Study of liquid crystal cell doped with BODIPY for lasing application

dc.citation.epage109
dc.citation.issue1
dc.citation.journalTitleІнфокомунікаційні технології та електронна інженерія
dc.citation.spage102
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationКаунаський технологічний університет
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationKaunas University of Technology
dc.contributor.authorПетровська, Г.
dc.contributor.authorЯремчук, І.
dc.contributor.authorМельников, С.
dc.contributor.authorВолинюк, Д.
dc.contributor.authorСтахіра, П.
dc.contributor.authorPetrovska, H.
dc.contributor.authorYaremchuk, I.
dc.contributor.authorMelnykov, S.
dc.contributor.authorVolyniuk, D.
dc.contributor.authorStakhira, P.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-08-17T08:58:09Z
dc.date.available2023-08-17T08:58:09Z
dc.date.created2022-03-01
dc.date.issued2022-03-01
dc.description.abstractДосліджено застосування похідної органічних напівпровідників BODIPY для лазерної генерації. Нематичний рідкий кристал, легований похідною BODIPY, досліджено як середовище підсилення для лазера із розподіленим зворотним зв’язком. Визначено спектр відбивання нематичного рідкого кристала та спектри випромінювання нематичних рідких кристалів, легованих похідною BODIPY, у випадку лазерного накачування з довжинами хвиль 532 та 515 нм. Отримані спектри відповідають режиму, близькому до порогового.
dc.description.abstractThe organic semiconductors BODIPY derivative was studied for lasing application. The nematic liquid crystal doped with BODIPY derivative was researched as gain medium for distributed feedback laser. Reflection spectrum for nematic liquid crystal and emission spectra of nematic liquid crystals doped with BODIPY derivative at the laser pumping with wavelength of 532 and 515 nm were determined. Obtained spectra correspond to the regime which is close to the threshold.
dc.format.extent102-109
dc.format.pages8
dc.identifier.citationStudy of liquid crystal cell doped with BODIPY for lasing application / H. Petrovska, I. Yaremchuk, S. Melnykov, D. Volyniuk, P. Stakhira // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 2. — No 1. — P. 102–109.
dc.identifier.citationenStudy of liquid crystal cell doped with BODIPY for lasing application / H. Petrovska, I. Yaremchuk, S. Melnykov, D. Volyniuk, P. Stakhira // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 2. — No 1. — P. 102–109.
dc.identifier.doidoi.org/10.23939/ictee2022.01.102
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59668
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofІнфокомунікаційні технології та електронна інженерія, 1 (2), 2022
dc.relation.ispartofInfocommunication Technologies and Electronic Engineering, 1 (2), 2022
dc.relation.references[1] Bonal V., Villalvilla J. M., Quintana J. A., Boj P. G., Lin N., Watanabe S., Díaz‐García M. A. (2020), “Blue and Deep‐Blue‐Emitting Organic Lasers with Top‐Layer Distributed Feedback Resonators”, Advanced Optical Materials, Vol. 8, pp. 2001153.
dc.relation.references[2] Hamanaka, V. N., Salsberg, E., Fonseca, F. J., & Aziz, H. (2020), Investigating the influence of the solution-processing method on the morphological properties of organic semiconductor films and their impact on OLED performance and lifetime. Organic Electronics, Vol. 78, pp. 105509.
dc.relation.references[3] Wang, T., & Zhang, X. (2017), Laser excitation induced modifications on distributed feedback microcavities using organic semiconductors. Optics Communications, Vol. 392, pp. 95–99.
dc.relation.references[4] Senevirathne, C. A., Sandanayaka, A. S., Karunathilaka, B. S., Fujihara, T., Bencheikh, F., Qin, C., ... & Adachi, C. (2021), Markedly improved performance of optically pumped organic lasers with two-dimensional distributed-feedback gratings. ACS Photonics, Vol. 8, No. 5, pp. 1324–1334.
dc.relation.references[5] Zhang, Q., Tao, W., Huang, J., Xia, R., & Cabanillas-Gonzalez, J. (2021), Toward Electrically Pumped Organic Lasers: A Review and Outlook on Material Developments and Resonator Architectures. Advanced Photonics Research, Vol. 2, No. 5, pp. 2000155.
dc.relation.references[6] Fu, Y., & Zhai, T. (2020), Distributed feedback organic lasing in photonic crystals. Frontiers of Optoelectronics, Vol. 13, No 1, pp. 18–34.
dc.relation.references[7] Verma, V. B., & Elarde, V. C. (2021). Nanoscale selective area epitaxy: From semiconductor lasers to single-photon sources. Progress in Quantum Electronics, Vol. 75, pp. 100305.
dc.relation.references[8] Minotto, A., Bulut, I., Rapidis, A. G., Carnicella, G., Patrini, M., Lunedei, E., ... & Cacialli, F. (2021), Towards efficient near-infrared fluorescent organic light-emitting diodes. Light: Science & Applications, Vol. 10, No 1, pp. 1–10.
dc.relation.references[9] Data, P., & Takeda, Y. (2019), Recent advancements in and the future of organic emitters: TADF‐and RTP‐ active multifunctional organic materials. Chemistry–An Asian Journal, Vol. 14, No. 10, pp. 1613–1636.
dc.relation.references[10] Meier, S. B., Tordera, D., Pertegas, A., Roldan-Carmona, C., Orti, E., & Bolink, H. J. (2014), Light-emitting electrochemical cells: recent progress and future prospects. Materials Today, Vol. 17, No. 5, pp. 217–223.
dc.relation.references[11] Wu, T., Zheng, Y. X., Longhi, G., & Law, G. L. (2021), Chiral organic chromophoric systems in the enhancement of circularly polarized luminescence. Frontiers in Chemistry, Vol. 9, pp. 35655.
dc.relation.references[12] Torricelli, F., Alessandri, I., Macchia, E., Vassalini, I., Maddaloni, M., & Torsi, L. (2022), Green Materials and Technologies for Sustainable Organic Transistors. Advanced Materials Technologies, Vol. 7, No 2, pp. 2100445.
dc.relation.references[13] Zhu, C., Liu, L., Yang, Q., Lv, F., & Wang, S. (2012), Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chemical reviews, Vol. 112, No 8, pp. 4687–4735.
dc.relation.references[14] Holmes, N. P., Chambon, S., Holmes, A., Xu, X., Hirakawa, K., Deniau, E., ... & Bousquet, A. (2021), Organic semiconductor colloids: From the knowledge acquired in photovoltaics to the generation of solar hydrogen fuel. Current Opinion in Colloid & Interface Science, Vol. 56, pp. 101511.
dc.relation.references[15] Jatautiene, E., Simokaitiene, J., Sych, G., Volyniuk, D., Ivaniuk, K., Stakhira, P., ... & Grazulevicius, J. V. (2021), Adjustment of electronic and emissive properties of indolocarbazoles for non-doped OLEDs and cholesteric liquid crystal lasers. Applied Materials Today, Vol. 24, pp. 101121.
dc.relation.references[16] Ledwon, P., Motyka, R., Ivaniuk, K., Pidluzhna, A., Martyniuk, N., Stakhira, P., ... & Ågren, H. (2020), The effect of molecular structure on the properties of quinoxaline-based molecules for OLED applications. Dyes and Pigments, Vol. 173, pp. 108008.
dc.relation.references[17] Kuehne, A. J., & Gather, M. C. (2016), Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chemical Reviews, Vol. 116, No. 21, pp. 12823–12864.
dc.relation.references[18] Bassan, E., Gualandi, A., Cozzi, P. G., & Ceroni, P. (2021), Design of BODIPY dyes as triplet photosensitizers: electronic properties tailored for solar energy conversion, photoredox catalysis and photodynamic therapy. Chemical Science, Vol. 12, No. 19, pp. 6607–6628.
dc.relation.references[19] Esnal, I., ValoisEscamilla, I., Gómez‐Durán, C. F., UríasBenavides, A., Betancourt‐Mendiola, M. L., López Arbeloa, I., ... & PeñaCabrera, E. (2013), Blue‐to‐orange colortunable laser emission from tailored boron dipyrromethene dyes. ChemPhysChem, Vol. 14, No. 18, pp. 4134–4142.
dc.relation.references[20] Chen, Y., Zhao, J., Guo, H., & Xie, L. (2012), Geometry relaxation-induced large Stokes shift in red-emitting borondipyrromethenes (BODIPY) and applications in fluorescent thiol probes. The Journal of organic chemistry, Vol. 77, No. 5, pp. 2192–2206.
dc.relation.referencesen[1] Bonal V., Villalvilla J. M., Quintana J. A., Boj P. G., Lin N., Watanabe S., Díaz‐García M. A. (2020), "Blue and Deep‐Blue‐Emitting Organic Lasers with Top‐Layer Distributed Feedback Resonators", Advanced Optical Materials, Vol. 8, pp. 2001153.
dc.relation.referencesen[2] Hamanaka, V. N., Salsberg, E., Fonseca, F. J., & Aziz, H. (2020), Investigating the influence of the solution-processing method on the morphological properties of organic semiconductor films and their impact on OLED performance and lifetime. Organic Electronics, Vol. 78, pp. 105509.
dc.relation.referencesen[3] Wang, T., & Zhang, X. (2017), Laser excitation induced modifications on distributed feedback microcavities using organic semiconductors. Optics Communications, Vol. 392, pp. 95–99.
dc.relation.referencesen[4] Senevirathne, C. A., Sandanayaka, A. S., Karunathilaka, B. S., Fujihara, T., Bencheikh, F., Qin, C., ... & Adachi, C. (2021), Markedly improved performance of optically pumped organic lasers with two-dimensional distributed-feedback gratings. ACS Photonics, Vol. 8, No. 5, pp. 1324–1334.
dc.relation.referencesen[5] Zhang, Q., Tao, W., Huang, J., Xia, R., & Cabanillas-Gonzalez, J. (2021), Toward Electrically Pumped Organic Lasers: A Review and Outlook on Material Developments and Resonator Architectures. Advanced Photonics Research, Vol. 2, No. 5, pp. 2000155.
dc.relation.referencesen[6] Fu, Y., & Zhai, T. (2020), Distributed feedback organic lasing in photonic crystals. Frontiers of Optoelectronics, Vol. 13, No 1, pp. 18–34.
dc.relation.referencesen[7] Verma, V. B., & Elarde, V. C. (2021). Nanoscale selective area epitaxy: From semiconductor lasers to single-photon sources. Progress in Quantum Electronics, Vol. 75, pp. 100305.
dc.relation.referencesen[8] Minotto, A., Bulut, I., Rapidis, A. G., Carnicella, G., Patrini, M., Lunedei, E., ... & Cacialli, F. (2021), Towards efficient near-infrared fluorescent organic light-emitting diodes. Light: Science & Applications, Vol. 10, No 1, pp. 1–10.
dc.relation.referencesen[9] Data, P., & Takeda, Y. (2019), Recent advancements in and the future of organic emitters: TADF‐and RTP‐ active multifunctional organic materials. Chemistry–An Asian Journal, Vol. 14, No. 10, pp. 1613–1636.
dc.relation.referencesen[10] Meier, S. B., Tordera, D., Pertegas, A., Roldan-Carmona, C., Orti, E., & Bolink, H. J. (2014), Light-emitting electrochemical cells: recent progress and future prospects. Materials Today, Vol. 17, No. 5, pp. 217–223.
dc.relation.referencesen[11] Wu, T., Zheng, Y. X., Longhi, G., & Law, G. L. (2021), Chiral organic chromophoric systems in the enhancement of circularly polarized luminescence. Frontiers in Chemistry, Vol. 9, pp. 35655.
dc.relation.referencesen[12] Torricelli, F., Alessandri, I., Macchia, E., Vassalini, I., Maddaloni, M., & Torsi, L. (2022), Green Materials and Technologies for Sustainable Organic Transistors. Advanced Materials Technologies, Vol. 7, No 2, pp. 2100445.
dc.relation.referencesen[13] Zhu, C., Liu, L., Yang, Q., Lv, F., & Wang, S. (2012), Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chemical reviews, Vol. 112, No 8, pp. 4687–4735.
dc.relation.referencesen[14] Holmes, N. P., Chambon, S., Holmes, A., Xu, X., Hirakawa, K., Deniau, E., ... & Bousquet, A. (2021), Organic semiconductor colloids: From the knowledge acquired in photovoltaics to the generation of solar hydrogen fuel. Current Opinion in Colloid & Interface Science, Vol. 56, pp. 101511.
dc.relation.referencesen[15] Jatautiene, E., Simokaitiene, J., Sych, G., Volyniuk, D., Ivaniuk, K., Stakhira, P., ... & Grazulevicius, J. V. (2021), Adjustment of electronic and emissive properties of indolocarbazoles for non-doped OLEDs and cholesteric liquid crystal lasers. Applied Materials Today, Vol. 24, pp. 101121.
dc.relation.referencesen[16] Ledwon, P., Motyka, R., Ivaniuk, K., Pidluzhna, A., Martyniuk, N., Stakhira, P., ... & Ågren, H. (2020), The effect of molecular structure on the properties of quinoxaline-based molecules for OLED applications. Dyes and Pigments, Vol. 173, pp. 108008.
dc.relation.referencesen[17] Kuehne, A. J., & Gather, M. C. (2016), Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chemical Reviews, Vol. 116, No. 21, pp. 12823–12864.
dc.relation.referencesen[18] Bassan, E., Gualandi, A., Cozzi, P. G., & Ceroni, P. (2021), Design of BODIPY dyes as triplet photosensitizers: electronic properties tailored for solar energy conversion, photoredox catalysis and photodynamic therapy. Chemical Science, Vol. 12, No. 19, pp. 6607–6628.
dc.relation.referencesen[19] Esnal, I., ValoisEscamilla, I., Gómez‐Durán, C. F., UríasBenavides, A., Betancourt‐Mendiola, M. L., López Arbeloa, I., ... & PeñaCabrera, E. (2013), Blue‐to‐orange colortunable laser emission from tailored boron dipyrromethene dyes. ChemPhysChem, Vol. 14, No. 18, pp. 4134–4142.
dc.relation.referencesen[20] Chen, Y., Zhao, J., Guo, H., & Xie, L. (2012), Geometry relaxation-induced large Stokes shift in red-emitting borondipyrromethenes (BODIPY) and applications in fluorescent thiol probes. The Journal of organic chemistry, Vol. 77, No. 5, pp. 2192–2206.
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectорганічні напівпровідники
dc.subjectлазер із розподіленим зворотним зв’язком
dc.subjectспектр випромінювання
dc.subjectorganic semiconductors
dc.subjectfeedback distributed laser
dc.subjectemission spectrum
dc.subject.udc621.382.592
dc.titleStudy of liquid crystal cell doped with BODIPY for lasing application
dc.title.alternativeДослідження рідкокристалічного елемента, легованого BODIPY, для лазерного застосування
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v2n1_Petrovska_H-Study_of_liquid_crystal_102-109.pdf
Size:
561.98 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v2n1_Petrovska_H-Study_of_liquid_crystal_102-109__COVER.png
Size:
1.11 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: