Transformation of Hexoses on Natural and Synthetic Zeolites

dc.citation.epage293
dc.citation.issue2
dc.citation.spage287
dc.contributor.affiliationV. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences
dc.contributor.authorPatrylak, Lyubov
dc.contributor.authorKonovalov, Serhii
dc.contributor.authorZubenko, Stepan
dc.contributor.authorYakovenko, Anzhela
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:44Z
dc.date.available2024-02-12T08:30:44Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractСинтезовано низку каталізаторів на основі синтетичних порошкоподібних цеолітів, природних українських клиноптилолітових і морденіт-клиноптилолітових порід. Активність і селективність приготованих зразків було порівняно в дегідратації глюкози та фруктози до 5-гідроксиметилфурфуролу в середовищі диметилсульфоксиду.
dc.description.abstractA number of zeolite catalysts based on synthetic powder zeolites and natural Ukrainian clinoptilolite as well as mordenite-clinoptilolite zeolite rocks were synthesized. The activity and selectivity of the prepared samples were compared in glucose and fructose dehydration into 5-hydroxymethylfurfural in a dimethyl sulfoxide environment.
dc.format.extent287-293
dc.format.pages7
dc.identifier.citationTransformation of Hexoses on Natural and Synthetic Zeolites / Lyubov Patrylak, Serhii Konovalov, Stepan Zubenko, Anzhela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 287–293.
dc.identifier.citationenTransformation of Hexoses on Natural and Synthetic Zeolites / Lyubov Patrylak, Serhii Konovalov, Stepan Zubenko, Anzhela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 287–293.
dc.identifier.doidoi.org/10.23939/chcht17.02.287
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61257
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Kukhar, V.P. Bioresursy – Potentsialna Syrovyna dlia Promyslovogo Organichnogo Syntezu. Kataliz i Neftekhimia 2007, 15, 1-15 (in Ukrainian).
dc.relation.references[2] Esteban, J.; Yustos, P.; Ladero, M. Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Over-view. Catalysts 2018, 8, 637. https://doi.org/10.3390/catal8120637
dc.relation.references[3] Dron, I.; Nosovа, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220-226. https://doi.org/10.23939/chcht16.02.220
dc.relation.references[4] Chen, N.; Zhu, Z.; Ma, H.; Liao, W.; Lü, H. Catalytic Upgrad-ing of Biomass-derived 5-Hydroxymethylfurfural to Biofuel 2,5-Dimethylfuran over Beta Zeolite Supported Non-noble Co Catalyst. Mol. Catal. 2020, 486, 110882. https://doi.org/10.1016/j.mcat.2020.110882
dc.relation.references[5] Chithra, P.A.; Darbha, S. Catalytic Conversion of HMF into Ethyl Levulinate – A Biofuel over Hierarchical Zeolites. Catal. Commun. 2020, 140, 105998. https://doi.org/10.1016/j.catcom.2020.105998
dc.relation.references[6] Kläusli, T. AVA Biochem: Commercialising Renewable Plat-form Chemical 5-HMF. Green Process. Synth. 2014, 3, 235–236. https://doi.org/10.1515/gps-2014-0029
dc.relation.references[7] Saravanamurugan, S.; Paniagua, M.; Melero, J.A.; Riisager, A. Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media. J. Am. Chem. Soc. 2013, 135, 14, 5246–5249. https://doi.org/10.1021/ja400097f
dc.relation.references[8] Saravanamurugan, S.; Riisager, A.; Taarning, E.; Meier, S. Combined Function of Brönsted and Lewis Acidity in the Zeolite-Catalyzed Isomerization of Glucose to Fructose in Alcohols. Chem-CatChem. 2016, 8, 3107–3111. https://doi.org/10.1002/cctc.201600783
dc.relation.references[9] Pienkoss, F.; Ochoa-Hernandez, C.; Theyssen, N.; Leitner, W. Kaolin: A Natural Low-Cost Material as Catalyst for Isomerization of Glucose to Fructose. ACS Sustain. Chem. Eng. 2018, 6, 8782–8789. https://doi.org/10.1021/acssuschemeng.8b01151
dc.relation.references[10] Levytska S.I. Doslidzhennia Izomeryzatsii Glukozy u Fruk-tozu na MgO-ZrO2 Katalizatori v Protochnyh Umovah. Kataliz i Neftekhimia 2017, 26, 46–52 (in Ukraine).
dc.relation.references[11] Vieira, J.L.; Almeida-Trapp, M.; Mithöfer, A.; Plass, W.; Gallo, J.M.R. Rationalizing the Conversion of Glucose and Xylose Catalyzed by a Combination of Lewis and Brönsted Acids. Catal. Today 2020, 344, 92–101. https://doi.org/10.1016/j.cattod.2018.10.032
dc.relation.references[12] Van Putten, R-J.; Van der Waal, J.C.; De Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G.; Hydroxymethylfurfural, a Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499–1597. https://doi.org/10.1021/cr300182k
dc.relation.references[13] Cui, J.; Tan, J.; Deng, T.; Cui, X.; Zhu, Y.; Li,Y. Conversion of Carbohydrates to Furfural via Selective Cleavage of the Carbon-Carbon Bond: The Cooperative Effects of Zeolite and Solvent. Green Chem. 2016, 18, 1619–1624. https://doi.org/10.1039/C5GC01948F
dc.relation.references[14] Cui, M.; Wu, Z.; Huang, R.; Qi, W.; Su, R.; He, Z. Integrating Chromium-Based Ceramic and Acid Catalysis to Convert Glucose into 5-Hydroxymethylfurfural. Renew. Energ. 2018, 125, 327–333. https://doi.org/10.1016/j.renene.2018.02.085
dc.relation.references[15] Parveen, F.; Upadhyayula, S. Efficient Conversion of Glucose to HMF Using Organocatalysts with Dual Acidic and Basic Functionalities—A Mechanistic and Experimental Study. Fuel Process. Technol. 2017, 162, 30–36. https://doi.org/10.1016/j.fuproc.2017.03.021
dc.relation.references[16] Tosi, I.; Riisager, A.; Taarning, E.; Jensen, P.R.; Meier, S. Kinetic Analysis of Hexose Conversion to Methyl Lactate by Sn-Beta: Effects of Substrate Masking and of Water. Catal. Sci. Tech-nol. 2018, 8, 2137–2145. https://doi.org/10.1039/C8CY00335A
dc.relation.references[17] Zhang, L.; Xi, G.; Chen, Z.; Jiang, D.; Yu, H.; Wang, X. Highly Selective Conversion of Glucose into Furfural over Modified zeolites. Chem. Eng. J. 2017, 307, 868–876. http://dx.doi.org/10.1016/j.cej.2016.09.001
dc.relation.references[18] Moreno-Recio, M.; Santamaría-González, J.; Maireles-Torres, P. Brönsted and Lewis Acid ZSM-5 Zeolites for the Catalytic Dehydration of Glucose into 5-Hydroxymethylfurfural. Chem. Eng. J. 2016, 303, 22–30. https://doi.org/10.1016/j.cej.2016.05.120
dc.relation.references[19] Hu, D.; Zhang, M.; Xu, H.; Wang, Y.; Yan, K. Recent Ad-vance on the Catalytic System for Efficient Production of Biomass-Derived 5-Hydroxymethylfurfural. Renew. Sust. Energ. Rev. 2021, 147, 111253. https://doi.org/10.1016/j.rser.2021.111253
dc.relation.references[20] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411-425. https://doi.org/10.1007/s13204-021-01682-1
dc.relation.references[21] Dyer, A.; Hriljac, J.; Evans, N.; Stokes I.; Rand, P.; Kellet, S.; Harjula, R.; Moller, T.; Maher, Z.; Heatlie-Branson, R. et al. The Use of Columns of the Zeolite Clinoptilolite in the Remediation of Aqueous Nuclear Waste Streams. J. Radioanal. Nucl. Chem. 2018, 318, 2473–2491. https://doi.org/10.1007/s10967-018-6329-8
dc.relation.references[22] Al-Maliki, S.B.; Al-Khayat, Z.O.; Abdulrazzak, I.A.; AlAni, A. The Effectiveness of Zeolite for The Removal of Heavy Metals From an Oil Industry Wastewater. Chem. Chem. Technol. 2022, 16, 255–258. https://doi.org/10.23939/chcht16.02.255
dc.relation.references[23] Patrylak, L.; Konovalov, S.; Pertko, O.; Yakovenko, A.; Povazhnyi, V.; Melnychuk, O. Obtaining Glucose-Based 5-Hydroxymethylfurfural on Large-Pore Zeolites. East.-Eur. J. En-terp. Technol. 2021, 2, 38-44. https://doi.org/10.15587/1729-4061.2021.226575
dc.relation.references[24] Patrylak, L.; Konovalov, S.; Yakovenko, A.; Pertko, O.; Povazhnyi, V.; Kurmach, M.; Voloshyna, Yu.; Filonenko, M.; Zubenko, S. Fructose Transformation into 5-Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chem. Chem. Technol. 2022, 16, 521-531. https://doi.org/10.23939/chcht16.04.521
dc.relation.references[25] Rouqerol, F.; Rouqerol, J.; Sing, K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press, 1998.
dc.relation.references[26] Patrylak, L.K.; Pertko, O.P.; Povazhnyi, V.A.; Yakovenko, A.V.; Konovalov, S.V. Evaluation of Nickel-Containing Zeolites in the Catalytic Transformation of Glucose in an Aqueous Medium. Appl. Nanosci. 2022, 12, 869-882. https://doi.org/10.1007/s13204-021-01771-1
dc.relation.references[27] Sprynskyy, M.; Golembiewski, R.; Trykowski, G.; Buszewski, B. Heterogeneity and Hierarchy of Clinoptilolite Poros-ity. J. Phys. Chem. Solids. 2010, 71, 1269-1277. https://doi.org/10.1016/j.jpcs.2010.05.006
dc.relation.references[28] Baerlocher, Ch.; Meier, W.M.; Olson, D.N. Atlas of zeolite structure types; Elsevier: Amsterdam, 2007.
dc.relation.referencesen[1] Kukhar, V.P. Bioresursy – Potentsialna Syrovyna dlia Promyslovogo Organichnogo Syntezu. Kataliz i Neftekhimia 2007, 15, 1-15 (in Ukrainian).
dc.relation.referencesen[2] Esteban, J.; Yustos, P.; Ladero, M. Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Over-view. Catalysts 2018, 8, 637. https://doi.org/10.3390/catal8120637
dc.relation.referencesen[3] Dron, I.; Nosova, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220-226. https://doi.org/10.23939/chcht16.02.220
dc.relation.referencesen[4] Chen, N.; Zhu, Z.; Ma, H.; Liao, W.; Lü, H. Catalytic Upgrad-ing of Biomass-derived 5-Hydroxymethylfurfural to Biofuel 2,5-Dimethylfuran over Beta Zeolite Supported Non-noble Co Catalyst. Mol. Catal. 2020, 486, 110882. https://doi.org/10.1016/j.mcat.2020.110882
dc.relation.referencesen[5] Chithra, P.A.; Darbha, S. Catalytic Conversion of HMF into Ethyl Levulinate – A Biofuel over Hierarchical Zeolites. Catal. Commun. 2020, 140, 105998. https://doi.org/10.1016/j.catcom.2020.105998
dc.relation.referencesen[6] Kläusli, T. AVA Biochem: Commercialising Renewable Plat-form Chemical 5-HMF. Green Process. Synth. 2014, 3, 235–236. https://doi.org/10.1515/gps-2014-0029
dc.relation.referencesen[7] Saravanamurugan, S.; Paniagua, M.; Melero, J.A.; Riisager, A. Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media. J. Am. Chem. Soc. 2013, 135, 14, 5246–5249. https://doi.org/10.1021/ja400097f
dc.relation.referencesen[8] Saravanamurugan, S.; Riisager, A.; Taarning, E.; Meier, S. Combined Function of Brönsted and Lewis Acidity in the Zeolite-Catalyzed Isomerization of Glucose to Fructose in Alcohols. Chem-CatChem. 2016, 8, 3107–3111. https://doi.org/10.1002/cctc.201600783
dc.relation.referencesen[9] Pienkoss, F.; Ochoa-Hernandez, C.; Theyssen, N.; Leitner, W. Kaolin: A Natural Low-Cost Material as Catalyst for Isomerization of Glucose to Fructose. ACS Sustain. Chem. Eng. 2018, 6, 8782–8789. https://doi.org/10.1021/acssuschemeng.8b01151
dc.relation.referencesen[10] Levytska S.I. Doslidzhennia Izomeryzatsii Glukozy u Fruk-tozu na MgO-ZrO2 Katalizatori v Protochnyh Umovah. Kataliz i Neftekhimia 2017, 26, 46–52 (in Ukraine).
dc.relation.referencesen[11] Vieira, J.L.; Almeida-Trapp, M.; Mithöfer, A.; Plass, W.; Gallo, J.M.R. Rationalizing the Conversion of Glucose and Xylose Catalyzed by a Combination of Lewis and Brönsted Acids. Catal. Today 2020, 344, 92–101. https://doi.org/10.1016/j.cattod.2018.10.032
dc.relation.referencesen[12] Van Putten, R-J.; Van der Waal, J.C.; De Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G.; Hydroxymethylfurfural, a Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499–1597. https://doi.org/10.1021/cr300182k
dc.relation.referencesen[13] Cui, J.; Tan, J.; Deng, T.; Cui, X.; Zhu, Y.; Li,Y. Conversion of Carbohydrates to Furfural via Selective Cleavage of the Carbon-Carbon Bond: The Cooperative Effects of Zeolite and Solvent. Green Chem. 2016, 18, 1619–1624. https://doi.org/10.1039/P.5GC01948F
dc.relation.referencesen[14] Cui, M.; Wu, Z.; Huang, R.; Qi, W.; Su, R.; He, Z. Integrating Chromium-Based Ceramic and Acid Catalysis to Convert Glucose into 5-Hydroxymethylfurfural. Renew. Energ. 2018, 125, 327–333. https://doi.org/10.1016/j.renene.2018.02.085
dc.relation.referencesen[15] Parveen, F.; Upadhyayula, S. Efficient Conversion of Glucose to HMF Using Organocatalysts with Dual Acidic and Basic Functionalities-A Mechanistic and Experimental Study. Fuel Process. Technol. 2017, 162, 30–36. https://doi.org/10.1016/j.fuproc.2017.03.021
dc.relation.referencesen[16] Tosi, I.; Riisager, A.; Taarning, E.; Jensen, P.R.; Meier, S. Kinetic Analysis of Hexose Conversion to Methyl Lactate by Sn-Beta: Effects of Substrate Masking and of Water. Catal. Sci. Tech-nol. 2018, 8, 2137–2145. https://doi.org/10.1039/P.8CY00335A
dc.relation.referencesen[17] Zhang, L.; Xi, G.; Chen, Z.; Jiang, D.; Yu, H.; Wang, X. Highly Selective Conversion of Glucose into Furfural over Modified zeolites. Chem. Eng. J. 2017, 307, 868–876. http://dx.doi.org/10.1016/j.cej.2016.09.001
dc.relation.referencesen[18] Moreno-Recio, M.; Santamaría-González, J.; Maireles-Torres, P. Brönsted and Lewis Acid ZSM-5 Zeolites for the Catalytic Dehydration of Glucose into 5-Hydroxymethylfurfural. Chem. Eng. J. 2016, 303, 22–30. https://doi.org/10.1016/j.cej.2016.05.120
dc.relation.referencesen[19] Hu, D.; Zhang, M.; Xu, H.; Wang, Y.; Yan, K. Recent Ad-vance on the Catalytic System for Efficient Production of Biomass-Derived 5-Hydroxymethylfurfural. Renew. Sust. Energ. Rev. 2021, 147, 111253. https://doi.org/10.1016/j.rser.2021.111253
dc.relation.referencesen[20] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411-425. https://doi.org/10.1007/s13204-021-01682-1
dc.relation.referencesen[21] Dyer, A.; Hriljac, J.; Evans, N.; Stokes I.; Rand, P.; Kellet, S.; Harjula, R.; Moller, T.; Maher, Z.; Heatlie-Branson, R. et al. The Use of Columns of the Zeolite Clinoptilolite in the Remediation of Aqueous Nuclear Waste Streams. J. Radioanal. Nucl. Chem. 2018, 318, 2473–2491. https://doi.org/10.1007/s10967-018-6329-8
dc.relation.referencesen[22] Al-Maliki, S.B.; Al-Khayat, Z.O.; Abdulrazzak, I.A.; AlAni, A. The Effectiveness of Zeolite for The Removal of Heavy Metals From an Oil Industry Wastewater. Chem. Chem. Technol. 2022, 16, 255–258. https://doi.org/10.23939/chcht16.02.255
dc.relation.referencesen[23] Patrylak, L.; Konovalov, S.; Pertko, O.; Yakovenko, A.; Povazhnyi, V.; Melnychuk, O. Obtaining Glucose-Based 5-Hydroxymethylfurfural on Large-Pore Zeolites. East.-Eur. J. En-terp. Technol. 2021, 2, 38-44. https://doi.org/10.15587/1729-4061.2021.226575
dc.relation.referencesen[24] Patrylak, L.; Konovalov, S.; Yakovenko, A.; Pertko, O.; Povazhnyi, V.; Kurmach, M.; Voloshyna, Yu.; Filonenko, M.; Zubenko, S. Fructose Transformation into 5-Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chem. Chem. Technol. 2022, 16, 521-531. https://doi.org/10.23939/chcht16.04.521
dc.relation.referencesen[25] Rouqerol, F.; Rouqerol, J.; Sing, K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press, 1998.
dc.relation.referencesen[26] Patrylak, L.K.; Pertko, O.P.; Povazhnyi, V.A.; Yakovenko, A.V.; Konovalov, S.V. Evaluation of Nickel-Containing Zeolites in the Catalytic Transformation of Glucose in an Aqueous Medium. Appl. Nanosci. 2022, 12, 869-882. https://doi.org/10.1007/s13204-021-01771-1
dc.relation.referencesen[27] Sprynskyy, M.; Golembiewski, R.; Trykowski, G.; Buszewski, B. Heterogeneity and Hierarchy of Clinoptilolite Poros-ity. J. Phys. Chem. Solids. 2010, 71, 1269-1277. https://doi.org/10.1016/j.jpcs.2010.05.006
dc.relation.referencesen[28] Baerlocher, Ch.; Meier, W.M.; Olson, D.N. Atlas of zeolite structure types; Elsevier: Amsterdam, 2007.
dc.relation.urihttps://doi.org/10.3390/catal8120637
dc.relation.urihttps://doi.org/10.23939/chcht16.02.220
dc.relation.urihttps://doi.org/10.1016/j.mcat.2020.110882
dc.relation.urihttps://doi.org/10.1016/j.catcom.2020.105998
dc.relation.urihttps://doi.org/10.1515/gps-2014-0029
dc.relation.urihttps://doi.org/10.1021/ja400097f
dc.relation.urihttps://doi.org/10.1002/cctc.201600783
dc.relation.urihttps://doi.org/10.1021/acssuschemeng.8b01151
dc.relation.urihttps://doi.org/10.1016/j.cattod.2018.10.032
dc.relation.urihttps://doi.org/10.1021/cr300182k
dc.relation.urihttps://doi.org/10.1039/C5GC01948F
dc.relation.urihttps://doi.org/10.1016/j.renene.2018.02.085
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2017.03.021
dc.relation.urihttps://doi.org/10.1039/C8CY00335A
dc.relation.urihttp://dx.doi.org/10.1016/j.cej.2016.09.001
dc.relation.urihttps://doi.org/10.1016/j.cej.2016.05.120
dc.relation.urihttps://doi.org/10.1016/j.rser.2021.111253
dc.relation.urihttps://doi.org/10.1007/s13204-021-01682-1
dc.relation.urihttps://doi.org/10.1007/s10967-018-6329-8
dc.relation.urihttps://doi.org/10.23939/chcht16.02.255
dc.relation.urihttps://doi.org/10.15587/1729-4061.2021.226575
dc.relation.urihttps://doi.org/10.23939/chcht16.04.521
dc.relation.urihttps://doi.org/10.1007/s13204-021-01771-1
dc.relation.urihttps://doi.org/10.1016/j.jpcs.2010.05.006
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Patrylak L., Konovalov S., Zubenko S., Yakovenko A., 2023
dc.subjectцеоліти природні
dc.subjectцеоліти синтетичні
dc.subjectглюкози дегідратація
dc.subjectфруктози дегідратація
dc.subject5-гідроксиметилфурфурол
dc.subjectnatural zeolite
dc.subjectsynthetic zeolite
dc.subjectglucose dehydration
dc.subjectfructose dehydration
dc.subject5-hydroxymethylfurfural
dc.titleTransformation of Hexoses on Natural and Synthetic Zeolites
dc.title.alternativeПеретворення гексоз на природних і синтетичних цеолітах
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Patrylak_L-Transformation_of_Hexoses_287-293.pdf
Size:
433.88 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Patrylak_L-Transformation_of_Hexoses_287-293__COVER.png
Size:
569.19 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: