Investigation of the Complex Formation Process of Lead (II) with Natural Macromolecular Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods

dc.citation.epage747
dc.citation.issue4
dc.citation.spage740
dc.contributor.affiliationIvane Javakhishvili Tbilisi State University
dc.contributor.authorMakharadze, Tamar
dc.contributor.authorMakharadze, Giorgi
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:54:17Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractФульвокислоти є одними з найважливіших лігандів, що регулюють геохімічний кругообіг металів у навколишньому середовищі. Метою цієї роботи було дослідити процес комплексоутворення між фульвокислотами та Pb(II). Процес комплексоутворення вивчали методами розчинності та гель-хроматографії зарН 5,0 і 8,0.
dc.description.abstractFulvic acids are one ofthe most important ligands, governingthe geochemical cycling of metals in the environment. The objective of the work was to investigate the complex formation process between fulvic acids and Pb(II).The complex formation processwas studied by the solubility and gel chromatographic methods at pH 5.0 and 8.0.
dc.format.extent740-747
dc.format.pages8
dc.identifier.citationMakharadze T. Investigation of the Complex Formation Process of Lead (II) with Natural Macromolecular Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods / Tamar Makharadze, Giorgi Makharadze // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 740–747.
dc.identifier.citationenMakharadze T. Investigation of the Complex Formation Process of Lead (II) with Natural Macromolecular Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods / Tamar Makharadze, Giorgi Makharadze // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 740–747.
dc.identifier.doidoi.org/10.23939/chcht17.04.740
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63708
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (17), 2023
dc.relation.references[1] Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; Wiley: New York, 1982.
dc.relation.references[2] Sarlaki,E.; Paghaleh,A.S.; Kianmehr,M.H.; Vakilian,K.A. Chemical,Spectral and Morphologikal Characterization of Humic Acids Exsracted and Membrane Purified From Lignite. Chem. Chem. Technol. 2020, 14, 353–361. https://doi.org/10.23939/chcht14.03.353
dc.relation.references[3] Osadchyy, V.; Nabyvanets, B.;Linnik, P.; Osadcha, N.; Nabyvanets, Y.Processes DeterminingSurface Water Chemistry; Springer International Publishing: Switzerland,2016.
dc.relation.references[4] Makharadze, G.; Goliadze, N.; Khaiauri, A.; Makharadze, T.;Supatashvili, G. FulvicAndHumin Acids in Surface Waters of Georgia. In High-performas Polymers for Engineering-based Composites. Apple Academic Press:Waretown,NJ USA, 2016; pp 167-179.
dc.relation.references[5] Pisarek,I.; Glowacki,M. Quality of Groundwater and Aquatic Humic Substances from Main Reservoireof Ground Water No. 333. J. Ecol. Eng. 2015,16, 46–53. https://doi.org/10.12911/22998993/60453
dc.relation.references[6] Kovács,K.; Gáspár,A.; Sajgó, C.; Schmitt-Kopplin, P.; Tombácz, E. Comparative Study on Humic Substances Isolated in Thermal Groundwatersfrom Deep Aquifers below 700. Geochem J 2012, 46, 211-224. https://doi.org/10.2343/geochemj.1.0168
dc.relation.references[7]Varshal,G.M.;Intskirveli,L.N.;Sirotkina,I.C.; Kolosov,I.V.;KoShcheeva,I.Y.On the Association of Fulvic Acids in Aqueous Solutions.Geokhimia1975,1581-1585.
dc.relation.references[8] Rice,J.A.;MacCarthy,P. Statistical Evaluation of the Elemental Composition of Humic Substances.Org. Geochem. 1991, 17, 635-648. https://doi.org/10.1016/0146-6380(91)90006-6
dc.relation.references[9] Ma,H.;Allen,H.E.;Yin,Y. Characterization of Isolated Fractions of Dissolved Organic Matter from Natural Waters and a Wastewater Effluent. Water Res.2001,35, 985-996. https://doi.org/10.1016/S0043-1354(00)00350-X
dc.relation.references[10] Rey-Castro, C.; Mongin, S.; Huidobro, C.; David, C.; Salvador, J.;Garces, J.; Galceran,J.; Mas,F.; Puy,J. Effective Affinity Distribution for the Binding of Metal Ions to a Generic Fulvic Acid in Natural Waters.Environ. Sci. Technol.2009, 43, 7184–7191. https://doi.org/10.1021/es803006p
dc.relation.references[11] Lenoir,T.; Manceau, A. Number of Independent Parameters in the Potentiometric Titration of Humic Substances. Langmuir2010, 26, 3998-4003. https://doi.org/10.1021/la9034084
dc.relation.references[12] Dulaquas,G.;Waeles, M.; Gerringa, L.A.; Midag, R.; Rijkenberg, M.;Riso, R.G.The Biogeochemistry of Electroactive Humic Substances and Its Connection to Iron Chemistry in the North East Atlantic and the Western Mediterranean Sea. J. Geophys. Res: Oceans 2018,123, 5481–5499. https://doi.org/10.1029/2018JC014211
dc.relation.references[13] Bertoli, A.C.; Garcia, J.S.; Trevisan, M.G.;Ramalho,T.C.; Matheus,P.;Freitas,M.P. Interactions fulvate-metal (Zn2+, Cu2+ and Fe2+) :Theoreticalinvestigation of thermodynamic, structuraland spectroscopic properties. Biometals2016, 29,275-285. https://doi.org/10.1007/s10534-016-9914-8
dc.relation.references[14] Xu,H.;Xu,D.C.;Wang,Y. Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands. ACS Omega2017, 2, 7185–7193. https://doi.org/10.1021/acsomega.7b01039
dc.relation.references[15] Makharadze, T.; Makharadze.G.Investigation of Complex Formation Process of Copper with Macromolecular Organic Substances, Isolated from Natural Water.Organic Chemistry Plus2020,1, 1-5. https://doi.org/10.37256/ocp.112020101
dc.relation.references[16]De Oliveira Vaz,D.; Fernandes,A.N.; Szpoganicz,B. Complexations of Divalent Metallic Ions with Fulvic Acids. Ecléticaquímica2018, 43, 54-58. https://doi.org/10.26850/1678-4618eqj.v43.1.2018.p54-58
dc.relation.references[17] Boguta,P.; Sokolowska,Z. Zinc Binding to Fulvic acids: Assessing the Impact of pH, Metal Concentrations and Chemical Properties of Fulvic Acids on the Mechanism and Stability of Formed Soluble Complexes. Molekules2020, 25, 1297-1321.https://doi.org/10.3390/molecules25061297
dc.relation.references[18] Wang, J.;Lü, C.; He, J; Zhao,B. Binding Characteristics of Pb2+ to Natural FulvicAcids Extracted from the Sediments in akeWuliangsuhai, inner Mongolia plateau, P.R. China. Environ Earth Sci. 2016, 75, 768-779. https://doi.org/10.1007/s12665-016-5608-3
dc.relation.references[19] Schnitzer, M.; Skinner, S.I.M.Stability Constants of Pb, Ni, Mn, Co, Ca and Mg Fulvic AcidComplexes. Soil Sci.1967, 103, 247-252. https://doi.org/10.1097/00010694-196704000-00004
dc.relation.references[20] Makharadze,T; Makharadze,G. Measurement of Complex Formation process of Nickel (II) with Freshwater FulvicAcidsUsing the Solubility Method.Fine Chemical Engineering2021, 2, 54-61. https://doi.org/10.37256/fce.222021870
dc.relation.references[21] Dinu,M.; Shkinev,V.M. Complexation of Metal Ions with Organic Substances of Humus Nature: Methods of Study and Structural Features of Ligands, and Distribution of Elements between Species. Geochem. Int.2020, 58, 200–211. https://doi.org/10.1134/S0016702920020032
dc.relation.references[22] Adusei-Gyamfi, J.; Ouddane,B.; Rietveld,L.; Cornard,J.; Criquet,J. Natural Organic Matter-Cations Complexation and its Impact on Water Treatment: A Critical Review. Water Res.2019, 160, 130-147. https://doi.org/10.1016/j.watres.2019.05.064
dc.relation.references[23] Linnik,P.; Zhezheva,V.; Linnik,R.; Ivanchenko,Ya. Influence of the Component Composition of Organic Matter on Relationship between Dissolved Forms of Metals in the Surface Waters.Hydrobiol. J.2013,49, 91-108. https://doi.org/10.1615/HydrobJ.v49.i1.90
dc.relation.references[24] Dudal, Y.; Gerard, F. Accounting for Natural Organic Matter in Aqueous Chemicalequilibrium Models: A Review of the Theories and Applications. Earth Sci Rev2004, 66, 199–216. https://doi.org/10.1016/j.earscirev.2004.01.002
dc.relation.references[25] Smith, K.S.; Balistrierib, L.S.; Todd, A.S. Using Biotic Ligand Models to Predict Metal Toxicity in MineralizedSystems. Appl. Geochem. 2015, 57, 55–72. https://doi.org/10.1016/j.apgeochem.2014.07.005
dc.relation.references[26] Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol.2021, 12, 643972-643990. https://doi.org/10.3389/fphar.2021.643972
dc.relation.references[27] Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy Metal Pollution andHuman Biotoxic Effects. Int. J. Phys. Sci.2007, 2, 112-118. http://www.academicjournals.org/IJPS
dc.relation.references[28] Slaveykova,V.I; Wilkinson,K.J.; Ceresa, A.; Pretsch,E.Role of Fulvic Acid on Lead Bioaccumulation by Chlorella kesslerii.Environ. Sci. Technol.2003, 37, 1114–1121. https://doi.org/10.1021/es025993
dc.relation.references[29] Lamelas,C.;Wilkinson,K.J.;Slaveykova,V.I. Influence of the Composition of Natural Organic Matter on Pb Bioavailability to Microalgae.Environ. Sci. Technol.2005, 39, 6109–6116. https://doi.org/10.1021/es050445t
dc.relation.references[30]Orsetti, S.;Marco-Brown, J.L.; Andrade,E.M.; Molina,F.V. Pb (II) Binding to Humic Substances: An Equilibrium and Spectroscopic Study.Environ. Sci. Technol. 2013, 47, 8325-8333. https://doi.org/10.1021/es400999q
dc.relation.references[31] Saar,R.A.; Weber,J.H. Lead(II)-fulvic acid complexes. Conditional Stability Constants, Solubility, and Implications for Lead(II) Mobility. Environ. Sci. Technol.1980, 14, 877–880. https://doi.org/10.1021/es60167a001
dc.relation.references[32] Sahu, S.; Banerjee, D.K. Complexation of Copper (II), Cadmum (II) and Lead (II) with Humic and Fulvic Acidsof Yamuna River Sediments. In Chemistry for the Protection of the Environment; NY, USA, 1996; pp 375–388.
dc.relation.references[33] Turner, D.R.; Varney, M.S.; Whitfield, M.; Mantoura, R.F.C.; Riley, J.P. Electrochemical Studies of Copper and Lead Complexation by Fulvic Acid.Geochim. Cosmochim. Acta1986,50, 289–297. https://doi.org/10.1016/0016-7037(86)90177-8
dc.relation.references[34] Chakraborty,P.; Chakraborty,Ch.L. Competition from Cu(II), Zn(II) and Cd(II) in Pb(II) Binding to Suwannee River Fulvic Acid. Water Air Soil Pollut2008, 195, 63–71. https://doi.org/10.1007/s11270-008-9727-7
dc.relation.references[35] Pinheiro,J.P.; Mota,A.M.; Benedetti,M.F. Lead and Calcium Binding to Fulvic Acids:  Salt Effect and Competition. Environmental.Environ. Sci. Technol. 1999,33,3398-3404. https://doi.org/10.1021/es990210f
dc.relation.references[36] Christl, I.; Metzger, A.; Heidmann, I.; Kretzschmar, R. Effect of Humic and Fulvic Acid Concentrations and Ionic Strength on Copper and Lead Binding. Environ. Sci. Technol. 2005, 39, 5319-5326. https://doi.org/10.1021/es050018f
dc.relation.references[37] Xiong, J.; Koopal, L.K.; Tan, W.F.; Fang, L.C.; Wang, M.X.; Zhao, W.; Liu, F.; Zhang, J.; Weng, L.P. Lead Binding to Soil Fulvicand Humic Acids: NICA-DonnanModeling and XAFS Spectroscopy. Environ. Sci. Technol.2013, 47, 11634–11642. https://doi.org/10.1021/es402123v
dc.relation.references[38] Gondar, D.; López, R.; Fiol, S.; Antelo, J.M.; Arce, F. Cadmium, Lead, and Copper Binding to Humic Acid and Fulvic AcidExtracted from an Ombrotrophic Peat Bog. Geoderma2006, 135, 196-203. https://doi.org/10.1016/j.geoderma.2005.12.003
dc.relation.references[39] Quan,G.;Yan,J. Binding Constants of Lead by Humicand Fulvic Acids Studied by Anodic Stripping Square Wave Voltammetry. Electrochemistry2010, 46, 90-94. https://doi.org/10.1134/S1023193510010118
dc.relation.references[40] Gurjia, Zh.;Supatashvili, G.D.; Varshal,G.M.; Makharadze, G.A.; Chitiashvili,Z.D. Monohydrolysis of Lead Ions in Dilute Solutions. Proceedings Georgian Natl.Acad.Sci. 1992, 18, 22-26.
dc.relation.references[41] Makharadze,G.;Supatashvili,G.;Makharadze, T. New Version of Calculation of Stability Constant of Metal-fulvate Complexes on the Example of Zinc Fulvate. Int. J. Environ. Sci. Technol.2018, 15,2165-2168. https://doi.org/10.1007/s13762-017-1576-8
dc.relation.references[42] Beck,M.T.; Nagypal,I. Chemistry of complex equilibria;Chichester, Horwood, New York,1990.
dc.relation.referencesen[1] Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; Wiley: New York, 1982.
dc.relation.referencesen[2] Sarlaki,E.; Paghaleh,A.S.; Kianmehr,M.H.; Vakilian,K.A. Chemical,Spectral and Morphologikal Characterization of Humic Acids Exsracted and Membrane Purified From Lignite. Chem. Chem. Technol. 2020, 14, 353–361. https://doi.org/10.23939/chcht14.03.353
dc.relation.referencesen[3] Osadchyy, V.; Nabyvanets, B.;Linnik, P.; Osadcha, N.; Nabyvanets, Y.Processes DeterminingSurface Water Chemistry; Springer International Publishing: Switzerland,2016.
dc.relation.referencesen[4] Makharadze, G.; Goliadze, N.; Khaiauri, A.; Makharadze, T.;Supatashvili, G. FulvicAndHumin Acids in Surface Waters of Georgia. In High-performas Polymers for Engineering-based Composites. Apple Academic Press:Waretown,NJ USA, 2016; pp 167-179.
dc.relation.referencesen[5] Pisarek,I.; Glowacki,M. Quality of Groundwater and Aquatic Humic Substances from Main Reservoireof Ground Water No. 333. J. Ecol. Eng. 2015,16, 46–53. https://doi.org/10.12911/22998993/60453
dc.relation.referencesen[6] Kovács,K.; Gáspár,A.; Sajgó, C.; Schmitt-Kopplin, P.; Tombácz, E. Comparative Study on Humic Substances Isolated in Thermal Groundwatersfrom Deep Aquifers below 700. Geochem J 2012, 46, 211-224. https://doi.org/10.2343/geochemj.1.0168
dc.relation.referencesen[7]Varshal,G.M.;Intskirveli,L.N.;Sirotkina,I.C.; Kolosov,I.V.;KoShcheeva,I.Y.On the Association of Fulvic Acids in Aqueous Solutions.Geokhimia1975,1581-1585.
dc.relation.referencesen[8] Rice,J.A.;MacCarthy,P. Statistical Evaluation of the Elemental Composition of Humic Substances.Org. Geochem. 1991, 17, 635-648. https://doi.org/10.1016/0146-6380(91)90006-6
dc.relation.referencesen[9] Ma,H.;Allen,H.E.;Yin,Y. Characterization of Isolated Fractions of Dissolved Organic Matter from Natural Waters and a Wastewater Effluent. Water Res.2001,35, 985-996. https://doi.org/10.1016/S0043-1354(00)00350-X
dc.relation.referencesen[10] Rey-Castro, C.; Mongin, S.; Huidobro, C.; David, C.; Salvador, J.;Garces, J.; Galceran,J.; Mas,F.; Puy,J. Effective Affinity Distribution for the Binding of Metal Ions to a Generic Fulvic Acid in Natural Waters.Environ. Sci. Technol.2009, 43, 7184–7191. https://doi.org/10.1021/es803006p
dc.relation.referencesen[11] Lenoir,T.; Manceau, A. Number of Independent Parameters in the Potentiometric Titration of Humic Substances. Langmuir2010, 26, 3998-4003. https://doi.org/10.1021/la9034084
dc.relation.referencesen[12] Dulaquas,G.;Waeles, M.; Gerringa, L.A.; Midag, R.; Rijkenberg, M.;Riso, R.G.The Biogeochemistry of Electroactive Humic Substances and Its Connection to Iron Chemistry in the North East Atlantic and the Western Mediterranean Sea. J. Geophys. Res: Oceans 2018,123, 5481–5499. https://doi.org/10.1029/2018JC014211
dc.relation.referencesen[13] Bertoli, A.C.; Garcia, J.S.; Trevisan, M.G.;Ramalho,T.C.; Matheus,P.;Freitas,M.P. Interactions fulvate-metal (Zn2+, Cu2+ and Fe2+) :Theoreticalinvestigation of thermodynamic, structuraland spectroscopic properties. Biometals2016, 29,275-285. https://doi.org/10.1007/s10534-016-9914-8
dc.relation.referencesen[14] Xu,H.;Xu,D.C.;Wang,Y. Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands. ACS Omega2017, 2, 7185–7193. https://doi.org/10.1021/acsomega.7b01039
dc.relation.referencesen[15] Makharadze, T.; Makharadze.G.Investigation of Complex Formation Process of Copper with Macromolecular Organic Substances, Isolated from Natural Water.Organic Chemistry Plus2020,1, 1-5. https://doi.org/10.37256/ocp.112020101
dc.relation.referencesen[16]De Oliveira Vaz,D.; Fernandes,A.N.; Szpoganicz,B. Complexations of Divalent Metallic Ions with Fulvic Acids. Ecléticaquímica2018, 43, 54-58. https://doi.org/10.26850/1678-4618eqj.v43.1.2018.p54-58
dc.relation.referencesen[17] Boguta,P.; Sokolowska,Z. Zinc Binding to Fulvic acids: Assessing the Impact of pH, Metal Concentrations and Chemical Properties of Fulvic Acids on the Mechanism and Stability of Formed Soluble Complexes. Molekules2020, 25, 1297-1321.https://doi.org/10.3390/molecules25061297
dc.relation.referencesen[18] Wang, J.;Lü, C.; He, J; Zhao,B. Binding Characteristics of Pb2+ to Natural FulvicAcids Extracted from the Sediments in akeWuliangsuhai, inner Mongolia plateau, P.R. China. Environ Earth Sci. 2016, 75, 768-779. https://doi.org/10.1007/s12665-016-5608-3
dc.relation.referencesen[19] Schnitzer, M.; Skinner, S.I.M.Stability Constants of Pb, Ni, Mn, Co, Ca and Mg Fulvic AcidComplexes. Soil Sci.1967, 103, 247-252. https://doi.org/10.1097/00010694-196704000-00004
dc.relation.referencesen[20] Makharadze,T; Makharadze,G. Measurement of Complex Formation process of Nickel (II) with Freshwater FulvicAcidsUsing the Solubility Method.Fine Chemical Engineering2021, 2, 54-61. https://doi.org/10.37256/fce.222021870
dc.relation.referencesen[21] Dinu,M.; Shkinev,V.M. Complexation of Metal Ions with Organic Substances of Humus Nature: Methods of Study and Structural Features of Ligands, and Distribution of Elements between Species. Geochem. Int.2020, 58, 200–211. https://doi.org/10.1134/S0016702920020032
dc.relation.referencesen[22] Adusei-Gyamfi, J.; Ouddane,B.; Rietveld,L.; Cornard,J.; Criquet,J. Natural Organic Matter-Cations Complexation and its Impact on Water Treatment: A Critical Review. Water Res.2019, 160, 130-147. https://doi.org/10.1016/j.watres.2019.05.064
dc.relation.referencesen[23] Linnik,P.; Zhezheva,V.; Linnik,R.; Ivanchenko,Ya. Influence of the Component Composition of Organic Matter on Relationship between Dissolved Forms of Metals in the Surface Waters.Hydrobiol. J.2013,49, 91-108. https://doi.org/10.1615/HydrobJ.v49.i1.90
dc.relation.referencesen[24] Dudal, Y.; Gerard, F. Accounting for Natural Organic Matter in Aqueous Chemicalequilibrium Models: A Review of the Theories and Applications. Earth Sci Rev2004, 66, 199–216. https://doi.org/10.1016/j.earscirev.2004.01.002
dc.relation.referencesen[25] Smith, K.S.; Balistrierib, L.S.; Todd, A.S. Using Biotic Ligand Models to Predict Metal Toxicity in MineralizedSystems. Appl. Geochem. 2015, 57, 55–72. https://doi.org/10.1016/j.apgeochem.2014.07.005
dc.relation.referencesen[26] Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol.2021, 12, 643972-643990. https://doi.org/10.3389/fphar.2021.643972
dc.relation.referencesen[27] Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy Metal Pollution andHuman Biotoxic Effects. Int. J. Phys. Sci.2007, 2, 112-118. http://www.academicjournals.org/IJPS
dc.relation.referencesen[28] Slaveykova,V.I; Wilkinson,K.J.; Ceresa, A.; Pretsch,E.Role of Fulvic Acid on Lead Bioaccumulation by Chlorella kesslerii.Environ. Sci. Technol.2003, 37, 1114–1121. https://doi.org/10.1021/es025993
dc.relation.referencesen[29] Lamelas,C.;Wilkinson,K.J.;Slaveykova,V.I. Influence of the Composition of Natural Organic Matter on Pb Bioavailability to Microalgae.Environ. Sci. Technol.2005, 39, 6109–6116. https://doi.org/10.1021/es050445t
dc.relation.referencesen[30]Orsetti, S.;Marco-Brown, J.L.; Andrade,E.M.; Molina,F.V. Pb (II) Binding to Humic Substances: An Equilibrium and Spectroscopic Study.Environ. Sci. Technol. 2013, 47, 8325-8333. https://doi.org/10.1021/es400999q
dc.relation.referencesen[31] Saar,R.A.; Weber,J.H. Lead(II)-fulvic acid complexes. Conditional Stability Constants, Solubility, and Implications for Lead(II) Mobility. Environ. Sci. Technol.1980, 14, 877–880. https://doi.org/10.1021/es60167a001
dc.relation.referencesen[32] Sahu, S.; Banerjee, D.K. Complexation of Copper (II), Cadmum (II) and Lead (II) with Humic and Fulvic Acidsof Yamuna River Sediments. In Chemistry for the Protection of the Environment; NY, USA, 1996; pp 375–388.
dc.relation.referencesen[33] Turner, D.R.; Varney, M.S.; Whitfield, M.; Mantoura, R.F.C.; Riley, J.P. Electrochemical Studies of Copper and Lead Complexation by Fulvic Acid.Geochim. Cosmochim. Acta1986,50, 289–297. https://doi.org/10.1016/0016-7037(86)90177-8
dc.relation.referencesen[34] Chakraborty,P.; Chakraborty,Ch.L. Competition from Cu(II), Zn(II) and Cd(II) in Pb(II) Binding to Suwannee River Fulvic Acid. Water Air Soil Pollut2008, 195, 63–71. https://doi.org/10.1007/s11270-008-9727-7
dc.relation.referencesen[35] Pinheiro,J.P.; Mota,A.M.; Benedetti,M.F. Lead and Calcium Binding to Fulvic Acids:  Salt Effect and Competition. Environmental.Environ. Sci. Technol. 1999,33,3398-3404. https://doi.org/10.1021/es990210f
dc.relation.referencesen[36] Christl, I.; Metzger, A.; Heidmann, I.; Kretzschmar, R. Effect of Humic and Fulvic Acid Concentrations and Ionic Strength on Copper and Lead Binding. Environ. Sci. Technol. 2005, 39, 5319-5326. https://doi.org/10.1021/es050018f
dc.relation.referencesen[37] Xiong, J.; Koopal, L.K.; Tan, W.F.; Fang, L.C.; Wang, M.X.; Zhao, W.; Liu, F.; Zhang, J.; Weng, L.P. Lead Binding to Soil Fulvicand Humic Acids: NICA-DonnanModeling and XAFS Spectroscopy. Environ. Sci. Technol.2013, 47, 11634–11642. https://doi.org/10.1021/es402123v
dc.relation.referencesen[38] Gondar, D.; López, R.; Fiol, S.; Antelo, J.M.; Arce, F. Cadmium, Lead, and Copper Binding to Humic Acid and Fulvic AcidExtracted from an Ombrotrophic Peat Bog. Geoderma2006, 135, 196-203. https://doi.org/10.1016/j.geoderma.2005.12.003
dc.relation.referencesen[39] Quan,G.;Yan,J. Binding Constants of Lead by Humicand Fulvic Acids Studied by Anodic Stripping Square Wave Voltammetry. Electrochemistry2010, 46, 90-94. https://doi.org/10.1134/S1023193510010118
dc.relation.referencesen[40] Gurjia, Zh.;Supatashvili, G.D.; Varshal,G.M.; Makharadze, G.A.; Chitiashvili,Z.D. Monohydrolysis of Lead Ions in Dilute Solutions. Proceedings Georgian Natl.Acad.Sci. 1992, 18, 22-26.
dc.relation.referencesen[41] Makharadze,G.;Supatashvili,G.;Makharadze, T. New Version of Calculation of Stability Constant of Metal-fulvate Complexes on the Example of Zinc Fulvate. Int. J. Environ. Sci. Technol.2018, 15,2165-2168. https://doi.org/10.1007/s13762-017-1576-8
dc.relation.referencesen[42] Beck,M.T.; Nagypal,I. Chemistry of complex equilibria;Chichester, Horwood, New York,1990.
dc.relation.urihttps://doi.org/10.23939/chcht14.03.353
dc.relation.urihttps://doi.org/10.12911/22998993/60453
dc.relation.urihttps://doi.org/10.2343/geochemj.1.0168
dc.relation.urihttps://doi.org/10.1016/0146-6380(91)90006-6
dc.relation.urihttps://doi.org/10.1016/S0043-1354(00)00350-X
dc.relation.urihttps://doi.org/10.1021/es803006p
dc.relation.urihttps://doi.org/10.1021/la9034084
dc.relation.urihttps://doi.org/10.1029/2018JC014211
dc.relation.urihttps://doi.org/10.1007/s10534-016-9914-8
dc.relation.urihttps://doi.org/10.1021/acsomega.7b01039
dc.relation.urihttps://doi.org/10.37256/ocp.112020101
dc.relation.urihttps://doi.org/10.26850/1678-4618eqj.v43.1.2018.p54-58
dc.relation.urihttps://doi.org/10.3390/molecules25061297
dc.relation.urihttps://doi.org/10.1007/s12665-016-5608-3
dc.relation.urihttps://doi.org/10.1097/00010694-196704000-00004
dc.relation.urihttps://doi.org/10.37256/fce.222021870
dc.relation.urihttps://doi.org/10.1134/S0016702920020032
dc.relation.urihttps://doi.org/10.1016/j.watres.2019.05.064
dc.relation.urihttps://doi.org/10.1615/HydrobJ.v49.i1.90
dc.relation.urihttps://doi.org/10.1016/j.earscirev.2004.01.002
dc.relation.urihttps://doi.org/10.1016/j.apgeochem.2014.07.005
dc.relation.urihttps://doi.org/10.3389/fphar.2021.643972
dc.relation.urihttp://www.academicjournals.org/IJPS
dc.relation.urihttps://doi.org/10.1021/es025993
dc.relation.urihttps://doi.org/10.1021/es050445t
dc.relation.urihttps://doi.org/10.1021/es400999q
dc.relation.urihttps://doi.org/10.1021/es60167a001
dc.relation.urihttps://doi.org/10.1016/0016-7037(86)90177-8
dc.relation.urihttps://doi.org/10.1007/s11270-008-9727-7
dc.relation.urihttps://doi.org/10.1021/es990210f
dc.relation.urihttps://doi.org/10.1021/es050018f
dc.relation.urihttps://doi.org/10.1021/es402123v
dc.relation.urihttps://doi.org/10.1016/j.geoderma.2005.12.003
dc.relation.urihttps://doi.org/10.1134/S1023193510010118
dc.relation.urihttps://doi.org/10.1007/s13762-017-1576-8
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Makharadze T., Makharadze G., 2023
dc.subjectфульвокислоти
dc.subjectфульват плюмбуму
dc.subjectсередня константа стійкості
dc.subjectfulvic acids
dc.subjectlead fulvate
dc.subjectaverage stability constant
dc.titleInvestigation of the Complex Formation Process of Lead (II) with Natural Macromolecular Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods
dc.title.alternativeДослідження процесу комплексоутворення плюмбуму (II) з природними макромолекулярними органічними речовинами (фульвокислотами) методами розчинності та гель-хроматографії
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n4_Makharadze_T-Investigation_of_the_740-747.pdf
Size:
602.13 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n4_Makharadze_T-Investigation_of_the_740-747__COVER.png
Size:
508.17 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: