Швидкі перетворення класу Фур'є в OFDM технології систем безпровідної передачі інформації

dc.citation.epage57
dc.citation.issue1
dc.citation.journalTitleУкраїнський журнал інформаційних технологій
dc.citation.spage52
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorПроцько, І. О.
dc.contributor.authorProts'ko, I. O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2022-05-24T10:02:44Z
dc.date.available2022-05-24T10:02:44Z
dc.date.created2019-09-26
dc.date.issued2019-09-26
dc.description.abstractВиділено основні модифікації та стандарти технології OFDM, що забезпечують високу якість зв'язку при багатопроменевому поширенні переданого сигналу. Проаналізовано в структурі передавача комунікаційної системи на підставі OFDM технології виконання швидких перетворень класу Фур'є. Функцію мультиплексування/демультиплексування з ортогональним частотним розділенням покладено на обчислювач швидких перетворень, а прекодер застосовується для зменшення високого значення пік-фактора, що властиве OFDM технології. Визначено основні елементи та вимоги до обчислювачів, що виконують швидкі перетворення у структурній схемі реалізації OFDM технології. Розглянуто зв'язок кількості піднесучих частот та обсягу базового перетворення OFDM технології. З'ясовано можливість використання у прекодері перетворень Фурє, Хартлі та косинусних перетворень. Сформульовано основні етапи побудови структурних схем швидких перетворень класу Фур'є на підставі циклічних згорток. Визначені етапи містять: побудову твірного масиву, визначення спрощеного твірного масиву доповненого масивом знаків, побудову й аналіз узагальненої структури базисної матриці, побудову блоків об'єднання вхідних даних, побудову блоків циклічних згорток, побудову блоків об'єднання результатів циклічних згорток, виходами яких є результат прямого/зворотного перетворення класу Фур'є на підставі циклічних згорток. Розглянуто приклад для обсягу N=16 визначення твірного масиву, спрощеного твірного масиву й масиву знаків, базисної блочно-циклічної матриці, що використовуються при побудові структурної схеми обчислювача. Встановлено можливість використання процесу побудови структурних для автоматизації проектування структурних обчислювачів швидких перетворень класу Фур'є на підставі циклічних згорток.
dc.description.abstractThe main modifications and standards of OFDM technology that provide high quality communication in multipath transmission of the transmitted signal are highlighted. It is analyzed in the structure of the transmitter of the communication system based on OFDM technology of execution of fast transforms of Fourier class. The orthogonal frequency division multiplexing / demultiplexing function is assigned to the fast computer of transform, and the precoder is used to reduce the high peak factor inherent in OFDM technology. The basic elements and requirements for the computers that perform fast transforms in the structural scheme of implementation of OFDM technology are determined. The relation between the number of subcarriers and the size of basic transform of OFDM technology is considered. The possibility of using Fourier, Hartley transforms and cosine transforms in the precoder has been found out. The basic stages of the method of constructing the structural scheme of fast Fourier transforms based on cyclic convolutions are formulated. The identified steps include: building a hashing array, determining a simplified hashing array supplemented by an array of signs, constructing and analyzing a generalized structure of the basis matrix, building blocks of input data integration, building blocks of cyclic convolutions, building blocks of combining results of cyclic convolutions whose outputs are results of direct/indirect transforms of Fourier class based on cyclic convolutions. The stages of constructing and analyzing the generalized structure of the basic matrix are performed on the basis of a hashing array, a simplified has hing array, and an array of signs. The tabular assignment of the block-cyclic structure of the basic matrix specifies the coordinates of the placement of the sign and the simplified value of the first elements of the cyclic submatrices. An example for the ішяу N=16 of determining the hashing array, the simplified hashing array and the sign array, the block-cyclic structure of the basis matrix used in constructing the structural scheme of the computer is considered. An example of a structural scheme of a DHT-I of size N=20, containing four blocks of execution of a 4-point cyclic convolution. The technique of constructing the structure scheme of computers using cyclic convolution blocks can be used to efficient perform discrete transforms of Fourier class in OFDM-based communication systems. The possibility of using structural construction technique to automate the process of constructing structural schemes the transforms of Fourier class based on cyclic convolutions has been established.
dc.format.extent52-57
dc.format.pages6
dc.identifier.citationПроцько І. О. Швидкі перетворення класу Фур'є в OFDM технології систем безпровідної передачі інформації / І. О. Процько // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2019. — Том 1. — № 1. — С. 52–57.
dc.identifier.citationenProts'ko I. O. Fast transforms of Fourier class in OFDM technology of wireless transmission systems / I. O. Prots'ko // Ukrainian Journal of Information Technology. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2019. — Vol 1. — No 1. — P. 52–57.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56887
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofУкраїнський журнал інформаційних технологій, 1 (1), 2019
dc.relation.ispartofUkrainian Journal of Information Technology, 1 (1), 2019
dc.relation.references[1] Aboul-Dahab, Mohamed A., Hagras, Esam A. A. A., & Elhaseeb, Ahmad A. (2013). PAPR Reduction Based on DFT Precoding for OFDM Signals. International Journal of Future Computer and Communication, 2(4), 325–328. https://doi.org/10.7763/IJFCC.2013.V2.177
dc.relation.references[2] Baig, I., & Jeoti, V. (2010). DCT precoded SLM technique for PARP reduction in OFDM system. International Conference on Intelligent and Advanced Systems, Manila, Philippines, June 15–17. https://doi.org/10.1109/ICIAS.2010.5716107
dc.relation.references[3] Cruz-Roldan, F., Domınguez-Jimenez, M. E., Sansigre-Vidal, G., Amo-Lopez, P., Blanco-Velasco, M., & Bravo-Santos, A. (2012). On the use of discrete cosine transforms for multicarrier communications. IEEE Trans. Signal Process, 60(11), (pp. 6085–6090).
dc.relation.references[4] Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Peculiarities of Formulation of Requirements to the Software. Scientific Bulletin of UNFU, 28(7), 135–148. https://doi.org/10.15421/40280727.
dc.relation.references[5] Hrytsiuk, Yu. I., & Zhabych, M. R. (2018). Risk Management of Implementation of Program Projects. Scientific Bulletin of UNFU, 28(1), 150–162. https://doi.org/10.15421/40280130
dc.relation.references[6] Mandyam, G. D. (2004). Sinusoidal transforms in OFDM systems. IEEE Trans. Broadcast, 50(2), 172–184.
dc.relation.references[7] McClellan, J. H., & Rader, C. M. (1979). Number Theory in Digital Signal Processing. Prentice-Hall, Englewood Cliffs, N. J.
dc.relation.references[8] Mohamad, M., Nilsson, R., & van de Beek J. (2018). A Novel Transmitter Architecture for Spectrally-Precoded OFDM. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(8), (pp. 2592–2605).
dc.relation.references[9] Myung, H. G., & Goodman, D. J. (2008). Single Carrier FDMA: A New Air Interface for Long Term Evolution. John Wiley & Sons.
dc.relation.references[10] OFDM. (2019). Implementing OFDM Modulation and Demodulation. Retrieved from: https://www.intel.com/content/www/us/en/programmable/sup port/support-resources/design-examples/designsoftware/ vhdl/vhd-cyclic-prefix-insertion-ofdm.html
dc.relation.references[11] Protsko, I. (2013). Algorithm of Efficient Computation of DCT I-IV Using Cyclic Convolutions. International Journal of Circuits, Systems and Signal Processing, 7(1), 1–9.
dc.relation.references[12] Protsko, I. (2014). Algorithm of efficient computation of generalized discrete Hartley transform based on cyclic convolutions. IET Signal Processing, 8(4), 301–308.
dc.relation.references[13] Rohling, H. (2011). OFDM Concepts for Future Communication Systems. Berlin, Heidelberg: Springer-Verlag.
dc.relation.references[14] Sembiring, Z., Malek, M. F. A., & Rahim, H. (2011). Low Complexity OFDM Modulator and Demodulator Based on Discrete Hartley Transform. Proceedings of Fifth Asia International Conference Modelling Symposium (AMS), Manila, Philippines, (pp. 252–256).
dc.relation.references[15] Sharifi, A. A. (2019). Discrete Hartley matrix transform precoding- based OFDM system to reduce the high PAPR. ICT Express, 5(2), 100–103. https://doi.org/10.1016/j.icte.2018.07.001
dc.relation.references[16] Tan, P., & Beaulieu, N. C. (2006). A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels. IEEE Trans.Commun, 54(11), (pp. 2113–2125).
dc.relation.references[17] Vishnevskiy, V. M., Lyakhov, A. I., Portnoy, S. L., & Shakhnovich, I. V. (2005). Shirokopolosnyye besprovodnyye seti peredachi informatsii. Moscow: Publishing house Tekhnosfera. [In Russian].
dc.relation.referencesen[1] Aboul-Dahab, Mohamed A., Hagras, Esam A. A. A., & Elhaseeb, Ahmad A. (2013). PAPR Reduction Based on DFT Precoding for OFDM Signals. International Journal of Future Computer and Communication, 2(4), 325–328. https://doi.org/10.7763/IJFCC.2013.V2.177
dc.relation.referencesen[2] Baig, I., & Jeoti, V. (2010). DCT precoded SLM technique for PARP reduction in OFDM system. International Conference on Intelligent and Advanced Systems, Manila, Philippines, June 15–17. https://doi.org/10.1109/ICIAS.2010.5716107
dc.relation.referencesen[3] Cruz-Roldan, F., Domınguez-Jimenez, M. E., Sansigre-Vidal, G., Amo-Lopez, P., Blanco-Velasco, M., & Bravo-Santos, A. (2012). On the use of discrete cosine transforms for multicarrier communications. IEEE Trans. Signal Process, 60(11), (pp. 6085–6090).
dc.relation.referencesen[4] Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Peculiarities of Formulation of Requirements to the Software. Scientific Bulletin of UNFU, 28(7), 135–148. https://doi.org/10.15421/40280727.
dc.relation.referencesen[5] Hrytsiuk, Yu. I., & Zhabych, M. R. (2018). Risk Management of Implementation of Program Projects. Scientific Bulletin of UNFU, 28(1), 150–162. https://doi.org/10.15421/40280130
dc.relation.referencesen[6] Mandyam, G. D. (2004). Sinusoidal transforms in OFDM systems. IEEE Trans. Broadcast, 50(2), 172–184.
dc.relation.referencesen[7] McClellan, J. H., & Rader, C. M. (1979). Number Theory in Digital Signal Processing. Prentice-Hall, Englewood Cliffs, N. J.
dc.relation.referencesen[8] Mohamad, M., Nilsson, R., & van de Beek J. (2018). A Novel Transmitter Architecture for Spectrally-Precoded OFDM. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(8), (pp. 2592–2605).
dc.relation.referencesen[9] Myung, H. G., & Goodman, D. J. (2008). Single Carrier FDMA: A New Air Interface for Long Term Evolution. John Wiley & Sons.
dc.relation.referencesen[10] OFDM. (2019). Implementing OFDM Modulation and Demodulation. Retrieved from: https://www.intel.com/content/www/us/en/programmable/sup port/support-resources/design-examples/designsoftware/ vhdl/vhd-cyclic-prefix-insertion-ofdm.html
dc.relation.referencesen[11] Protsko, I. (2013). Algorithm of Efficient Computation of DCT I-IV Using Cyclic Convolutions. International Journal of Circuits, Systems and Signal Processing, 7(1), 1–9.
dc.relation.referencesen[12] Protsko, I. (2014). Algorithm of efficient computation of generalized discrete Hartley transform based on cyclic convolutions. IET Signal Processing, 8(4), 301–308.
dc.relation.referencesen[13] Rohling, H. (2011). OFDM Concepts for Future Communication Systems. Berlin, Heidelberg: Springer-Verlag.
dc.relation.referencesen[14] Sembiring, Z., Malek, M. F. A., & Rahim, H. (2011). Low Complexity OFDM Modulator and Demodulator Based on Discrete Hartley Transform. Proceedings of Fifth Asia International Conference Modelling Symposium (AMS), Manila, Philippines, (pp. 252–256).
dc.relation.referencesen[15] Sharifi, A. A. (2019). Discrete Hartley matrix transform precoding- based OFDM system to reduce the high PAPR. ICT Express, 5(2), 100–103. https://doi.org/10.1016/j.icte.2018.07.001
dc.relation.referencesen[16] Tan, P., & Beaulieu, N. C. (2006). A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels. IEEE Trans.Commun, 54(11), (pp. 2113–2125).
dc.relation.referencesen[17] Vishnevskiy, V. M., Lyakhov, A. I., Portnoy, S. L., & Shakhnovich, I. V. (2005). Shirokopolosnyye besprovodnyye seti peredachi informatsii. Moscow: Publishing house Tekhnosfera. [In Russian].
dc.relation.urihttps://doi.org/10.7763/IJFCC.2013.V2.177
dc.relation.urihttps://doi.org/10.1109/ICIAS.2010.5716107
dc.relation.urihttps://doi.org/10.15421/40280727
dc.relation.urihttps://doi.org/10.15421/40280130
dc.relation.urihttps://www.intel.com/content/www/us/en/programmable/sup
dc.relation.urihttps://doi.org/10.1016/j.icte.2018.07.001
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.subjectмобільний зв'язок
dc.subjectортогональні піднесучі частоти
dc.subjectобчислювач перетворень
dc.subjectциклічна згортка
dc.subjectmobile communication
dc.subjectorthogonal subcarriers
dc.subjecttransform computer
dc.subjectcyclic convolution
dc.titleШвидкі перетворення класу Фур'є в OFDM технології систем безпровідної передачі інформації
dc.title.alternativeFast transforms of Fourier class in OFDM technology of wireless transmission systems
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v1n1_Protsko_I_O-Fast_transforms_of_Fourier_52-57.pdf
Size:
664.16 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v1n1_Protsko_I_O-Fast_transforms_of_Fourier_52-57__COVER.png
Size:
1.83 MB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: