Mathematical modelling of the impact of chemotherapy on the state of a cancerous tumor based on fractional calculus

dc.citation.epage182
dc.citation.issue2
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика
dc.citation.spage172
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний лісотехнічний університет України
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationUkrainian National Forestry University
dc.contributor.authorВільчинська, Олеся-Оксана
dc.contributor.authorСоколовський, Ярослав
dc.contributor.authorМокрицький, Андрій
dc.contributor.authorVilchynska, Olesia-Oksana
dc.contributor.authorSokolovskyi, Yaroslav
dc.contributor.authorMokrytskyi, Andrii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-12-15T08:11:12Z
dc.date.created2024-08-10
dc.date.issued2024-08-10
dc.description.abstractУ статті побудовано різницеві апроксимації фрактальних операторів математичної моделі впливу хіміотерапії на стан ракової пухлини на підставі апарату дробового диференціювання з використанням похідної Капуто. Подано математичну модель стовбурових клітин і хіміотерапії. Побудовано числові алгоритми для реалізації математичних моделей дробового порядку з викорис- танням методу Атангана – Туфіка. Описано UML-діаграму програмного застосунку та наведено його розроблення. Проаналізовано вплив фрактальних характеристик (довготривалої пам’яті) хіміотерапії на стан ракової пухлини. Наявність дробового порядку похідної за часом як параметра розв’язків дає важливу інформацію про прогнозування впливу хіміотерапії на стан ракової пухлини.
dc.description.abstractThe article is dedicated to constructing difference approximations of fractal operators in a mathematical model of the impact of chemotherapy on the state of a cancerous tumor, based on fractional calculus using the Caputo derivative. A mathematical model of stem cells and chemotherapy is presented. Numerical algorithms for implementing fractional-order mathematical models have been developed using the Atangana-Toufik method. The UML diagram of the software application and its development process are described. The impact of fractal characteristics (longterm memory) of chemotherapy on the state of a cancerous tumor is analysed. The presence of a fractional-order time derivative as a parameter of the solutions provides important information for predicting the effects of chemotherapy on the tumor’s state
dc.format.extent172-182
dc.format.pages11
dc.identifier.citationVilchynska O. Mathematical modelling of the impact of chemotherapy on the state of a cancerous tumor based on fractional calculus / Olesia-Oksana Vilchynska, Yaroslav Sokolovskyi, Andrii Mokrytskyi // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 172–182.
dc.identifier.citation2015Vilchynska O., Mokrytskyi A. Mathematical modelling of the impact of chemotherapy on the state of a cancerous tumor based on fractional calculus // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 2. P. 172–182.
dc.identifier.citationenAPAVilchynska, O., Sokolovskyi, Y., & Mokrytskyi, A. (2024). Mathematical modelling of the impact of chemotherapy on the state of a cancerous tumor based on fractional calculus. Computer Systems of Design. Theory and Practice, 6(2), 172-182. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOVilchynska O., Sokolovskyi Y., Mokrytskyi A. (2024) Mathematical modelling of the impact of chemotherapy on the state of a cancerous tumor based on fractional calculus. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 2, pp. 172-182.
dc.identifier.doihttps://doi.org/10.23939/cds2024.02.172
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124051
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика, 2 (6), 2024
dc.relation.ispartofComputer Systems of Design. Theory and Practice, 2 (6), 2024
dc.relation.references[1] Medina, M. A. Mathematical modeling of cancer metabolism. Crit. Rev. Oncol./Hematol. 2018, 124, 37–40. https://doi.org/10.1016/j.critrevonc.2018.02.004
dc.relation.references[2] Bellomo, N.; Bellouquid, A.; Delitala, M. Mathematical topics on the modeling of multicellular systems in competition between tumor and immune cells. Math. Models Methods Appl. Sci., 2004, 14, 1683–1733.https://doi.org/10.1142/S0218202504003799
dc.relation.references[3] Sierociuk, Dominik, et al. “Modelling heat transfer in heterogeneous media using fractional calculus”. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371.1990(2013): 20120146. https://doi.org/10.1098/rsta.2012.0146
dc.relation.references[4] Iomin, Alexander. “Superdiffusion of cancer on a comb structure”. Journal of Physics: conference series. Vol. 7. No. 1. IOP Publishing, 2005. https://doi.org/10.1088/1742-6596/7/1/005
dc.relation.references[5] Alinei-Poiana, T., Dulf, Eh. and Кovacs L. Дробове числення в математичній онкології. Sci. Rep., 13,10083 (2023). https://doi.org/10.1038/s41598-023-37196-9
dc.relation.references[6] Erturk, V. S.; Zaman, G.; Momani, S. A numeric analytic method for approximating a giving up smoking model containing fractional derivatives. Comput.Math. Appl. 2012, 64, 3068–3074. https://doi.org/10.1016/j.camwa.2012.02.002
dc.relation.references[7] Manar A. Alqudah Cancer treatment by stem cells and chemotherapy as a mathematical model with numerical simulations. Alexandria Engineering Journal, Vol. 59, Issue 4, August 2020, 1953–1957.https://doi.org/10.1016/j.aej.2019.12.025
dc.relation.references[8] Sweilam, N. H., Al-Mekhlafi, S. M., Assiri, T. et al. Optimal control for cancer treatment mathematical model using Atangana – Baleanu – Caputo fractional derivative. Adv. Differ. Equ., 2020, 334 (2020).https://doi.org/10.1186/s13662-020-02793-9
dc.relation.references[9] Abdon Atangana and Dumitru Baleanu. “New fractional derivatives with non-local and non-singular kernel. Theory and Application to Heat Transfer Model”. Year 2016, Vol. 20, No. 2, 763–769.https://doi.org/10.2298/TSCI160111018A
dc.relation.references[10]G .F. Webb, A nonlinear cell population model of periodic chemotherapy treatment. Vol. I of Recent Trends in Ordinary Differential Equations. Series in Applicable Analysis. World Scientic (1992) 569–583.https://doi.org/10.2298/TSCI160111018A
dc.relation.references[11] J. C. Panetta and J. Adam, A mathematical model of cycle-specic chemotherapy. Math. Comput. Model,22 (1995), 67–82. https://doi.org/10.1016/0895-7177(95)00112-F
dc.relation.references[12]Z. Liu and C. Yang, A mathematical model of cancer treatment by radiotherapy. Comput. Math. Methods Med., 2014 (2014), 172–192. https://doi.org/10.1155/2014/172923
dc.relation.references[13] J. C. Panetta, A mathematical model of breast and ovarian cancer treated with Paclitaxel. Math. Biosci., 146 (1997), 89–113. https://doi.org/10.1016/S0025-5564(97)00077-1
dc.relation.references[14]P. Unni and P. Seshaiyer, Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions. Comput. Math. Methods Med., 2019 (2019), 407–429. https://doi.org/10.1155/2019/4079298
dc.relation.references[15]H. N. Weerasinghe, P. M. Burrage, K. Burrage and D. V. Nicolau Jr., Mathematical models of cancer cell plasticity. J. Oncol., 2019 (2019), 240–253. https://doi.org/10.1155/2019/2403483
dc.relation.references[16]E. Ucar, N.Ozdemir and E. Altun, Fractional order model of immune cells inuenced by cancer cells. MMNP, 14 (2019), 308–321. https://doi.org/10.1051/mmnp/2019002
dc.relation.references[17]D. Dingli, M. D. Cascino, K. Josic, S. J. Russell and Z. Bajzer, Mathematical modeling of cancer radiovirotherapy. Math Biosci., 199 (2006), 55–78. https://doi.org/10.1016/j.mbs.2005.11.001
dc.relation.references[18]A. Yin, D. J. A. R. Moes, J. G. C. van Hasselt, J. J. Swen and H. J. Guchelaar, A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors. CPT Pharmacometrics Syst. Pharmacol., 8 (2019), 720–737. https://doi.org/10.1002/psp4.12450
dc.relation.references[19]S. Wang and H. Schattler, Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Math. BioSciences, 13 (2016), 1223–1240. https://doi.org/10.3934/mbe.2016040
dc.relation.references[20]O. G. Isaeva and V. A. Osipov, Different strategies for cancer treatment: mathematical modeling. Comput. Math. Methods Med., 10 (2009), 453–472. https://doi.org/10.1080/17486700802536054
dc.relation.referencesen[1] Medina, M. A. Mathematical modeling of cancer metabolism. Crit. Rev. Oncol./Hematol. 2018, 124, 37–40. https://doi.org/10.1016/j.critrevonc.2018.02.004
dc.relation.referencesen[2] Bellomo, N.; Bellouquid, A.; Delitala, M. Mathematical topics on the modeling of multicellular systems in competition between tumor and immune cells. Math. Models Methods Appl. Sci., 2004, 14, 1683–1733.https://doi.org/10.1142/S0218202504003799
dc.relation.referencesen[3] Sierociuk, Dominik, et al. "Modelling heat transfer in heterogeneous media using fractional calculus". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371.1990(2013): 20120146. https://doi.org/10.1098/rsta.2012.0146
dc.relation.referencesen[4] Iomin, Alexander. "Superdiffusion of cancer on a comb structure". Journal of Physics: conference series. Vol. 7. No. 1. IOP Publishing, 2005. https://doi.org/10.1088/1742-6596/7/1/005
dc.relation.referencesen[5] Alinei-Poiana, T., Dulf, Eh. and Kovacs L. Drobove chyslennia v matematychnii onkolohii. Sci. Rep., 13,10083 (2023). https://doi.org/10.1038/s41598-023-37196-9
dc.relation.referencesen[6] Erturk, V. S.; Zaman, G.; Momani, S. A numeric analytic method for approximating a giving up smoking model containing fractional derivatives. Comput.Math. Appl. 2012, 64, 3068–3074. https://doi.org/10.1016/j.camwa.2012.02.002
dc.relation.referencesen[7] Manar A. Alqudah Cancer treatment by stem cells and chemotherapy as a mathematical model with numerical simulations. Alexandria Engineering Journal, Vol. 59, Issue 4, August 2020, 1953–1957.https://doi.org/10.1016/j.aej.2019.12.025
dc.relation.referencesen[8] Sweilam, N. H., Al-Mekhlafi, S. M., Assiri, T. et al. Optimal control for cancer treatment mathematical model using Atangana – Baleanu – Caputo fractional derivative. Adv. Differ. Equ., 2020, 334 (2020).https://doi.org/10.1186/s13662-020-02793-9
dc.relation.referencesen[9] Abdon Atangana and Dumitru Baleanu. "New fractional derivatives with non-local and non-singular kernel. Theory and Application to Heat Transfer Model". Year 2016, Vol. 20, No. 2, 763–769.https://doi.org/10.2298/TSCI160111018A
dc.relation.referencesen[10]G .F. Webb, A nonlinear cell population model of periodic chemotherapy treatment. Vol. I of Recent Trends in Ordinary Differential Equations. Series in Applicable Analysis. World Scientic (1992) 569–583.https://doi.org/10.2298/TSCI160111018A
dc.relation.referencesen[11] J. C. Panetta and J. Adam, A mathematical model of cycle-specic chemotherapy. Math. Comput. Model,22 (1995), 67–82. https://doi.org/10.1016/0895-7177(95)00112-F
dc.relation.referencesen[12]Z. Liu and C. Yang, A mathematical model of cancer treatment by radiotherapy. Comput. Math. Methods Med., 2014 (2014), 172–192. https://doi.org/10.1155/2014/172923
dc.relation.referencesen[13] J. C. Panetta, A mathematical model of breast and ovarian cancer treated with Paclitaxel. Math. Biosci., 146 (1997), 89–113. https://doi.org/10.1016/S0025-5564(97)00077-1
dc.relation.referencesen[14]P. Unni and P. Seshaiyer, Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions. Comput. Math. Methods Med., 2019 (2019), 407–429. https://doi.org/10.1155/2019/4079298
dc.relation.referencesen[15]H. N. Weerasinghe, P. M. Burrage, K. Burrage and D. V. Nicolau Jr., Mathematical models of cancer cell plasticity. J. Oncol., 2019 (2019), 240–253. https://doi.org/10.1155/2019/2403483
dc.relation.referencesen[16]E. Ucar, N.Ozdemir and E. Altun, Fractional order model of immune cells inuenced by cancer cells. MMNP, 14 (2019), 308–321. https://doi.org/10.1051/mmnp/2019002
dc.relation.referencesen[17]D. Dingli, M. D. Cascino, K. Josic, S. J. Russell and Z. Bajzer, Mathematical modeling of cancer radiovirotherapy. Math Biosci., 199 (2006), 55–78. https://doi.org/10.1016/j.mbs.2005.11.001
dc.relation.referencesen[18]A. Yin, D. J. A. R. Moes, J. G. C. van Hasselt, J. J. Swen and H. J. Guchelaar, A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors. CPT Pharmacometrics Syst. Pharmacol., 8 (2019), 720–737. https://doi.org/10.1002/psp4.12450
dc.relation.referencesen[19]S. Wang and H. Schattler, Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Math. BioSciences, 13 (2016), 1223–1240. https://doi.org/10.3934/mbe.2016040
dc.relation.referencesen[20]O. G. Isaeva and V. A. Osipov, Different strategies for cancer treatment: mathematical modeling. Comput. Math. Methods Med., 10 (2009), 453–472. https://doi.org/10.1080/17486700802536054
dc.relation.urihttps://doi.org/10.1016/j.critrevonc.2018.02.004
dc.relation.urihttps://doi.org/10.1142/S0218202504003799
dc.relation.urihttps://doi.org/10.1098/rsta.2012.0146
dc.relation.urihttps://doi.org/10.1088/1742-6596/7/1/005
dc.relation.urihttps://doi.org/10.1038/s41598-023-37196-9
dc.relation.urihttps://doi.org/10.1016/j.camwa.2012.02.002
dc.relation.urihttps://doi.org/10.1016/j.aej.2019.12.025
dc.relation.urihttps://doi.org/10.1186/s13662-020-02793-9
dc.relation.urihttps://doi.org/10.2298/TSCI160111018A
dc.relation.urihttps://doi.org/10.1016/0895-7177(95)00112-F
dc.relation.urihttps://doi.org/10.1155/2014/172923
dc.relation.urihttps://doi.org/10.1016/S0025-5564(97)00077-1
dc.relation.urihttps://doi.org/10.1155/2019/4079298
dc.relation.urihttps://doi.org/10.1155/2019/2403483
dc.relation.urihttps://doi.org/10.1051/mmnp/2019002
dc.relation.urihttps://doi.org/10.1016/j.mbs.2005.11.001
dc.relation.urihttps://doi.org/10.1002/psp4.12450
dc.relation.urihttps://doi.org/10.3934/mbe.2016040
dc.relation.urihttps://doi.org/10.1080/17486700802536054
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.rights.holder© Vilchynska O.-O., Sokolovskyi Ya., Mokrytskyi A., 2024
dc.subjectмодель дробового порядку
dc.subjectдробові оператори
dc.subjectметод Атангана – Туфіка
dc.subjectракова пухлина
dc.subjectPython
dc.subjectмова R
dc.subjectfractional order model
dc.subjectfractional operators
dc.subjectatangana–toufik method
dc.subjectcancer tumor python
dc.subjectR language
dc.titleMathematical modelling of the impact of chemotherapy on the state of a cancerous tumor based on fractional calculus
dc.title.alternativeМатематичне моделювання впливу хіміотерапії на стан ракової пухлини на підставі апарату дробового диференціювання
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v6n2_Vilchynska_O-Mathematical_modelling_172-182.pdf
Size:
650.47 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: