An Insightful Approach to Understanding the Mechanism of Amino Acid Adsorption on Inorganic Surfaces: Glycine on Silica
dc.citation.epage | 261 | |
dc.citation.issue | 2 | |
dc.citation.spage | 253 | |
dc.contributor.affiliation | University of Colombo | |
dc.contributor.author | Godahewa, Sahan M. | |
dc.contributor.author | Tillekaratne, Aashani | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:30:42Z | |
dc.date.available | 2024-02-12T08:30:42Z | |
dc.date.created | 2023-03-16 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | Досліджено адсорбцію гліцину на поверхні аморфного кремнезему з метою показати каталітичну активність поверхонь кремнезему щодо утворення пептидних зв’язків на пребіотичній землі. Наночастинки кремнезему були синтезовані за допомогою мікрохвильового методу й охарактеризовані СЕМ. Гліцин з водного розчину адсорбували на одержаних наночастинках, а адсорбційну поведінку характеризували за допомогою аналізів FTIR і ТГА. За концентрації гліцину 0,5 М і за pH=7 спостерігалася сприятлива адсорбція, підпорядкована моделі ізотерми Ленгмюра. Утворення пептидного зв’язку підтверджено FTIR аналізом. Зроблено висновок, що адсорбція гліцину відбувається через електростатичну взаємодію та утворення водневих зв’язків між поверхнею кремнезему і молекулами гліцину. | |
dc.description.abstract | The adsorption of glycine on amorphous silica surface has been studied to demonstrate the catalytic activity of silica surfaces towards the formation of peptide bonds on prebiotic earth. Silica nanoparticles were synthesized using a microwave assisted method and the nanoparticles were characterized using SEM. Glycine was adsorbed from aqueous solution on the nanoparticles and the adsorption behavior was characterized using FTIR and TGA analyses. At a glycine concentration of 0.5M and at pH=7, favorable adsorption was observed which obeyed the Langmuir isotherm model. From the FTIR characterization, peptide bond formation was confirmed. It was concluded that the adsorption of glycine occurs via electrostatic interactions as well as hydrogen bonding between the silica surface and glycine molecules. | |
dc.format.extent | 253-261 | |
dc.format.pages | 9 | |
dc.identifier.citation | Godahewa S. M. An Insightful Approach to Understanding the Mechanism of Amino Acid Adsorption on Inorganic Surfaces: Glycine on Silica / Sahan M. Godahewa, Aashani Tillekaratne // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 253–261. | |
dc.identifier.citationen | Godahewa S. M. An Insightful Approach to Understanding the Mechanism of Amino Acid Adsorption on Inorganic Surfaces: Glycine on Silica / Sahan M. Godahewa, Aashani Tillekaratne // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 253–261. | |
dc.identifier.doi | doi.org/10.23939/chcht17.02.253 | |
dc.identifier.issn | 1996-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61253 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (17), 2023 | |
dc.relation.references | [1] Guo, C.; Holland, G.P. Investigating Lysine Adsorption on Fumed Silica Nanoparticles. J. Phys. Chem. C 2014, 118, 25792-25801. | |
dc.relation.references | [2] Pászti, Z.; Keszthelyi, T.; Hakkel, O.; Guczi, L. Adsorption of Amino Acids on Hydrophilic Surfaces. J. Phys. Condens. Matter 2008, 20, 22. https://doi.org/10.1088/0953-8984/20/22/224014 | |
dc.relation.references | [3] Bhakta, S.A.; Evans, E.; Benavidez, T.E.; Garcia, C.D. Protein Adsorption onto Nanomaterials for the Development of Biosensors and Analytical Devices: A Review. Anal. Chim. Acta 2015, 872, 7-25. https://doi.org/10.1016%2Fj.aca.2014.10.031 | |
dc.relation.references | [4] Kitadai, N.; Yokoyama, T.; Nakashima, S. ATR-IR Spectroscopic Study of L-Lysine Adsorption on Amorphous Silica. J. Colloid Interface Sci. 2009, 329, 31-37. http://dx.doi.org/10.1016/j.jcis.2008.09.072 | |
dc.relation.references | [5] Song W.; Mano, J.F. Interactions between Cells or Proteins and Surfaces Exhibiting Extreme Wettabilities. Soft Matter 2013, 9, 2985-2999. http://dx.doi.org/10.1039/C3SM27739A | |
dc.relation.references | [6] Zhu, C.; Wang, Q.; Huang, X.; Yun, J.; Hu, Q.; Yang, G. Adsorption of Amino Acids at Clay Surfaces and Implication for Biochemical Reactions: Role and Impact of Surface Charges. Colloids Surf. B 2019, 183, 110458. http://dx.doi.org/10.1016/j.colsurfb.2019.110458 | |
dc.relation.references | [7] Kim, J.-H.; Yoon, J.-Y. Protein Adsorption on Polymer Particles. In Encyclopedia of Surface and Colloid Science; Hubbard, A.T., Ed.; CRC Press, 2002; pp 4373-4381. | |
dc.relation.references | [8] Vlasova N.N.; Golovkova, L.P. The Adsorption of Amino Acids on the Surface of Highly Dispersed Silica. Colloid J. 2004, 66, 657-662. http://dx.doi.org/10.1007/s10595-005-0042-3 | |
dc.relation.references | [9] Nagendra Prasad, Y.; Ramanathan, S. Role of Amino-Acid Adsorption on Silica and Silicon Nitride Surfaces During STI CMP. Electrochem. Solid-State Lett. 2006, 9, 337-339. | |
dc.relation.references | [10] Nakanishi, K.; Sakiyama, T.; Imamura, K. On the Adsorption of Proteins on Solid Surfaces, a Common but Very Complicated Phenomenon. J. Biosci. Bioeng. 2001, 91, 233-244. https://doi.org/10.1016/S1389-1723(01)80127-4 | |
dc.relation.references | [11] Hlady, V.; Buijs, J. Protein Adsorption on Solid Surfaces. Curr. Opin. Biotechnol. 1996, 7, 72-77. https://doi.org/10.1016%2Fs0958-1669(96)80098-x | |
dc.relation.references | [12] Cleaves, H.J. Prebiotic Chemistry: What We Know, What We Don’t. Evol.: Educ. Outreach 2012, 5, 342-360. https://doi.org/10.1007/s12052-012-0443-9 | |
dc.relation.references | [13] Bujdák, J.; Rode, B.M. Silica, Alumina and Clay Catalyzed Peptide Bond Formation: Enhanced Efficiency of Alumina Catalyst. Orig. Life Evol. Biosph. 1999, 29, 451-461. | |
dc.relation.references | [14] Lomenech, C.; Bery, G.; Costa, D.; Stievano, L.; Lambert, J.-F. Theoretical and Experimental Study of the Adsorption of Neutral Glycine on Silica from the Gas Phase. ChemPhysChem 2005, 6, 1061-1070. http://dx.doi.org/10.1002/cphc.200400608 | |
dc.relation.references | [15] Martra, G.; Deiana, Ch.; Sakhno, Yu.; Barberis, I.; Fabbiani, M.; Pazzi, M.; Vincenti, M. The Formation and Self-Assembly of Long Prebiotic Oligomers Produced by the Condensation of Unactivated Amino Acids on Oxide Surfaces. Angew. Chem. Int. Ed. 2014, 53, 4671-4674. https://doi.org/10.1002/anie.201311089 | |
dc.relation.references | [16] Stievano, L.; Piao, L.Yu.; Lopes, I.; Meng, M.; Costa, D.; Lambert, J.-F. Glycine and Lysine Adsorption and Reactivity on the Surface of Amorphous Silica. Eur. J. Mineral. 2007, 19, 321-331. https://doi.org/10.1127/0935-1221/2007/0019-1731 | |
dc.relation.references | [17] Bujdák, J.; Rode, B.M. Glycine Oligomerization on Silica and Alumina. React. Kinet. Catal. Lett. 1997, 62, 281-286. https://doi.org/10.1007/BF02475464 | |
dc.relation.references | [18] Rimola, A.; Fabbiani, M.; Sodupe, M.; Ugliengo, P.; Martra, G. How Does Silica Catalyze the Amide Bond Formation under Dry Conditions? Role of Specific Surface Silanol Pairs. ACS Catal. 2018, 8, 4558-4568. https://doi.org/10.1021/acscatal.7b03961 | |
dc.relation.references | [19] Lambert, J.F.; Jaber, M.; Georgelin, T.; Stievano, L. A Comparative Study of the Catalysis of Peptide Bond Formation by Oxide Surfaces. Phys. Chem. Chem. Phys. 2013, 15, 13371-13380. https://doi.org/10.1039/C3CP51282G | |
dc.relation.references | [20] Rimola, A.; Tosoni, S.; Sodupe, M.; Ugliengo, P. Does Silica Surface Catalyse Peptide Bond Formation? New Insights from First-Principles Calculations. ChemPhysChem 2006, 7, 157-163. https://doi.org/10.1002/cphc.200500401 | |
dc.relation.references | [21] Emami, F.S.; Puddu, V.; Berry, R.J.; Varshney, V.; Patwardhan, S.V.; Perry, C.C.; Heinz, H. Prediction of Specific Biomolecule Adsorption on Silica Surfaces as a Function of pH and Particle Size. Chem. Mater. 2014, 26, 5725-5734. https://doi.org/10.1021/cm5026987 | |
dc.relation.references | [22] Heinz, H.; Ramezani-Dakhel, H. Simulations of Inorganic-Bioorganic Interfaces to Discover New Materials: Insights, Comparisons to Experiment, Challenges, and Opportunities. Chem. Soc. Rev. 2016, 45, 412-448. https://doi.org/10.1039/C5CS00890E | |
dc.relation.references | [23] Feifel, S.C.; Lisdat, F. Silica Nanoparticles for the Layer-by-Layer Assembly of Fully Electro-Active Cytochrome c Multilayers. J. Nanobiotechnology 2011, 9, 59, 2011. https://doi.org/10.1186/1477-3155-9-59 | |
dc.relation.references | [24] Barros, C.H.N.; Fulaz, S.; Vitale, S.; Casey, E.; Quinn, L. Interactions between Functionalised Silica Nanoparticles and Pseudomonas fluorescens Biofilm Matrix: A Focus on the Protein Corona. PLoS One 2020, 15, 1-15. https://doi.org/10.1371/journal.pone.0236441 | |
dc.relation.references | [25] Care, A.; Bergquist, P.L.; Sunna, A. Solid-Binding Peptides: Smart Tools for Nanobiotechnology. Trends Biotechnol. 2015, 33, 259-268. https://doi.org/10.1016/j.tibtech.2015.02.005 | |
dc.relation.references | [26] Lynch, I.; Dawson, K.A. Protein-nanoparticle interactions. Nano Today 2008, 3, 40-47. | |
dc.relation.references | [27] Slowing, I.; Vivero-Escoto, J.L.; Wu, C.-W.; Lin, V.S.-Y. Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278-1288. https://doi.org/10.1016/j.addr.2008.03.012 | |
dc.relation.references | [28] Kamarudin, N.H.N.; Jalil, A.A.; Triwahyono, S.; Timmiati, S.N. Microwave-Assisted Synthesis of Mesoporous Silica Nanoparticles as a Drug Delivery Vehicle. Malaysian J. Anal. Sci. 2016, 20, 1382-1389. | |
dc.relation.references | [29] Singho, N.D.; Johan, M.R. Complex Impedance Spectroscopy Study of Silica Nanoparticles Via Sol-Gel Method. Int. J. Electrochem. Sci. 2012, 7, 5604-5615. | |
dc.relation.references | [30] Beganskiene, V.; Sirutkaitis, M.; Kurtinaitiene, M.; Juskenas, R.; Kareiva, A. FTIR, TEM and NMR Investigations of Stöber Silica Nanoparticles. Mater. Sci. (Medziagotyra) 2004, 10, 287-290. | |
dc.relation.references | [31] Yang, Q.; Gong, X.; Song, T.; Yang, J.; Zhu, S.; Li, Y.; Cui, Y.; Li, Y.; Zhang, B.; Chang, J. Quantum dot-Based Immunochromatography Test Strip for Rapid, Quantitative and Sensitive Detection of Alpha Fetoprotein. Biosens. Bioelectron. 2011, 30, 145-150. https://doi.org/10.1016/j.bios.2011.09.002 | |
dc.relation.references | [32] Rimola, A.; Costa, D.; Sodupe, M.; Lambert, J.F.; Ugliengo, P. Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments. Chem. Rev. 2013, 113, 4216-4313. https://doi.org/10.1021/cr3003054 | |
dc.relation.references | [33] Rimola, A.; Sodupe, M.; Ugliengo, P. Amide and Peptide Bond Formation: Interplay between Strained Ring Defects and Silanol Groups at Amorphous Silica Surfaces. J. Phys. Chem. C 2016, 120, 24817-24826. https://doi.org/10.1021/acs.jpcc.6b07945 | |
dc.relation.references | [34] Hassanali, A.; Zhang, H.; Knight, C.; Shin, Y.K.; Singer, S.J. The Dissociated Amorphous Silica Surface: Model Development and Evaluation. J. Chem. Theory Comput. 2010, 6, 3456-3471. https://doi.org/10.1021/ct100260z | |
dc.relation.referencesen | [1] Guo, C.; Holland, G.P. Investigating Lysine Adsorption on Fumed Silica Nanoparticles. J. Phys. Chem. P. 2014, 118, 25792-25801. | |
dc.relation.referencesen | [2] Pászti, Z.; Keszthelyi, T.; Hakkel, O.; Guczi, L. Adsorption of Amino Acids on Hydrophilic Surfaces. J. Phys. Condens. Matter 2008, 20, 22. https://doi.org/10.1088/0953-8984/20/22/224014 | |
dc.relation.referencesen | [3] Bhakta, S.A.; Evans, E.; Benavidez, T.E.; Garcia, C.D. Protein Adsorption onto Nanomaterials for the Development of Biosensors and Analytical Devices: A Review. Anal. Chim. Acta 2015, 872, 7-25. https://doi.org/10.1016%2Fj.aca.2014.10.031 | |
dc.relation.referencesen | [4] Kitadai, N.; Yokoyama, T.; Nakashima, S. ATR-IR Spectroscopic Study of L-Lysine Adsorption on Amorphous Silica. J. Colloid Interface Sci. 2009, 329, 31-37. http://dx.doi.org/10.1016/j.jcis.2008.09.072 | |
dc.relation.referencesen | [5] Song W.; Mano, J.F. Interactions between Cells or Proteins and Surfaces Exhibiting Extreme Wettabilities. Soft Matter 2013, 9, 2985-2999. http://dx.doi.org/10.1039/P.3SM27739A | |
dc.relation.referencesen | [6] Zhu, C.; Wang, Q.; Huang, X.; Yun, J.; Hu, Q.; Yang, G. Adsorption of Amino Acids at Clay Surfaces and Implication for Biochemical Reactions: Role and Impact of Surface Charges. Colloids Surf. B 2019, 183, 110458. http://dx.doi.org/10.1016/j.colsurfb.2019.110458 | |
dc.relation.referencesen | [7] Kim, J.-H.; Yoon, J.-Y. Protein Adsorption on Polymer Particles. In Encyclopedia of Surface and Colloid Science; Hubbard, A.T., Ed.; CRC Press, 2002; pp 4373-4381. | |
dc.relation.referencesen | [8] Vlasova N.N.; Golovkova, L.P. The Adsorption of Amino Acids on the Surface of Highly Dispersed Silica. Colloid J. 2004, 66, 657-662. http://dx.doi.org/10.1007/s10595-005-0042-3 | |
dc.relation.referencesen | [9] Nagendra Prasad, Y.; Ramanathan, S. Role of Amino-Acid Adsorption on Silica and Silicon Nitride Surfaces During STI CMP. Electrochem. Solid-State Lett. 2006, 9, 337-339. | |
dc.relation.referencesen | [10] Nakanishi, K.; Sakiyama, T.; Imamura, K. On the Adsorption of Proteins on Solid Surfaces, a Common but Very Complicated Phenomenon. J. Biosci. Bioeng. 2001, 91, 233-244. https://doi.org/10.1016/S1389-1723(01)80127-4 | |
dc.relation.referencesen | [11] Hlady, V.; Buijs, J. Protein Adsorption on Solid Surfaces. Curr. Opin. Biotechnol. 1996, 7, 72-77. https://doi.org/10.1016%2Fs0958-1669(96)80098-x | |
dc.relation.referencesen | [12] Cleaves, H.J. Prebiotic Chemistry: What We Know, What We Don’t. Evol., Educ. Outreach 2012, 5, 342-360. https://doi.org/10.1007/s12052-012-0443-9 | |
dc.relation.referencesen | [13] Bujdák, J.; Rode, B.M. Silica, Alumina and Clay Catalyzed Peptide Bond Formation: Enhanced Efficiency of Alumina Catalyst. Orig. Life Evol. Biosph. 1999, 29, 451-461. | |
dc.relation.referencesen | [14] Lomenech, C.; Bery, G.; Costa, D.; Stievano, L.; Lambert, J.-F. Theoretical and Experimental Study of the Adsorption of Neutral Glycine on Silica from the Gas Phase. ChemPhysChem 2005, 6, 1061-1070. http://dx.doi.org/10.1002/cphc.200400608 | |
dc.relation.referencesen | [15] Martra, G.; Deiana, Ch.; Sakhno, Yu.; Barberis, I.; Fabbiani, M.; Pazzi, M.; Vincenti, M. The Formation and Self-Assembly of Long Prebiotic Oligomers Produced by the Condensation of Unactivated Amino Acids on Oxide Surfaces. Angew. Chem. Int. Ed. 2014, 53, 4671-4674. https://doi.org/10.1002/anie.201311089 | |
dc.relation.referencesen | [16] Stievano, L.; Piao, L.Yu.; Lopes, I.; Meng, M.; Costa, D.; Lambert, J.-F. Glycine and Lysine Adsorption and Reactivity on the Surface of Amorphous Silica. Eur. J. Mineral. 2007, 19, 321-331. https://doi.org/10.1127/0935-1221/2007/0019-1731 | |
dc.relation.referencesen | [17] Bujdák, J.; Rode, B.M. Glycine Oligomerization on Silica and Alumina. React. Kinet. Catal. Lett. 1997, 62, 281-286. https://doi.org/10.1007/BF02475464 | |
dc.relation.referencesen | [18] Rimola, A.; Fabbiani, M.; Sodupe, M.; Ugliengo, P.; Martra, G. How Does Silica Catalyze the Amide Bond Formation under Dry Conditions? Role of Specific Surface Silanol Pairs. ACS Catal. 2018, 8, 4558-4568. https://doi.org/10.1021/acscatal.7b03961 | |
dc.relation.referencesen | [19] Lambert, J.F.; Jaber, M.; Georgelin, T.; Stievano, L. A Comparative Study of the Catalysis of Peptide Bond Formation by Oxide Surfaces. Phys. Chem. Chem. Phys. 2013, 15, 13371-13380. https://doi.org/10.1039/P.3CP51282G | |
dc.relation.referencesen | [20] Rimola, A.; Tosoni, S.; Sodupe, M.; Ugliengo, P. Does Silica Surface Catalyse Peptide Bond Formation? New Insights from First-Principles Calculations. ChemPhysChem 2006, 7, 157-163. https://doi.org/10.1002/cphc.200500401 | |
dc.relation.referencesen | [21] Emami, F.S.; Puddu, V.; Berry, R.J.; Varshney, V.; Patwardhan, S.V.; Perry, C.C.; Heinz, H. Prediction of Specific Biomolecule Adsorption on Silica Surfaces as a Function of pH and Particle Size. Chem. Mater. 2014, 26, 5725-5734. https://doi.org/10.1021/cm5026987 | |
dc.relation.referencesen | [22] Heinz, H.; Ramezani-Dakhel, H. Simulations of Inorganic-Bioorganic Interfaces to Discover New Materials: Insights, Comparisons to Experiment, Challenges, and Opportunities. Chem. Soc. Rev. 2016, 45, 412-448. https://doi.org/10.1039/P.5CS00890E | |
dc.relation.referencesen | [23] Feifel, S.C.; Lisdat, F. Silica Nanoparticles for the Layer-by-Layer Assembly of Fully Electro-Active Cytochrome c Multilayers. J. Nanobiotechnology 2011, 9, 59, 2011. https://doi.org/10.1186/1477-3155-9-59 | |
dc.relation.referencesen | [24] Barros, C.H.N.; Fulaz, S.; Vitale, S.; Casey, E.; Quinn, L. Interactions between Functionalised Silica Nanoparticles and Pseudomonas fluorescens Biofilm Matrix: A Focus on the Protein Corona. PLoS One 2020, 15, 1-15. https://doi.org/10.1371/journal.pone.0236441 | |
dc.relation.referencesen | [25] Care, A.; Bergquist, P.L.; Sunna, A. Solid-Binding Peptides: Smart Tools for Nanobiotechnology. Trends Biotechnol. 2015, 33, 259-268. https://doi.org/10.1016/j.tibtech.2015.02.005 | |
dc.relation.referencesen | [26] Lynch, I.; Dawson, K.A. Protein-nanoparticle interactions. Nano Today 2008, 3, 40-47. | |
dc.relation.referencesen | [27] Slowing, I.; Vivero-Escoto, J.L.; Wu, C.-W.; Lin, V.S.-Y. Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278-1288. https://doi.org/10.1016/j.addr.2008.03.012 | |
dc.relation.referencesen | [28] Kamarudin, N.H.N.; Jalil, A.A.; Triwahyono, S.; Timmiati, S.N. Microwave-Assisted Synthesis of Mesoporous Silica Nanoparticles as a Drug Delivery Vehicle. Malaysian J. Anal. Sci. 2016, 20, 1382-1389. | |
dc.relation.referencesen | [29] Singho, N.D.; Johan, M.R. Complex Impedance Spectroscopy Study of Silica Nanoparticles Via Sol-Gel Method. Int. J. Electrochem. Sci. 2012, 7, 5604-5615. | |
dc.relation.referencesen | [30] Beganskiene, V.; Sirutkaitis, M.; Kurtinaitiene, M.; Juskenas, R.; Kareiva, A. FTIR, TEM and NMR Investigations of Stöber Silica Nanoparticles. Mater. Sci. (Medziagotyra) 2004, 10, 287-290. | |
dc.relation.referencesen | [31] Yang, Q.; Gong, X.; Song, T.; Yang, J.; Zhu, S.; Li, Y.; Cui, Y.; Li, Y.; Zhang, B.; Chang, J. Quantum dot-Based Immunochromatography Test Strip for Rapid, Quantitative and Sensitive Detection of Alpha Fetoprotein. Biosens. Bioelectron. 2011, 30, 145-150. https://doi.org/10.1016/j.bios.2011.09.002 | |
dc.relation.referencesen | [32] Rimola, A.; Costa, D.; Sodupe, M.; Lambert, J.F.; Ugliengo, P. Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments. Chem. Rev. 2013, 113, 4216-4313. https://doi.org/10.1021/cr3003054 | |
dc.relation.referencesen | [33] Rimola, A.; Sodupe, M.; Ugliengo, P. Amide and Peptide Bond Formation: Interplay between Strained Ring Defects and Silanol Groups at Amorphous Silica Surfaces. J. Phys. Chem. P. 2016, 120, 24817-24826. https://doi.org/10.1021/acs.jpcc.6b07945 | |
dc.relation.referencesen | [34] Hassanali, A.; Zhang, H.; Knight, C.; Shin, Y.K.; Singer, S.J. The Dissociated Amorphous Silica Surface: Model Development and Evaluation. J. Chem. Theory Comput. 2010, 6, 3456-3471. https://doi.org/10.1021/ct100260z | |
dc.relation.uri | https://doi.org/10.1088/0953-8984/20/22/224014 | |
dc.relation.uri | https://doi.org/10.1016%2Fj.aca.2014.10.031 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.jcis.2008.09.072 | |
dc.relation.uri | http://dx.doi.org/10.1039/C3SM27739A | |
dc.relation.uri | http://dx.doi.org/10.1016/j.colsurfb.2019.110458 | |
dc.relation.uri | http://dx.doi.org/10.1007/s10595-005-0042-3 | |
dc.relation.uri | https://doi.org/10.1016/S1389-1723(01)80127-4 | |
dc.relation.uri | https://doi.org/10.1016%2Fs0958-1669(96)80098-x | |
dc.relation.uri | https://doi.org/10.1007/s12052-012-0443-9 | |
dc.relation.uri | http://dx.doi.org/10.1002/cphc.200400608 | |
dc.relation.uri | https://doi.org/10.1002/anie.201311089 | |
dc.relation.uri | https://doi.org/10.1127/0935-1221/2007/0019-1731 | |
dc.relation.uri | https://doi.org/10.1007/BF02475464 | |
dc.relation.uri | https://doi.org/10.1021/acscatal.7b03961 | |
dc.relation.uri | https://doi.org/10.1039/C3CP51282G | |
dc.relation.uri | https://doi.org/10.1002/cphc.200500401 | |
dc.relation.uri | https://doi.org/10.1021/cm5026987 | |
dc.relation.uri | https://doi.org/10.1039/C5CS00890E | |
dc.relation.uri | https://doi.org/10.1186/1477-3155-9-59 | |
dc.relation.uri | https://doi.org/10.1371/journal.pone.0236441 | |
dc.relation.uri | https://doi.org/10.1016/j.tibtech.2015.02.005 | |
dc.relation.uri | https://doi.org/10.1016/j.addr.2008.03.012 | |
dc.relation.uri | https://doi.org/10.1016/j.bios.2011.09.002 | |
dc.relation.uri | https://doi.org/10.1021/cr3003054 | |
dc.relation.uri | https://doi.org/10.1021/acs.jpcc.6b07945 | |
dc.relation.uri | https://doi.org/10.1021/ct100260z | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Godahewa S. M., Tillekaratne A., 2023 | |
dc.subject | пребіотичний | |
dc.subject | кремнезем | |
dc.subject | амінокислота | |
dc.subject | гліцин | |
dc.subject | адсорбція | |
dc.subject | пептид | |
dc.subject | prebiotic | |
dc.subject | silica | |
dc.subject | amino acid | |
dc.subject | glycine | |
dc.subject | adsorption | |
dc.subject | peptide | |
dc.title | An Insightful Approach to Understanding the Mechanism of Amino Acid Adsorption on Inorganic Surfaces: Glycine on Silica | |
dc.title.alternative | Комплексний підхід до розуміння механізму адсорбції амінокислот на неорганічних поверхнях: гліцин на кремнеземі | |
dc.type | Article |
Files
License bundle
1 - 1 of 1