Transformation of Hexoses on Natural and Synthetic Zeolites
dc.citation.epage | 293 | |
dc.citation.issue | 2 | |
dc.citation.spage | 287 | |
dc.contributor.affiliation | V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences | |
dc.contributor.author | Patrylak, Lyubov | |
dc.contributor.author | Konovalov, Serhii | |
dc.contributor.author | Zubenko, Stepan | |
dc.contributor.author | Yakovenko, Anzhela | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:30:44Z | |
dc.date.available | 2024-02-12T08:30:44Z | |
dc.date.created | 2023-03-16 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | Синтезовано низку каталізаторів на основі синтетичних порошкоподібних цеолітів, природних українських клиноптилолітових і морденіт-клиноптилолітових порід. Активність і селективність приготованих зразків було порівняно в дегідратації глюкози та фруктози до 5-гідроксиметилфурфуролу в середовищі диметилсульфоксиду. | |
dc.description.abstract | A number of zeolite catalysts based on synthetic powder zeolites and natural Ukrainian clinoptilolite as well as mordenite-clinoptilolite zeolite rocks were synthesized. The activity and selectivity of the prepared samples were compared in glucose and fructose dehydration into 5-hydroxymethylfurfural in a dimethyl sulfoxide environment. | |
dc.format.extent | 287-293 | |
dc.format.pages | 7 | |
dc.identifier.citation | Transformation of Hexoses on Natural and Synthetic Zeolites / Lyubov Patrylak, Serhii Konovalov, Stepan Zubenko, Anzhela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 287–293. | |
dc.identifier.citationen | Transformation of Hexoses on Natural and Synthetic Zeolites / Lyubov Patrylak, Serhii Konovalov, Stepan Zubenko, Anzhela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 287–293. | |
dc.identifier.doi | doi.org/10.23939/chcht17.02.287 | |
dc.identifier.issn | 1996-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61257 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (17), 2023 | |
dc.relation.references | [1] Kukhar, V.P. Bioresursy – Potentsialna Syrovyna dlia Promyslovogo Organichnogo Syntezu. Kataliz i Neftekhimia 2007, 15, 1-15 (in Ukrainian). | |
dc.relation.references | [2] Esteban, J.; Yustos, P.; Ladero, M. Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Over-view. Catalysts 2018, 8, 637. https://doi.org/10.3390/catal8120637 | |
dc.relation.references | [3] Dron, I.; Nosovа, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220-226. https://doi.org/10.23939/chcht16.02.220 | |
dc.relation.references | [4] Chen, N.; Zhu, Z.; Ma, H.; Liao, W.; Lü, H. Catalytic Upgrad-ing of Biomass-derived 5-Hydroxymethylfurfural to Biofuel 2,5-Dimethylfuran over Beta Zeolite Supported Non-noble Co Catalyst. Mol. Catal. 2020, 486, 110882. https://doi.org/10.1016/j.mcat.2020.110882 | |
dc.relation.references | [5] Chithra, P.A.; Darbha, S. Catalytic Conversion of HMF into Ethyl Levulinate – A Biofuel over Hierarchical Zeolites. Catal. Commun. 2020, 140, 105998. https://doi.org/10.1016/j.catcom.2020.105998 | |
dc.relation.references | [6] Kläusli, T. AVA Biochem: Commercialising Renewable Plat-form Chemical 5-HMF. Green Process. Synth. 2014, 3, 235–236. https://doi.org/10.1515/gps-2014-0029 | |
dc.relation.references | [7] Saravanamurugan, S.; Paniagua, M.; Melero, J.A.; Riisager, A. Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media. J. Am. Chem. Soc. 2013, 135, 14, 5246–5249. https://doi.org/10.1021/ja400097f | |
dc.relation.references | [8] Saravanamurugan, S.; Riisager, A.; Taarning, E.; Meier, S. Combined Function of Brönsted and Lewis Acidity in the Zeolite-Catalyzed Isomerization of Glucose to Fructose in Alcohols. Chem-CatChem. 2016, 8, 3107–3111. https://doi.org/10.1002/cctc.201600783 | |
dc.relation.references | [9] Pienkoss, F.; Ochoa-Hernandez, C.; Theyssen, N.; Leitner, W. Kaolin: A Natural Low-Cost Material as Catalyst for Isomerization of Glucose to Fructose. ACS Sustain. Chem. Eng. 2018, 6, 8782–8789. https://doi.org/10.1021/acssuschemeng.8b01151 | |
dc.relation.references | [10] Levytska S.I. Doslidzhennia Izomeryzatsii Glukozy u Fruk-tozu na MgO-ZrO2 Katalizatori v Protochnyh Umovah. Kataliz i Neftekhimia 2017, 26, 46–52 (in Ukraine). | |
dc.relation.references | [11] Vieira, J.L.; Almeida-Trapp, M.; Mithöfer, A.; Plass, W.; Gallo, J.M.R. Rationalizing the Conversion of Glucose and Xylose Catalyzed by a Combination of Lewis and Brönsted Acids. Catal. Today 2020, 344, 92–101. https://doi.org/10.1016/j.cattod.2018.10.032 | |
dc.relation.references | [12] Van Putten, R-J.; Van der Waal, J.C.; De Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G.; Hydroxymethylfurfural, a Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499–1597. https://doi.org/10.1021/cr300182k | |
dc.relation.references | [13] Cui, J.; Tan, J.; Deng, T.; Cui, X.; Zhu, Y.; Li,Y. Conversion of Carbohydrates to Furfural via Selective Cleavage of the Carbon-Carbon Bond: The Cooperative Effects of Zeolite and Solvent. Green Chem. 2016, 18, 1619–1624. https://doi.org/10.1039/C5GC01948F | |
dc.relation.references | [14] Cui, M.; Wu, Z.; Huang, R.; Qi, W.; Su, R.; He, Z. Integrating Chromium-Based Ceramic and Acid Catalysis to Convert Glucose into 5-Hydroxymethylfurfural. Renew. Energ. 2018, 125, 327–333. https://doi.org/10.1016/j.renene.2018.02.085 | |
dc.relation.references | [15] Parveen, F.; Upadhyayula, S. Efficient Conversion of Glucose to HMF Using Organocatalysts with Dual Acidic and Basic Functionalities—A Mechanistic and Experimental Study. Fuel Process. Technol. 2017, 162, 30–36. https://doi.org/10.1016/j.fuproc.2017.03.021 | |
dc.relation.references | [16] Tosi, I.; Riisager, A.; Taarning, E.; Jensen, P.R.; Meier, S. Kinetic Analysis of Hexose Conversion to Methyl Lactate by Sn-Beta: Effects of Substrate Masking and of Water. Catal. Sci. Tech-nol. 2018, 8, 2137–2145. https://doi.org/10.1039/C8CY00335A | |
dc.relation.references | [17] Zhang, L.; Xi, G.; Chen, Z.; Jiang, D.; Yu, H.; Wang, X. Highly Selective Conversion of Glucose into Furfural over Modified zeolites. Chem. Eng. J. 2017, 307, 868–876. http://dx.doi.org/10.1016/j.cej.2016.09.001 | |
dc.relation.references | [18] Moreno-Recio, M.; Santamaría-González, J.; Maireles-Torres, P. Brönsted and Lewis Acid ZSM-5 Zeolites for the Catalytic Dehydration of Glucose into 5-Hydroxymethylfurfural. Chem. Eng. J. 2016, 303, 22–30. https://doi.org/10.1016/j.cej.2016.05.120 | |
dc.relation.references | [19] Hu, D.; Zhang, M.; Xu, H.; Wang, Y.; Yan, K. Recent Ad-vance on the Catalytic System for Efficient Production of Biomass-Derived 5-Hydroxymethylfurfural. Renew. Sust. Energ. Rev. 2021, 147, 111253. https://doi.org/10.1016/j.rser.2021.111253 | |
dc.relation.references | [20] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411-425. https://doi.org/10.1007/s13204-021-01682-1 | |
dc.relation.references | [21] Dyer, A.; Hriljac, J.; Evans, N.; Stokes I.; Rand, P.; Kellet, S.; Harjula, R.; Moller, T.; Maher, Z.; Heatlie-Branson, R. et al. The Use of Columns of the Zeolite Clinoptilolite in the Remediation of Aqueous Nuclear Waste Streams. J. Radioanal. Nucl. Chem. 2018, 318, 2473–2491. https://doi.org/10.1007/s10967-018-6329-8 | |
dc.relation.references | [22] Al-Maliki, S.B.; Al-Khayat, Z.O.; Abdulrazzak, I.A.; AlAni, A. The Effectiveness of Zeolite for The Removal of Heavy Metals From an Oil Industry Wastewater. Chem. Chem. Technol. 2022, 16, 255–258. https://doi.org/10.23939/chcht16.02.255 | |
dc.relation.references | [23] Patrylak, L.; Konovalov, S.; Pertko, O.; Yakovenko, A.; Povazhnyi, V.; Melnychuk, O. Obtaining Glucose-Based 5-Hydroxymethylfurfural on Large-Pore Zeolites. East.-Eur. J. En-terp. Technol. 2021, 2, 38-44. https://doi.org/10.15587/1729-4061.2021.226575 | |
dc.relation.references | [24] Patrylak, L.; Konovalov, S.; Yakovenko, A.; Pertko, O.; Povazhnyi, V.; Kurmach, M.; Voloshyna, Yu.; Filonenko, M.; Zubenko, S. Fructose Transformation into 5-Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chem. Chem. Technol. 2022, 16, 521-531. https://doi.org/10.23939/chcht16.04.521 | |
dc.relation.references | [25] Rouqerol, F.; Rouqerol, J.; Sing, K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press, 1998. | |
dc.relation.references | [26] Patrylak, L.K.; Pertko, O.P.; Povazhnyi, V.A.; Yakovenko, A.V.; Konovalov, S.V. Evaluation of Nickel-Containing Zeolites in the Catalytic Transformation of Glucose in an Aqueous Medium. Appl. Nanosci. 2022, 12, 869-882. https://doi.org/10.1007/s13204-021-01771-1 | |
dc.relation.references | [27] Sprynskyy, M.; Golembiewski, R.; Trykowski, G.; Buszewski, B. Heterogeneity and Hierarchy of Clinoptilolite Poros-ity. J. Phys. Chem. Solids. 2010, 71, 1269-1277. https://doi.org/10.1016/j.jpcs.2010.05.006 | |
dc.relation.references | [28] Baerlocher, Ch.; Meier, W.M.; Olson, D.N. Atlas of zeolite structure types; Elsevier: Amsterdam, 2007. | |
dc.relation.referencesen | [1] Kukhar, V.P. Bioresursy – Potentsialna Syrovyna dlia Promyslovogo Organichnogo Syntezu. Kataliz i Neftekhimia 2007, 15, 1-15 (in Ukrainian). | |
dc.relation.referencesen | [2] Esteban, J.; Yustos, P.; Ladero, M. Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Over-view. Catalysts 2018, 8, 637. https://doi.org/10.3390/catal8120637 | |
dc.relation.referencesen | [3] Dron, I.; Nosova, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220-226. https://doi.org/10.23939/chcht16.02.220 | |
dc.relation.referencesen | [4] Chen, N.; Zhu, Z.; Ma, H.; Liao, W.; Lü, H. Catalytic Upgrad-ing of Biomass-derived 5-Hydroxymethylfurfural to Biofuel 2,5-Dimethylfuran over Beta Zeolite Supported Non-noble Co Catalyst. Mol. Catal. 2020, 486, 110882. https://doi.org/10.1016/j.mcat.2020.110882 | |
dc.relation.referencesen | [5] Chithra, P.A.; Darbha, S. Catalytic Conversion of HMF into Ethyl Levulinate – A Biofuel over Hierarchical Zeolites. Catal. Commun. 2020, 140, 105998. https://doi.org/10.1016/j.catcom.2020.105998 | |
dc.relation.referencesen | [6] Kläusli, T. AVA Biochem: Commercialising Renewable Plat-form Chemical 5-HMF. Green Process. Synth. 2014, 3, 235–236. https://doi.org/10.1515/gps-2014-0029 | |
dc.relation.referencesen | [7] Saravanamurugan, S.; Paniagua, M.; Melero, J.A.; Riisager, A. Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media. J. Am. Chem. Soc. 2013, 135, 14, 5246–5249. https://doi.org/10.1021/ja400097f | |
dc.relation.referencesen | [8] Saravanamurugan, S.; Riisager, A.; Taarning, E.; Meier, S. Combined Function of Brönsted and Lewis Acidity in the Zeolite-Catalyzed Isomerization of Glucose to Fructose in Alcohols. Chem-CatChem. 2016, 8, 3107–3111. https://doi.org/10.1002/cctc.201600783 | |
dc.relation.referencesen | [9] Pienkoss, F.; Ochoa-Hernandez, C.; Theyssen, N.; Leitner, W. Kaolin: A Natural Low-Cost Material as Catalyst for Isomerization of Glucose to Fructose. ACS Sustain. Chem. Eng. 2018, 6, 8782–8789. https://doi.org/10.1021/acssuschemeng.8b01151 | |
dc.relation.referencesen | [10] Levytska S.I. Doslidzhennia Izomeryzatsii Glukozy u Fruk-tozu na MgO-ZrO2 Katalizatori v Protochnyh Umovah. Kataliz i Neftekhimia 2017, 26, 46–52 (in Ukraine). | |
dc.relation.referencesen | [11] Vieira, J.L.; Almeida-Trapp, M.; Mithöfer, A.; Plass, W.; Gallo, J.M.R. Rationalizing the Conversion of Glucose and Xylose Catalyzed by a Combination of Lewis and Brönsted Acids. Catal. Today 2020, 344, 92–101. https://doi.org/10.1016/j.cattod.2018.10.032 | |
dc.relation.referencesen | [12] Van Putten, R-J.; Van der Waal, J.C.; De Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G.; Hydroxymethylfurfural, a Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499–1597. https://doi.org/10.1021/cr300182k | |
dc.relation.referencesen | [13] Cui, J.; Tan, J.; Deng, T.; Cui, X.; Zhu, Y.; Li,Y. Conversion of Carbohydrates to Furfural via Selective Cleavage of the Carbon-Carbon Bond: The Cooperative Effects of Zeolite and Solvent. Green Chem. 2016, 18, 1619–1624. https://doi.org/10.1039/P.5GC01948F | |
dc.relation.referencesen | [14] Cui, M.; Wu, Z.; Huang, R.; Qi, W.; Su, R.; He, Z. Integrating Chromium-Based Ceramic and Acid Catalysis to Convert Glucose into 5-Hydroxymethylfurfural. Renew. Energ. 2018, 125, 327–333. https://doi.org/10.1016/j.renene.2018.02.085 | |
dc.relation.referencesen | [15] Parveen, F.; Upadhyayula, S. Efficient Conversion of Glucose to HMF Using Organocatalysts with Dual Acidic and Basic Functionalities-A Mechanistic and Experimental Study. Fuel Process. Technol. 2017, 162, 30–36. https://doi.org/10.1016/j.fuproc.2017.03.021 | |
dc.relation.referencesen | [16] Tosi, I.; Riisager, A.; Taarning, E.; Jensen, P.R.; Meier, S. Kinetic Analysis of Hexose Conversion to Methyl Lactate by Sn-Beta: Effects of Substrate Masking and of Water. Catal. Sci. Tech-nol. 2018, 8, 2137–2145. https://doi.org/10.1039/P.8CY00335A | |
dc.relation.referencesen | [17] Zhang, L.; Xi, G.; Chen, Z.; Jiang, D.; Yu, H.; Wang, X. Highly Selective Conversion of Glucose into Furfural over Modified zeolites. Chem. Eng. J. 2017, 307, 868–876. http://dx.doi.org/10.1016/j.cej.2016.09.001 | |
dc.relation.referencesen | [18] Moreno-Recio, M.; Santamaría-González, J.; Maireles-Torres, P. Brönsted and Lewis Acid ZSM-5 Zeolites for the Catalytic Dehydration of Glucose into 5-Hydroxymethylfurfural. Chem. Eng. J. 2016, 303, 22–30. https://doi.org/10.1016/j.cej.2016.05.120 | |
dc.relation.referencesen | [19] Hu, D.; Zhang, M.; Xu, H.; Wang, Y.; Yan, K. Recent Ad-vance on the Catalytic System for Efficient Production of Biomass-Derived 5-Hydroxymethylfurfural. Renew. Sust. Energ. Rev. 2021, 147, 111253. https://doi.org/10.1016/j.rser.2021.111253 | |
dc.relation.referencesen | [20] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411-425. https://doi.org/10.1007/s13204-021-01682-1 | |
dc.relation.referencesen | [21] Dyer, A.; Hriljac, J.; Evans, N.; Stokes I.; Rand, P.; Kellet, S.; Harjula, R.; Moller, T.; Maher, Z.; Heatlie-Branson, R. et al. The Use of Columns of the Zeolite Clinoptilolite in the Remediation of Aqueous Nuclear Waste Streams. J. Radioanal. Nucl. Chem. 2018, 318, 2473–2491. https://doi.org/10.1007/s10967-018-6329-8 | |
dc.relation.referencesen | [22] Al-Maliki, S.B.; Al-Khayat, Z.O.; Abdulrazzak, I.A.; AlAni, A. The Effectiveness of Zeolite for The Removal of Heavy Metals From an Oil Industry Wastewater. Chem. Chem. Technol. 2022, 16, 255–258. https://doi.org/10.23939/chcht16.02.255 | |
dc.relation.referencesen | [23] Patrylak, L.; Konovalov, S.; Pertko, O.; Yakovenko, A.; Povazhnyi, V.; Melnychuk, O. Obtaining Glucose-Based 5-Hydroxymethylfurfural on Large-Pore Zeolites. East.-Eur. J. En-terp. Technol. 2021, 2, 38-44. https://doi.org/10.15587/1729-4061.2021.226575 | |
dc.relation.referencesen | [24] Patrylak, L.; Konovalov, S.; Yakovenko, A.; Pertko, O.; Povazhnyi, V.; Kurmach, M.; Voloshyna, Yu.; Filonenko, M.; Zubenko, S. Fructose Transformation into 5-Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chem. Chem. Technol. 2022, 16, 521-531. https://doi.org/10.23939/chcht16.04.521 | |
dc.relation.referencesen | [25] Rouqerol, F.; Rouqerol, J.; Sing, K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press, 1998. | |
dc.relation.referencesen | [26] Patrylak, L.K.; Pertko, O.P.; Povazhnyi, V.A.; Yakovenko, A.V.; Konovalov, S.V. Evaluation of Nickel-Containing Zeolites in the Catalytic Transformation of Glucose in an Aqueous Medium. Appl. Nanosci. 2022, 12, 869-882. https://doi.org/10.1007/s13204-021-01771-1 | |
dc.relation.referencesen | [27] Sprynskyy, M.; Golembiewski, R.; Trykowski, G.; Buszewski, B. Heterogeneity and Hierarchy of Clinoptilolite Poros-ity. J. Phys. Chem. Solids. 2010, 71, 1269-1277. https://doi.org/10.1016/j.jpcs.2010.05.006 | |
dc.relation.referencesen | [28] Baerlocher, Ch.; Meier, W.M.; Olson, D.N. Atlas of zeolite structure types; Elsevier: Amsterdam, 2007. | |
dc.relation.uri | https://doi.org/10.3390/catal8120637 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.02.220 | |
dc.relation.uri | https://doi.org/10.1016/j.mcat.2020.110882 | |
dc.relation.uri | https://doi.org/10.1016/j.catcom.2020.105998 | |
dc.relation.uri | https://doi.org/10.1515/gps-2014-0029 | |
dc.relation.uri | https://doi.org/10.1021/ja400097f | |
dc.relation.uri | https://doi.org/10.1002/cctc.201600783 | |
dc.relation.uri | https://doi.org/10.1021/acssuschemeng.8b01151 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2018.10.032 | |
dc.relation.uri | https://doi.org/10.1021/cr300182k | |
dc.relation.uri | https://doi.org/10.1039/C5GC01948F | |
dc.relation.uri | https://doi.org/10.1016/j.renene.2018.02.085 | |
dc.relation.uri | https://doi.org/10.1016/j.fuproc.2017.03.021 | |
dc.relation.uri | https://doi.org/10.1039/C8CY00335A | |
dc.relation.uri | http://dx.doi.org/10.1016/j.cej.2016.09.001 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2016.05.120 | |
dc.relation.uri | https://doi.org/10.1016/j.rser.2021.111253 | |
dc.relation.uri | https://doi.org/10.1007/s13204-021-01682-1 | |
dc.relation.uri | https://doi.org/10.1007/s10967-018-6329-8 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.02.255 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2021.226575 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.04.521 | |
dc.relation.uri | https://doi.org/10.1007/s13204-021-01771-1 | |
dc.relation.uri | https://doi.org/10.1016/j.jpcs.2010.05.006 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Patrylak L., Konovalov S., Zubenko S., Yakovenko A., 2023 | |
dc.subject | цеоліти природні | |
dc.subject | цеоліти синтетичні | |
dc.subject | глюкози дегідратація | |
dc.subject | фруктози дегідратація | |
dc.subject | 5-гідроксиметилфурфурол | |
dc.subject | natural zeolite | |
dc.subject | synthetic zeolite | |
dc.subject | glucose dehydration | |
dc.subject | fructose dehydration | |
dc.subject | 5-hydroxymethylfurfural | |
dc.title | Transformation of Hexoses on Natural and Synthetic Zeolites | |
dc.title.alternative | Перетворення гексоз на природних і синтетичних цеолітах | |
dc.type | Article |
Files
License bundle
1 - 1 of 1