Quasi-static problem of thermoelasticity for layered shallow cylindrical shells of irregular structure

dc.citation.epage211
dc.citation.issue1
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage204
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМусій, Р.
dc.contributor.authorЖидик, У.
dc.contributor.authorВолошин, М.
dc.contributor.authorСидорчук, О.
dc.contributor.authorГук, Л.
dc.contributor.authorРак, Н.
dc.contributor.authorMusii, R.
dc.contributor.authorZhydyk, U.
dc.contributor.authorVoloshyn, M.
dc.contributor.authorSydorchuk, O.
dc.contributor.authorHuk, L.
dc.contributor.authorRak, N.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:54:50Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДля прямокутних в плані шаруватих пологих циліндричних оболонок нерегулярної структури сформульована квазістатична задача незв’язаної термопружності. За математичну модель використано рівняння зсувної теорії пологих оболонок типу Тимошенка. Замкнутий розв’язок сформульованої задачі знайдено методами інтегральних перетворень. Чисельно проаналізовано розподіл температури, переміщень, зусиль і моментів у двошаровій циліндричній оболонці за локального конвективного нагрівання.
dc.description.abstractFor rectangular layered shallow cylindrical shells of irregular structure, the quasi-static problem of unbound thermoelasticity is formulated. As a mathematical model, the equations of the shear theory of shallow shells of Timoshenko type are used. The closed solution for the formulated problem is found by the methods of integral transformations. The distribution of temperature, displacements, forces and moments in a two-layer cylindrical shell under local convective heating is analyzed numerically.
dc.format.extent204-211
dc.format.pages8
dc.identifier.citationQuasi-static problem of thermoelasticity for layered shallow cylindrical shells of irregular structure / R. Musii, U. Zhydyk, M. Voloshyn, O. Sydorchuk, L. Huk, N. Rak // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 204–211.
dc.identifier.citationenQuasi-static problem of thermoelasticity for layered shallow cylindrical shells of irregular structure / R. Musii, U. Zhydyk, M. Voloshyn, O. Sydorchuk, L. Huk, N. Rak // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 204–211.
dc.identifier.doi10.23939/mmc2023.01.204
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63491
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 1 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 1 (10), 2023
dc.relation.references[1] Reddy J. N. Mechanics of Laminated Composite Plates and Shells. Theory and Analysis. New York, CRC Press (2004).
dc.relation.references[2] Encyclopedia of Thermal Stresses (ed. by R. Hetnarski). Springer. Vol. 11 (2014).
dc.relation.references[3] Kolyano Yu. M. Methods of thermal conductivity and thermoelasticity of heterogeneous bodies. Kyiv, Naukova Dumka (1992), (in Ukrainian).
dc.relation.references[4] Brischetto S., Carrera E. Heat conduction and thermal analysis in multilayered plates and shells. Mechanics Research Communications. 38 (6), 449–455 (2011).
dc.relation.references[5] Kushnir R. M., Nykolyshyn M. M., Zhydyk U. V., Flyachok V. M. On the theory of inhomogeneous anisotropic shells with initial stresses. Journal of Mathematical Sciences. 186, 61–72 (2012).
dc.relation.references[6] Tokovyy Y., Chyzh A., Ma C. Thermal analysis of radially-inhomogeneous hollow cylinders vs cylindrical shells. Proceedings of the sixth ACMFMS. Taiwan. 216–219 (2018).
dc.relation.references[7] Ootao Y., Tanigawa Y., Miyatake K. Transient thermal stresses of cross-ply laminated cylindrical shell using a higher-order shear deformation theory. Journal of Thermal Stresses. 33 (1), 55–74 (2010).
dc.relation.references[8] Zhydyk U. V., Flyachok V. M. Temperature fields in shallow shells of a layered structure. Qualilogy of the Book. 1 (31), 94–97 (2017), (in Ukrainian).
dc.relation.references[9] Zhydyk U. V. Layered transversely reinforced cylindrical shell under unsteady heating. Appl. Mechanical Problems & Math. 17, 106–112 (2019), (in Ukrainian).
dc.relation.references[10] Fazelzadeh S. A., Rahmani S., Ghavanloo E., Marzocca P. Thermoelastic vibration of doubly-curved nanocomposite shells reinforced of doubly-curved of doubly-curved nano-composite shells reinforced. Journal of Thermal Stresses. 42 (1), 1–17 (2019).
dc.relation.references[11] Punera D., Kant T., Desai Y. M. Thermoelastic analysis of laminated and functionally graded sandwich cylindrical shells with two refined higher order models. Journal of Thermal Stresses. 41 (1), 54–79 (2018).
dc.relation.references[12] Brischetto S., Carrera E. Coupled thermo-mechanical analysis of one-layered and multilayered isotropic and composite shells. Computer Modeling in Engineering & Sciences. 56 (3), 249–301 (2010).
dc.relation.references[13] Li Y., Yang L., Zhang L., Gao Y. Exact thermoelectroelastic solution of layered one-dimensional quasicrystal cylindrical shells. Journal of Thermal Stresses. 41 (10–12), 1450–1467 (2018).
dc.relation.references[14] Musii R. S., Zhydyk U. V., Mokryk O. Ya., Melnyk N. B. Functionally gradient isotropic cylindrical shell locally heated by heat sources. Mathematical Modeling and Computing. 6 (2), 367–373 (2019).
dc.relation.references[15] Musii R. S., Zhydyk U. V., Turchyn Ya. B., Svidrak I. H., Baibakova I. M. Stressed and strained state of layered cylindrical shell under local convective heating. Mathematical Modeling and Computing. 9 (1), 143–151 (2022).
dc.relation.referencesen[1] Reddy J. N. Mechanics of Laminated Composite Plates and Shells. Theory and Analysis. New York, CRC Press (2004).
dc.relation.referencesen[2] Encyclopedia of Thermal Stresses (ed. by R. Hetnarski). Springer. Vol. 11 (2014).
dc.relation.referencesen[3] Kolyano Yu. M. Methods of thermal conductivity and thermoelasticity of heterogeneous bodies. Kyiv, Naukova Dumka (1992), (in Ukrainian).
dc.relation.referencesen[4] Brischetto S., Carrera E. Heat conduction and thermal analysis in multilayered plates and shells. Mechanics Research Communications. 38 (6), 449–455 (2011).
dc.relation.referencesen[5] Kushnir R. M., Nykolyshyn M. M., Zhydyk U. V., Flyachok V. M. On the theory of inhomogeneous anisotropic shells with initial stresses. Journal of Mathematical Sciences. 186, 61–72 (2012).
dc.relation.referencesen[6] Tokovyy Y., Chyzh A., Ma C. Thermal analysis of radially-inhomogeneous hollow cylinders vs cylindrical shells. Proceedings of the sixth ACMFMS. Taiwan. 216–219 (2018).
dc.relation.referencesen[7] Ootao Y., Tanigawa Y., Miyatake K. Transient thermal stresses of cross-ply laminated cylindrical shell using a higher-order shear deformation theory. Journal of Thermal Stresses. 33 (1), 55–74 (2010).
dc.relation.referencesen[8] Zhydyk U. V., Flyachok V. M. Temperature fields in shallow shells of a layered structure. Qualilogy of the Book. 1 (31), 94–97 (2017), (in Ukrainian).
dc.relation.referencesen[9] Zhydyk U. V. Layered transversely reinforced cylindrical shell under unsteady heating. Appl. Mechanical Problems & Math. 17, 106–112 (2019), (in Ukrainian).
dc.relation.referencesen[10] Fazelzadeh S. A., Rahmani S., Ghavanloo E., Marzocca P. Thermoelastic vibration of doubly-curved nanocomposite shells reinforced of doubly-curved of doubly-curved nano-composite shells reinforced. Journal of Thermal Stresses. 42 (1), 1–17 (2019).
dc.relation.referencesen[11] Punera D., Kant T., Desai Y. M. Thermoelastic analysis of laminated and functionally graded sandwich cylindrical shells with two refined higher order models. Journal of Thermal Stresses. 41 (1), 54–79 (2018).
dc.relation.referencesen[12] Brischetto S., Carrera E. Coupled thermo-mechanical analysis of one-layered and multilayered isotropic and composite shells. Computer Modeling in Engineering & Sciences. 56 (3), 249–301 (2010).
dc.relation.referencesen[13] Li Y., Yang L., Zhang L., Gao Y. Exact thermoelectroelastic solution of layered one-dimensional quasicrystal cylindrical shells. Journal of Thermal Stresses. 41 (10–12), 1450–1467 (2018).
dc.relation.referencesen[14] Musii R. S., Zhydyk U. V., Mokryk O. Ya., Melnyk N. B. Functionally gradient isotropic cylindrical shell locally heated by heat sources. Mathematical Modeling and Computing. 6 (2), 367–373 (2019).
dc.relation.referencesen[15] Musii R. S., Zhydyk U. V., Turchyn Ya. B., Svidrak I. H., Baibakova I. M. Stressed and strained state of layered cylindrical shell under local convective heating. Mathematical Modeling and Computing. 9 (1), 143–151 (2022).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectполога циліндрична оболонка
dc.subjectшарувата
dc.subjectнерегулярної структури
dc.subjectтеплообмін
dc.subjectтермопружність
dc.subjectshallow cylindrical shell
dc.subjectlayered
dc.subjectirregular structure
dc.subjectheat transfer
dc.subjectthermoelasticity
dc.titleQuasi-static problem of thermoelasticity for layered shallow cylindrical shells of irregular structure
dc.title.alternativeКвазістатична задача термопружності для шаруватих пологих циліндричних оболонок нерегулярної структури
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n1_Musii_R-Quasi_static_problem_of_thermoelasticity_204-211.pdf
Size:
1019.04 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n1_Musii_R-Quasi_static_problem_of_thermoelasticity_204-211__COVER.png
Size:
418.48 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: