrishna, G.V. T.; Padmanaban, V.C.; Selvaraju N. Oxidative Removal of Stabilized Landfill Leachate by Fenton's Process: Process Modeling, Optimization & Analysis of Degraded Products. RCS Adv. 2020, 10, 3916-3925. https://doi.org/10.1039/P.9RA09415F
dc.relation.referencesen[6] Elhalil, A.; Tounsadi, H.; Elmoubarki R.; Mahjoubi, F.Z.; Far-nane M.; Sadiq, M.; Abdennouri, M.; Qourzal, S.;Barka, N. Factorial Experimental Design for The Optimization of Catalytic Degradation of Malachite Green Dye in Aqueous Solution by Fenton Process. Water Resour. Ind. 2016, 15, 41-48. https://doi.org/10.1016/j.wri.2016.07.002
dc.relation.referencesen[7] Jian-Hui Sun, J.-H.; Sun S.-P.; Wang G.-L.; Qiao L.-P. Degradation of Azo Dye Amido Black 10B in Aqueous Solution by Fenton Oxidation Process. Dyes Pigm. 2007, 74, 647-652. https://doi.org/10.1016/j.dyepig.2006.04.006
dc.relation.referencesen[8] Sillanpää, M., Ncibi, M.C., Matilainen, A. Advanced Oxidation Processes for The Removal of Natural Organic Matter from Drink-ing Water Sources: A Comprehensive Review. J. Environ. Manage. 2018, 208, 56-76. https://doi.org/10.1016/j.jenvman.2017.12.009
dc.relation.referencesen[9] Khue, D.N.; Lam, T.D.; Van Chat, N.; Bach, V.Q.; Minch, D.B.; Loi, V.D.; Van Anh, N. Simultaneous Degradation of 2,4,6-Trinitrophenyl-N-Methylnitramine (Tetryl) and Hexahydro-1,3,5-Trinitro-1,3,5 Triazine (RDX) in Polluted Wastewater Using Some Advanced Oxidation Processes. J. Ind. Eng. Chem. 2014, 20, 1468-1475. https://doi.org/10.1016/j.jiec.2013.07.033
dc.relation.referencesen[10] Oh, S.Y.; Yoon, H.S.; Jeong, T.Y.; Kim, S.D. Evaluation of Remediation Processes for Explosive-Contaminated Soils: Kinetics and Microtox® Bioassay. J. Chem. Technol. Biotechnol. 2016, 91, 928-937. https://doi.org/10.1002/jctb.4658
dc.relation.referencesen[11] Ghernaout, D.; Elboughdiri, N.; Ghareba, S. Fenton Technolo-gy for Wastewater Treatment: Dares and Trends. OALib. J. 2020, 7, e6045. https://doi.org/10.4236/oalib.1106045
dc.relation.referencesen[12] Karthikeyan, S.; Titus, A.; Gnanamani, A.; Mandal, A.B.; Sekaran, G. Treatment of Textile Wastewater by Homogeneous and Heterogeneous Fenton Oxidation Processes. Desalination 2011, 281, 438-445. https://doi.org/10.1016/j.desal.2011.08.019
dc.relation.referencesen[13] Hermosilla, D.; Merayo, N.; Gascó, A.; Blanco, Á. The Application of Advanced Oxidation Technologies to The Treatment of Effluents from The Pulp and Paper Industry: A Review. Environ. Sci. Pollut. Res. 2015, 22, 168-191. https://doi.org/10.1007/s11356-014-3516-1
dc.relation.referencesen[14] Ma, C.; Feng, S.; Zhou, J.; Chen, R.; Wei, Y.; Liu, X.; Wang, S. Enhancement of H2O2 Decomposition Efficiency by The Co-Catalytic Effect of Iron Phosphide on The Fenton Reaction for The Degradation of Methylene Blue. Appl. Catal. B 2019, 259, 118015. https://doi.org/10.1016/j.apcatb.2019.118015
dc.relation.referencesen[15] Munoz, M.; De Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J. Preparation of Magnetite-Based Catalysts and Their Application in Heterogeneous Fenton Oxidation – A Review. Appl. Catal. B 2015, 176–177, 249-265. https://doi.org/10.1016/j.apcatb.2015.04.003
dc.relation.referencesen[16] Pan, X.; Cheng, S.; Su, T.; Zuo, G.; Zhao, W.; Qi, X.; Wei, W.; Dong, W. Fenton-Like Catalyst Fe3O4@Polydopamine-MnO2 for Enhancing Removal of Methylene Blue in Wastewater. Colloids Surf. B 2019, 181, 226-233. https://doi.org/10.1016/j.colsurfb.2019.05.048
dc.relation.referencesen[17] Esmaeili, N.; Mohammadi, P.; Abbaszadeh, M.; Sheibani, H. Au Nanoparticles Decorated on Magnetic Nanocomposite (GO-Fe3O4/Dop/Au) as A Recoverable Catalyst for Degradation of Methylene Blue and Methyl Orange in Water. Int. J. Hydrog. Energy 2019, 44, 23002-23009. https://doi.org/10.1016/j.ijhydene.2019.07.025
dc.relation.referencesen[18] Antony, J. 3 - Understanding Key Interactions in Processes. Design of Experiments for Engineers and Scientists, 2nd ed.; Elsevi-er, 2014, pp 19-32. https://doi.org/10.1016/B978-0-08-099417-8.00003-1
dc.relation.referencesen[19] Iida, Y.; Yasui, K.; Tuziuti, T.; Sivakumar M. Sonochemistry and Its Dosimetry. Microchem. J. 2005, 80, 159-164. https://doi.org/10.1016/j.microc.2004.07.016
dc.relation.referencesen[20] Ge, J.; Qu, J., Degradation of Azo Dye Acid Red B on Manganese Dioxide in The Absence and Presence of Ultrasonic Irradiation. J. Hazard Mater. 2003, 100, 197-207. https://doi.org/10.1016/S0304-3894(03)00105-5
dc.relation.referencesen[21] Joglekar, A.M.; May, A.T. Product Excellence Through Design of Experiments. Cereal Foods World 1987, 32, 857-868.
dc.relation.referencesen[22] Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (Oh/O−) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513. https://doi.org/10.1063/1.555805
dc.relation.referencesen[23] Kavitha, V.; Palanivelu, K. Destruction of Cresols by Fenton Oxidation Process. Water Res. 2005, 39, 3062-3072. https://doi.org/10.1016/j.watres.2005.05.011
dc.relation.referencesen[24] Luo, W.; Abbas, M.E.; Zhu, L.; Deng, K.; Tang, H. Rapid Quantitative Determination of Hydrogen Peroxide by Oxidation Decolorization of Methyl Orange Using a Fenton Reaction System. Anal. Chim. Acta 2008, 629(1-2), 1-5. https://doi.org/10.1016/j.aca.2008.09.009
dc.relation.referencesen[25] Youssef, N.A.; Shaban, S.A.; Ibrahim, F.A.; Mahmoud, A.S. Degradation of Methyl Orange Using Fenton Catalytic Reaction. Egypt. J. Pet. 2016, 25, 317-321. https://doi.org/10.1016/j.ejpe.2015.07.017
dc.relation.referencesen[26] Hashemian, S.; Tabatabaee, M.; Gafari, M. Fenton Oxidation of Methyl Violet in Aqueous Solution. J. Chem. 2013, 2013, Article ID 509097. https://doi.org/10.1155/2013/509097
dc.relation.referencesen[27] Hashemian, S. Fenton-Like Oxidation of Malachite Green Solutions: Kinetic and Thermodynamic Study. J. Chem. 2013, 2013, Article ID 809318. https://doi.org/10.1155/2013/809318
dc.relation.referencesen[28] de Souza, D.R.; Mendonça Duarte, E.T.F.; de Souza Girardi, G.; Velani, V.; da Hora Machado, A.E.; Sattler, C.; de Oliveira, L.; de Miranda, J.A. Study of Kinetic Parameters Related to The Degradation of an Industrial Effluent Using Fenton-Like Reactions. J. Photochem. Photobiol. A 2006, 179, 269. https://doi.org/10.1016/j.jphotochem.2005.08.025
dc.relation.referencesen[29] Xu, H.Y.; Prasad, M.; Liu, Y. Schorl: A Novel Catalyst in Mineral-Catalyzed Fenton-Like System for Dyeing Wastewater Discoloration. J. Hazard. Mater. 2009, 165, 1186-1192. https://doi.org/10.1016/j.jhazmat.2008.10.108
dc.relation.referencesen[30] Sirtori, C.; Zapata, A.; Oller, I.; Gerniak, W.; Agüera, A.; Malato, S. Solar Photo-Fenton as Finishing Step for Biological Treatment of a Pharmaceutical Wastewater. Environ. Sci. Technol. 2009, 43, 1185-1191. https://doi.org/10.1021/es802550y
dc.relation.referencesen[31] Bacardit, J.; Stötzner, J.; Chamarro E.; Esplugas, S. Effect of Salinity on the Photo-Fenton Process. Ind. Eng. Chem.Res. 2007, 46, 7615-7619. https://doi.org/10.1021/ie070154o
dc.relation.referencesen[32] Dong, Y.; Chen, J.; Li, C.; Zhu, H. Decoloration of Three Azo Dyes in Water by Photocatalysis of Fe(III)–Oxalate Complex-es/H2O2 in the Presence of Inorganic Salts. Dyes Pigm. 2007, 73, 261-268. https://doi.org/10.1016/j.dyepig.2005.12.007
dc.relation.referencesen[33] El-Fass, M.M.; Badawy, N.A.; El-Bayaa, A.A.; Moursy, N.S. The Influence of Simple Electrolyte on the Behaviour of Some Acid Dyes in Aqueous Media. Bull. Korean Chem. Soc. 1995, 16(5), 458-461.
dc.relation.urihttps://doi.org/10.1039/CT8997500001
dc.relation.urihttps://doi.org/10.1039/CT9007700069
dc.relation.urihttps://doi.org/10.6023/A19030073
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2018.11.098
dc.relation.urihttps://doi.org/10.1039/C9RA09415F
dc.relation.urihttps://doi.org/10.1016/j.wri.2016.07.002
dc.relation.urihttps://doi.org/10.1016/j.dyepig.2006.04.006
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2017.12.009
dc.relation.urihttps://doi.org/10.1016/j.jiec.2013.07.033
dc.relation.urihttps://doi.org/10.1002/jctb.4658
dc.relation.urihttps://doi.org/10.4236/oalib.1106045
dc.relation.urihttps://doi.org/10.1016/j.desal.2011.08.019
dc.relation.urihttps://doi.org/10.1007/s11356-014-3516-1
dc.relation.urihttps://doi.org/10.1016/j.apcatb.2019.118015
dc.relation.urihttps://doi.org/10.1016/j.apcatb.2015.04.003
dc.relation.urihttps://doi.org/10.1016/j.colsurfb.2019.05.048
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2019.07.025
dc.relation.urihttps://doi.org/10.1016/B978-0-08-099417-8.00003-1
dc.relation.urihttps://doi.org/10.1016/j.microc.2004.07.016
dc.relation.urihttps://doi.org/10.1016/S0304-3894(03)00105-5
dc.relation.urihttps://doi.org/10.1063/1.555805
dc.relation.urihttps://doi.org/10.1016/j.watres.2005.05.011
dc.relation.urihttps://doi.org/10.1016/j.aca.2008.09.009
dc.relation.urihttps://doi.org/10.1016/j.ejpe.2015.07.017
dc.relation.urihttps://doi.org/10.1155/2013/509097
dc.relation.urihttps://doi.org/10.1155/2013/809318
dc.relation.urihttps://doi.org/10.1016/j.jphotochem.2005.08.025
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.10.108
dc.relation.urihttps://doi.org/10.1021/es802550y
dc.relation.urihttps://doi.org/10.1021/ie070154o
dc.relation.urihttps://doi.org/10.1016/j.dyepig.2005.12.007
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Djeghader I., Bendebane F., Ismail F., 2023
dc.subjectокиснення Фентона
dc.subjectвидалення барвників
dc.subjectоброблення води
dc.subjectдизайн експерименту
dc.subjectаналіз ANOVA
dc.subjectFenton oxidation
dc.subjectdyes removal
dc.subjectwater treatment
dc.subjectdesign of experiment
dc.subjectANOVA analysis
dc.titleInteraction Effect of Operating Parameters during Oxidation of Different Dyes via the Fenton Process. Application of the Plackett-Burmann Design
dc.title.alternativeЕфект взаємодії робочих параметрів при окисненні реагентом фентона різних барвників. Застосування методу Плакетта–Бермана
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n1_Djeghader_I-Interaction_Effect_of_154-163.pdf
Size:
581.02 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n1_Djeghader_I-Interaction_Effect_of_154-163__COVER.png
Size:
534.82 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: