Determination of approaches for project costs minimization with use of dual problems

dc.citation.epage68
dc.citation.issue4
dc.citation.spage61
dc.citation.volume8
dc.contributor.affiliationAdmiral Makarov National University of Shipbuilding
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorChernov, S.
dc.contributor.authorTitov, S.
dc.contributor.authorChernova, L.
dc.contributor.authorKunanets, N.
dc.contributor.authorChernova, L.
dc.coverage.placenameLublin
dc.date.accessioned2020-02-28T09:27:42Z
dc.date.available2020-02-28T09:27:42Z
dc.date.created2019-06-26
dc.date.issued2019-06-26
dc.description.abstractFor determining ways of company development, ensuring the growth of profit in manufacture and sales of certain products, it has been proposed to use an algorithm of constructing a problem being inverse to primaldual one, for minimization of the project costs. The primal and the inverse problems contribute to improving the efficiency of calculation when determining approaches for minimization of costs. This pair of problems is mutually conjugate. The proposed rigorous approach to obtaining the algorithm of constructing a dual problem is based on the following statement: a problem being inverse to a dual one is a primal (original) problem. The authors have proposed and rigorously proven the algorithm of a general approach to the construction of conjugate problem pairs. Formalization of the algorithm developed allows obtaining easily correct pairs of known dual problems. This permitted proposing and proving the truth of the algorithm of constructing a dual problem for the arbitrary form of a primal problem representation.
dc.format.extent61-68
dc.format.pages8
dc.identifier.citationDetermination of approaches for project costs minimization with use of dual problems / S. Chernov, S. Titov, L. Chernova, N. Kunanets, L. Chernova // Econtechmod : scientific journal. — Lublin, 2019. — Vol 8. — No 4. — P. 61–68.
dc.identifier.citationenDetermination of approaches for project costs minimization with use of dual problems / S. Chernov, S. Titov, L. Chernova, N. Kunanets, L. Chernova // Econtechmod : scientific journal. — Lublin, 2019. — Vol 8. — No 4. — P. 61–68.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46296
dc.language.isoen
dc.relation.ispartofEcontechmod : scientific journal, 4 (8), 2019
dc.relation.references1. Callahan K., Brooks L. 2004. Essentials of Strategic Project Management. John Wiley & Sons, Inc., Hoboken, NJ, USA.
dc.relation.references2. Dinsmore P., Cabanis-Brewin J. 2014. The AMA Handbook of Project Management. Fourth Edition. Amacom Books, New York, NY, USA.
dc.relation.references3. Grisham T. 2010. International Project Management: Leadership in Complex Environments. 1st Edition. John Wiley & Sons, Inc. Hoboken, NJ, USA.
dc.relation.references4. A Guide to the Project Management Body of Knowledge. 2017. (PMBOK® Guide). Sixth Edition. Project Management Institute, Inc., Newtown Square, PA, USA.
dc.relation.references5. Bushuev S. D., Bushuev D. A., Bushueva N. S., Kozyr B. Y. 2018. Information technologies for project management competences development on the basis of global trends // Information technologies and learning tools, Vol. 68, No. 6.
dc.relation.references6. Danchenko E. B. 2011. A conceptual model of integrated management of deviations in the project // Project management in the development of society: Abstracts of The 8th International Conference. Kyiv, KNUBA, 68–70.
dc.relation.references7. Friedmann O., Hansen T. and Zwick U. 2011. Subexponential lower bounds for randomized pivoting rules for the simplex algorithm, Proceedings of the 43rd annual ACM symposium on Theory of computing. New York, NY, USA. STOC’11, ACM, 283–292.
dc.relation.references8. Friedmann O. 2011. A subexponential lower bound for zadeh’s pivoting rule for solving linear programs and games, Proceedings of the 15th international conference on Integer programming and combinatoral optimization. Berlin, Heidelberg. IPCO’11, Springer Verlag, 2011, 192–206.
dc.relation.references9. Titov S. D., Chernova L. S. 2017. Higher and Applied Mathematics: Training Manual: In 2 Parts, Part 1. Kharkiv, Fakt, 336.
dc.relation.referencesen1. Callahan K., Brooks L. 2004. Essentials of Strategic Project Management. John Wiley & Sons, Inc., Hoboken, NJ, USA.
dc.relation.referencesen2. Dinsmore P., Cabanis-Brewin J. 2014. The AMA Handbook of Project Management. Fourth Edition. Amacom Books, New York, NY, USA.
dc.relation.referencesen3. Grisham T. 2010. International Project Management: Leadership in Complex Environments. 1st Edition. John Wiley & Sons, Inc. Hoboken, NJ, USA.
dc.relation.referencesen4. A Guide to the Project Management Body of Knowledge. 2017. (PMBOK® Guide). Sixth Edition. Project Management Institute, Inc., Newtown Square, PA, USA.
dc.relation.referencesen5. Bushuev S. D., Bushuev D. A., Bushueva N. S., Kozyr B. Y. 2018. Information technologies for project management competences development on the basis of global trends, Information technologies and learning tools, Vol. 68, No. 6.
dc.relation.referencesen6. Danchenko E. B. 2011. A conceptual model of integrated management of deviations in the project, Project management in the development of society: Abstracts of The 8th International Conference. Kyiv, KNUBA, 68–70.
dc.relation.referencesen7. Friedmann O., Hansen T. and Zwick U. 2011. Subexponential lower bounds for randomized pivoting rules for the simplex algorithm, Proceedings of the 43rd annual ACM symposium on Theory of computing. New York, NY, USA. STOC’11, ACM, 283–292.
dc.relation.referencesen8. Friedmann O. 2011. A subexponential lower bound for zadeh’s pivoting rule for solving linear programs and games, Proceedings of the 15th international conference on Integer programming and combinatoral optimization. Berlin, Heidelberg. IPCO’11, Springer Verlag, 2011, 192–206.
dc.relation.referencesen9. Titov S. D., Chernova L. S. 2017. Higher and Applied Mathematics: Training Manual: In 2 Parts, Part 1. Kharkiv, Fakt, 336.
dc.rights.holder© Copyright by Lviv Polytechnic National University 2019
dc.rights.holder© Copyright by University of Engineering and Economics in Rzeszów 2019
dc.subjectlinear optimization
dc.subjectprimal problem
dc.subjectdual problem
dc.subjectduality
dc.subjectobjective function
dc.subjectconstraint system
dc.subjectpairs of dual problems
dc.titleDetermination of approaches for project costs minimization with use of dual problems
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v8n4_Chernov_S-Determination_of_approaches_61-68.pdf
Size:
181.19 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v8n4_Chernov_S-Determination_of_approaches_61-68__COVER.png
Size:
436.94 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.98 KB
Format:
Plain Text
Description: