Synthesis and Antimicrobial Activities of Salicylaldehyde Schiff Base-Cu(II) Complex and Its Catalytic Activity in N-Arylation Reactions
dc.citation.epage | 566 | |
dc.citation.issue | 3 | |
dc.citation.spage | 557 | |
dc.contributor.affiliation | Shahid Chamran University of Ahvaz | |
dc.contributor.author | Majdi-Nasab, Afrooz | |
dc.contributor.author | Heidarizadeh, Fariba | |
dc.contributor.author | Motamedi, Hossein | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:51:55Z | |
dc.date.available | 2024-02-12T08:51:55Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Синтезовано комплекс саліцилальдегідна основа Шиффа-Cu (1:1 [M:L] хелат) з використанням саліцилальдегіду, сечовини та CuCl2. Проведено оцінювання його каталітичної активності для реакції N-арилювання ароматичних амінів (1H-індол, 1H-піразол, 1H-імідазол, 1H-бензо [d][1,2,3]триазол та анілін) арилгалогенідами. Реакція не потребує арилборних кислот як активного джерела арилу або каталізатора на основі паладію. Мідь є дешевшою, ніж багато інших каталізаторів, а необхідні ліганди зазвичай мають досить просту структуру і коштують недорого. Показано, що при правильному виборі ліганду є можливість змінювати розчинність, реакційну здатність та ефективність реакції. Структура та склад нового комплексу підтверджені методами FT-IR, UV-Vis, атомно-абсорбційної спектроскопії, елементарного аналізу та TGA/DTA. Встановлено, що комплекс Cu має значну антибактеріальну активність щодо стандартних видів Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus і Bacillus subtilis. | |
dc.description.abstract | Salicylaldehyde Schiff base-Cu complex (1:1 [M:L] chelate) was synthesized using salicylaldehyde, urea, and CuCl2. Its catalytic activity was then assessed in N-arylation of aromatic amines (1H-indole, 1H- pyrazole, 1H-imidazole, 1H-benzo[d][1,2,3]triazole, and aniline) with aryl halides. This reaction does not need aryl boronic acids as the active aryl source or palladium-based catalyst. Cu is cheaper than many other catalysts, and required ligands usually having quite simple structure and being inexpensive. On the other hand, with a proper ligand selection we can have a modified solubility, reactivity, and reaction efficiency. The structure and composition of this novel complex were approved by FT-IR, UV-Vis, atomic absorption spectroscopy, elemental analysis, and TGA/DTA. Investigating the antibacterial activity of the Cu complex suggests a significant antibacterial activity against standard species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis. | |
dc.format.extent | 557-566 | |
dc.format.pages | 10 | |
dc.identifier.citation | Majdi-Nasab A. Synthesis and Antimicrobial Activities of Salicylaldehyde Schiff Base-Cu(II) Complex and Its Catalytic Activity in N-Arylation Reactions / Afrooz Majdi-Nasab, Fariba Heidarizadeh, Hossein Motamedi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 557–566. | |
dc.identifier.citationen | Majdi-Nasab A. Synthesis and Antimicrobial Activities of Salicylaldehyde Schiff Base-Cu(II) Complex and Its Catalytic Activity in N-Arylation Reactions / Afrooz Majdi-Nasab, Fariba Heidarizadeh, Hossein Motamedi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 557–566. | |
dc.identifier.doi | doi.org/10.23939/chcht17.03.557 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61261 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (17), 2023 | |
dc.relation.references | [1] Salve, P.; Alegaon, S.; Sriram, D. Three-Component, One-Pot Synthesis of Anthranilamide Schiff Bases Bearing 4-Aminoquinoline Moiety as Mycobacterium Tuberculosis Gyrase Inhibitors. Bioorg. Med. Chem. Lett. 2017, 27 (8), 1859-1866. https://doi.org/10.1016/J.BMCL.2017.02.031 | |
dc.relation.references | [2] Zhou, X.-X.; Fang, H.-C.; Ge, Y.-Y.; Zhou, Z.-Y.; Gu, Z.-G.; Gong, X.; Zhao, G.; Zhan, Q.-G.; Zeng, R.-H.; Cai, Y.-P. Assembly of a Series of Trinuclear Zinc(II) Compounds with N2O2 Donor Tetradentate Symmetrical Schiff Base Ligand. Cryst. Growth Des. 2010, 10 (9), 4014-4022. https://doi.org/10.1021/CG100612B | |
dc.relation.references | [3] Arslan, H.; Duran, N.; Borekci, G.; Ozer, C. K.; Akbay, C. Antimicrobial Activity of Some Thiourea Derivatives and Their Nickel and Copper Complexes. Molecules 2009, 14, 519-527. https://doi.org/10.3390/molecules14010519 | |
dc.relation.references | [4] Mohammed Hello, K.; Mohammad, A. K. T.; Jumaah Ali, H. Solid Melamine Sulfate for Schiff Base Synthesis. Chem. Chem. Technol. 2019, 13 (2), 198-204. https://doi.org/10.23939/chcht13.02.198 | |
dc.relation.references | [5] Singh, W.M.; Dash, B. C. Synthesis of Some New Schiff Bases Containing Thiazole and Oxazole Nuclei and Their Fungicidal Activity. Pesticides 1988, 22, 33-37. | |
dc.relation.references | [6] More, P.G.; Bhalvankar, R.B.; Pattar, S.C. Synthesis and Biological Activity of Schiff Bases of Aminothiazoles. J. Indian Chem. Soc. 2001, 78 (9), 474-475. | |
dc.relation.references | [7] Wang, Y.-E.; Yang, D.; Huo, J.; Chen, L.; Kang, Z.; Mao, J.; Zhang, J. Design, Synthesis, and Herbicidal Activity of Thioether Containing 1,2,4-Triazole Schiff Bases as Transketolase Inhibitors. J. Agric. Food Chem. 2021, 69, 11773-11780. https://doi.org/10.1021/acs.jafc.1c01804 | |
dc.relation.references | [8] Shkawat, D.; Sabnis, S.; Deliwala, C. Potential Anticancer Agents, Schiff Bases from p-(3-Azaspiro [5, 5]undec-3-yl) Benzal-dehydes. Bull. Haffkine Ins. 1973, 35-39. | |
dc.relation.references | [9] Sathe, B.; Jaychandran, E.; Jagtap, V.; Sreenivasa, G. Synthesis Characterization and Anti-Inflammatory Evaluation of New Fluoro-benzothiazole Schiff’s Bases. Int. J. Pharm. Res. Dev. 2011, 3, 164-169. https://doi.org/10.1155/2013/893512 | |
dc.relation.references | [10] Chinnasamy; Sundararajan, R.; Govindaraj, S. Synthesis, Characterization, and Analgesic Activity of Novel Schiff Base of Isatin Derivatives. J. Adv. Pharm. Technol. Res. 2010, 1, 342-347. https://doi.org/10.4103/0110-5558.72428 | |
dc.relation.references | [11] Chaitanya, M.S.; Nagendrappa, G.; Vaidya, V.P. Synthesis, Biological and Pharmacological Activities of 2-Methyl-4H-Pyrimido[2,1-b][1,3]Benzothiazoles. J. Chem. Pharm. Res. 2010, 2 (3), 206-213. https://www.jocpr.com/abstract/synthesis-biological-and-pharmacological-... | |
dc.relation.references | [12] Hodnett, E.M.; Dunn, W.J. Structure-Antitumor Activity Correlation of Some Schiff Bases. J. Med. Chem. 2002, 13, 768-770. https://doi.org/10.1021/jm00298a054 | |
dc.relation.references | [13] Goel, S.; Gupta, A.; Singh, K.P. Structural and Optical Studies of Polypyrrole Nanostructures. Int. J. Appl. Chem. 2006, 2 (3), 157-168. | |
dc.relation.references | [14] Mohindru, A.; Fisher, J.M.; Rabinovitz, M. Bathocuproine Sulphonate: A Tissue Culture-Compatible Indicator of Copper-Mediated Toxicity. Nature 1983, 303, 64-65. https://doi.org/10.1038/303064A0 | |
dc.relation.references | [15] Thurman, R.B.; Gerba, C.P. The Molecular Mechanisms of Copper and Silver Ion Disinfection of Bacteria and Viruses. Crit. Rev. Environ. Control 1989, 18, 295-315. https://doi.org/10.1080/10643388909388351 | |
dc.relation.references | [16] Thakurta, S.; Rizzoli, C.; Butcher, R.J.; Gómez-García, C.J.; Garribba, E.; Mitra, S. Sterically-Controlled Nuclearity in New Copper(II) Complexes with Di-Compartmental Ligands: Formation of Antiferromagnetically Coupled Angular Trimer and Mononuclear Inclusion Complex. Inorg. Chim. Acta 2010, 363, 1395-1403. https://doi.org/10.1016/j.ica.2009.12.053 | |
dc.relation.references | [17] Mandal, S.; Rout, A.K.; Fleck, M.; Pilet, G.; Ribas, J.; Bandyopadhyay, D. Synthesis, Crystal Structure and Magnetic Characterization of a Series of Four Phenoxo-Bridged Binuclear Manganese(III) Schiff Base Complexes. Inorg. Chim. Acta 2010, 363, 2250-2258. https://doi.org/10.1016/j.ica.2010.03.039 | |
dc.relation.references | [18] Ge, Y.-Y.; Li, G.-B.; Fang, H.-C.; Zhan, X.-L.; Gu, Z.-G.; Chen, J.-H.; Sun, F.; Cai, Y.-P.; Thallapally, P.K. Auxiliary Ligand-Dependent Assembly of Several Ni/Ni−Cd Compounds with N2O2 Donor Tetradentate Symmetrical Schiff Base Ligand. Cryst. Growth Des. 2010, 10, 4987-4994. https://doi.org/10.1021/cg101082t | |
dc.relation.references | [19] Li, X.-G.; Huang, M.-R.; Duan, W.; Yang, Y.-L. Novel Multi-functional Polymers from Aromatic Diamines by Oxidative Polymerizations. Chem. Rev. 2002, 102, 2925-3030. https://doi.org/10.1021/cr010423z | |
dc.relation.references | [20] Chen, D.; Martell, A.E. Dioxygen Affinities of Synthetic Cobalt Schiff Base Complexes. Inorg. Chem. 2002, 26, 1026-1030. https://doi.org/10.1021/ic00254a013 | |
dc.relation.references | [21] Corbert, J.-P.; Mignani, G. Selected Patented Cross-Coupling Reaction Technologies. Chem. Rev. 2006, 106 (7), 2651-2710. https://doi.org/10.1021/cr0505268 | |
dc.relation.references | [22] Kuwabara, Y.; Ogawa, H.; Inada, H.; Noma, N.; Shirota, Y. Thermally Stable Multilared Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4″-Tri(N-Carbazolyl)Triphenylamine (TCTA) and 4,4′,4″-Tris(3-Methylphenylphenylamino)Triphenylamine (m-MTDATA), as Hole-Transport Materials. Adv. Mater. 1994, 6 (9), 677-679. https://doi.org/10.1002/adma.19940060913 | |
dc.relation.references | [23] Maiorana, S.; Baldoli, C.; Del Buttero, P.; Di Ciolo, M.; Pa-pagni, A. Aromatic Nucleophilic Substitution on Haloarene Chro-mium Tricarbonyl Complexes: Mild N-Arylation on Indoles. Syn-thesis 1998, 5, 735-738. https://doi.org/10.1055/S-1998-2058 | |
dc.relation.references | [24] Hu, N.-X.; Xie, S.; Popovic, Z.; Ong, B.; Hor, A.-M.; Wang, S. 5,11-Dihydro-5,11-Di-1-Naphthylindolo[3,2-b]Carbazole: Atropisomerism in a Novel Hole-Transport Molecule for Organic Light-Emitting Diodes. J. Am. Chem. Soc. 1999, 121, 5097-5098. https://doi.org/10.1021/ja9906554 | |
dc.relation.references | [25] Kiyomori, A.; Marcoux, J.F.; Buchwald, S.L. An Efficient Copper-Catalyzed Coupling of Aryl Halides with Imidazoles. Te-trahedron Lett. 1999, 40 (14), 2657-2660. https://doi.org/10.1016/S0040-4039(99)00291-9 | |
dc.relation.references | [26] Smith, W.J.; Sawyer, J.S. A Novel and Selective Method for the N-Arylation of Indoles Mediated by KFAl2O3. Tetrahedron Lett. 1996, 37 (3), 299-302. https://doi.org/10.1016/0040-4039(95)02157-4 | |
dc.relation.references | [27] Heidarizadeh, F.; Majdi-Nasab, A. A Green, Homogeneous and Reusable Surfactant/Copper Based Ionic Liquid for the N-Arylation of Indoles, Pyrazoles and Imidazoles. Tetrahedron Lett. 2015, 56 (46), 6360-6363. https://doi.org/10.1016/j.tetlet.2015.09.128 | |
dc.relation.references | [28] Anbu, N.; Dhakshinamoorthy, A. Cu3(BTC)2 Metal-Organic Framework Catalyzed N-Arylation of Benzimidazoles and Imida-zoles with Phenylboronic Acid. J. Ind. Eng. Chem. 2018, 65, 120-126. https://doi.org/10.1016/j.jiec.2018.04.020 | |
dc.relation.references | [29] Guo, X.X.; Gu, D.W.; Wu, Z.; Zhang, W. Copper-Catalyzed C-H Functionalization Reactions: Efficient Synthesis of Heterocycles. Chem. Rev. 2015, 115 (3), 1622-1651. https://doi.org/10.1021/cr500410y | |
dc.relation.references | [30] Klapars, A.; Huang, X.; Buchwald, S.L. A General and Effi-cient Copper Catalyst for the Amidation of Aryl Halides. J. Am. Chem. Soc. 2002, 124 (25), 7421-7428. https://doi.org/10.1021/ja0260465 | |
dc.relation.references | [31] Lu, Z.; Twieg, R. J. Copper-Catalyzed Aryl Amination in Aqueous Media with 2-Dimethylaminoethanol Ligand. Tetrahedron Lett. 2005, 46 (17), 2997-3001. https://doi.org/10.1016/j.tetlet.2005.03.027 | |
dc.relation.references | [32] Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. Copper-Catalyzed Aryla-tion of Amines Using Diphenyl Pyrrolidine-2-Phosphonate as the New Ligand. J. Org. Chem. 2005, 70 (20), 8107-8109. https://doi.org/10.1021/jo051221w | |
dc.relation.references | [33] Zhang, H.; Cai, Q.; Ma, D. Amino Acid Promoted CuI-Catalyzed C-N Bond Formation between Aryl Halides and Amines or N-Containing Heterocycles. J. Org. Chem. 2005, 70 (13), 5164-5173. https://doi.org/10.1021/jo0504464 | |
dc.relation.references | [34] Chen, Y.J.; Chen, H.H. 1,1,1-Tris(Hydroxymethyl)Ethane as a New, Efficient, and Versatile Tripod Ligand for Copper-Catalyzed Cross-Coupling Reactions of Aryl Iodides with Amides, Thiols, and Phenols. Org. Lett. 2006, 8 (24), 5609-5612. https://doi.org/10.1021/ol062339h | |
dc.relation.references | [35] Liu, P.; Feng, X.-J.; He, R. Salen and Half-Salen Palladium (II) Complexes: Synthesis, Characteriztion and Catalytic Activity toward Suzuki-Miyaura Reaction. Tetrahedron, 2010, 66, 631-636. https://doi.org/10.1016/j.tet.2009.11.072 | |
dc.relation.references | [36] Lubenets, V.; Karpenko, O.; Ponomarenko, M.; Zahoriy, G.; Krychkovska, A.; Novikov, V. Development of New Antimicrobial Compositions of Thiosulfonate Structure. Chem. Chem. Technol. 2013, 7 (2), 119-124. https://doi.org/10.23939/chcht07.02.119 | |
dc.relation.references | [37] Fraser, C.; Bosnich, B. Bimetallic Reactivity. Investigation of Metal-Metal Interaction in Complexes of a Chiral Macrocyclic Binucleating Ligand Bearing 6-and 4-Coordinate Sites. Inorg. Chem. 1994, 33 (2), 338-346. https://doi.org/10.1021/ic00080a024 | |
dc.relation.references | [38] Lever, A.B.P. Inorganic Electronic Spectroscopy; Elsevier: Amsterdam, 1984. | |
dc.relation.references | [39] Tas, E.; Kilic, A.; Konak, N.; Yilmaz, I. The Sterically Hin-dered Salicylaldimine Ligands with Their Copper (II) Metal Com-plexes: Synthesis, Spectroscopy, Electrochemical and Thin-Layer Spectroelectrochemical. Polyhedron 2008, 27, 1024-1032. https://doi.org/10.1016/j.poly.2007.11.038 | |
dc.relation.references | [40] Abdlseed, F.A.; El-ajaily, M.M. Preparation and Spectroscopic Investigation of a Schiff Base Metal Complexes. Int. J. Pharm. Tech. Res. 2009, 1 (4), 1097-1103. https://sphinxsai.com/ PTVOL4/pdf_vol4/PT=21%20(1097-1103).pdf | |
dc.relation.references | [41] Chen, H.-H.; Huang, H.-M.; Chen, S.-C.; Chen, Y.-J. Highly Efficient CuI-Catalyzed N-Arylation of Azaheterocycles with Aryl Iodides Using 1,1,1-Tris(Hydroxymethyl)Ethane as a Tridentate O-Donor Ligand: A Shorter Route to Toloxatone and Formal Synthesis of Linezolid. J. Chin. Chem. Soc. 2010, 57, 14-18. https://doi.org/10.1002/jccs.201000002 | |
dc.relation.references | [42] Swapna, K.; Murthy, S.N.; Nageswar, Y.V.D. Copper Iodide as a Recyclable Catalyst for Buchwald N-Arylation. Eur. J. Org. Chem. 2010, 2010 (34), 6678-6684. https://doi.org/10.1002/ejoc.201000964 | |
dc.relation.references | [43] Yang, Q.; Wang, Y.; Yang, L.; Zhang, M. N-Arylation of Heterocycles Promoted by Tetraethylenepentamine in Water. Tetra-hedron, 2013, 69, 6230-6233. https://doi.org/10.1016%2Fj.tet.2013.05.027 | |
dc.relation.references | [44] Wang, H.; Li, Y.; Sun, F.; Feng, Y.; Jin, K.; Wang, X. 1,2,3,4-Tetrahydro-8-Hydroxyquinoline-Promoted Copper-Catalyzed Coupling of Nitrogen Nucleophiles and Aryl Bromides. J. Org. Chem. 2008, 73, 8639-8642. https://doi.org/10.1021/jo8015488 | |
dc.relation.references | [45] Begtrup, M.; Elguero, J.; Faure, R.; Camps, P.; Estopá, C.; Ilavský, D.; Fruchier, A.; Marzin, C.; de Mendoza, J. Effect of N-Substituents on the 13C NMR Parameters of Azoles. Magn. Reson. Chem. 1988, 26, 134-151. https://doi.org/10.1002/mrc.1260260210 | |
dc.relation.references | [46] Meshram, H.; Reddy, B.; Palakuri, R.; Rao, N.N. An Efficient and Improved Protocol for the N-Arylation of N-Heteroaryls Using Ionic Liquid as a Reaction Media. Der Pharma Chemica 2012, 4 (4), 1544-1551. https://www.derpharmachemica.com/pharma-chemica/an-efficient-and-improve... | |
dc.relation.references | [47] Hu, K.; Niyazymbetov, M. E.; Evans, D. H. Nucleophilic Aromatic Substitution by Paired Electrosynthesis: Reactions of Methoxy Arenes with 1H-Tetrazoles. Tetrahedron Lett. 1995, 36, 7027-7030. https://doi.org/10.1016/0040-4039(95)01455-Q | |
dc.relation.references | [48] Wadia, M.S.; Patil, D.V.A Convenient Preparation of N-Alkyl and N-Arylamines by Smiles Rearrangement - Synthesis of Analo-gues of Diclofenac. Synth. Commun. 2003, 33, 2725-2736. https://doi.org/10.1081/SCC-120021996 | |
dc.relation.references | [49] Chauhan, S.M.S.; Singh, R.; Geetanjali. An Improved Synthe-sis of N-Substituted-2-Nitroanilines. Synth. Commun. 2003, 33, 2899-2906. https://doi.org/10.1081/SCC-120022180 | |
dc.relation.references | [50] Kim, J.; Kim, S.; Kwag, H.J.; Park, S.H. Method for Prepara-tion of 4,4′-Dinitrodiphenylamine and 4,4′-Bis(Alkylamino)Diphenylamine by Using 4-Nitroaniline. U.S. Patent US8759587B2, June 24, 2014. | |
dc.relation.references | [51] Kim, A.Y.; Lee, H.J.; Chan Park, J.; Kang, H.; Yang, H.; Song, H.; Park, K.H. Highly Efficient and Reusable Copper-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles with Aryl Halides. Molecules 2009, 14, 5169-5178. https://doi.org/10.3390/molecules14125169 | |
dc.relation.references | [52] Antilla, J.C.; Baskin, J.M.; Barder, T.E.; Buchwald, S.L. Copper-Diamine-Catalyzed N-Arylation of Pyrroles, Pyrazoles, Indazoles, Imidazoles, and Triazoles. J. Org. Chem. 2004, 69, 5578-5587. https://doi.org/10.1021/jo049658b | |
dc.relation.references | [53] Sobhani, S.; Pordel, M.; Beyramabadi, S.A. Design, Synthesis, Spectral, Antibacterial Activities and Quantum Chemical Calculations of New Cu(II) Complexes of Heterocyclic Ligands. J. Mol. Struct. 2019, 1175, 677-685. https://doi.org/10.1016/j.molstruc.2018.08.034 | |
dc.relation.references | [54] Xu, Y.; Shi, Y.; Lei, F.; Dai, L. A Novel and Green Cellulose-Based Schiff Base-Cu (II) Complex and Its Excellent Antibacterial Activity. Carbohydr. Polym. 2020, 230, 115671. https://doi.org/10.1016/j.carbpol.2019.115671 | |
dc.relation.references | [55] Pan, Y.-Q.; Zhang, Y. Y.; Yu, M.; Zhang, Y.Y.; Wang, L. Newly Synthesized Homomultinuclear Co (II) and Cu (II) Bissala-mo-like Complexes: Structural Characterizations, Hirshfeld Analys-es, Fluorescence and Antibacterial Properties. Appl. Organomet. Chem. 2020, 34, e5441. https://doi.org/10.1002/aoc.5441 | |
dc.relation.referencesen | [1] Salve, P.; Alegaon, S.; Sriram, D. Three-Component, One-Pot Synthesis of Anthranilamide Schiff Bases Bearing 4-Aminoquinoline Moiety as Mycobacterium Tuberculosis Gyrase Inhibitors. Bioorg. Med. Chem. Lett. 2017, 27 (8), 1859-1866. https://doi.org/10.1016/J.BMCL.2017.02.031 | |
dc.relation.referencesen | [2] Zhou, X.-X.; Fang, H.-C.; Ge, Y.-Y.; Zhou, Z.-Y.; Gu, Z.-G.; Gong, X.; Zhao, G.; Zhan, Q.-G.; Zeng, R.-H.; Cai, Y.-P. Assembly of a Series of Trinuclear Zinc(II) Compounds with N2O2 Donor Tetradentate Symmetrical Schiff Base Ligand. Cryst. Growth Des. 2010, 10 (9), 4014-4022. https://doi.org/10.1021/CG100612B | |
dc.relation.referencesen | [3] Arslan, H.; Duran, N.; Borekci, G.; Ozer, C. K.; Akbay, C. Antimicrobial Activity of Some Thiourea Derivatives and Their Nickel and Copper Complexes. Molecules 2009, 14, 519-527. https://doi.org/10.3390/molecules14010519 | |
dc.relation.referencesen | [4] Mohammed Hello, K.; Mohammad, A. K. T.; Jumaah Ali, H. Solid Melamine Sulfate for Schiff Base Synthesis. Chem. Chem. Technol. 2019, 13 (2), 198-204. https://doi.org/10.23939/chcht13.02.198 | |
dc.relation.referencesen | [5] Singh, W.M.; Dash, B. C. Synthesis of Some New Schiff Bases Containing Thiazole and Oxazole Nuclei and Their Fungicidal Activity. Pesticides 1988, 22, 33-37. | |
dc.relation.referencesen | [6] More, P.G.; Bhalvankar, R.B.; Pattar, S.C. Synthesis and Biological Activity of Schiff Bases of Aminothiazoles. J. Indian Chem. Soc. 2001, 78 (9), 474-475. | |
dc.relation.referencesen | [7] Wang, Y.-E.; Yang, D.; Huo, J.; Chen, L.; Kang, Z.; Mao, J.; Zhang, J. Design, Synthesis, and Herbicidal Activity of Thioether Containing 1,2,4-Triazole Schiff Bases as Transketolase Inhibitors. J. Agric. Food Chem. 2021, 69, 11773-11780. https://doi.org/10.1021/acs.jafc.1c01804 | |
dc.relation.referencesen | [8] Shkawat, D.; Sabnis, S.; Deliwala, C. Potential Anticancer Agents, Schiff Bases from p-(3-Azaspiro [5, 5]undec-3-yl) Benzal-dehydes. Bull. Haffkine Ins. 1973, 35-39. | |
dc.relation.referencesen | [9] Sathe, B.; Jaychandran, E.; Jagtap, V.; Sreenivasa, G. Synthesis Characterization and Anti-Inflammatory Evaluation of New Fluoro-benzothiazole Schiff’s Bases. Int. J. Pharm. Res. Dev. 2011, 3, 164-169. https://doi.org/10.1155/2013/893512 | |
dc.relation.referencesen | [10] Chinnasamy; Sundararajan, R.; Govindaraj, S. Synthesis, Characterization, and Analgesic Activity of Novel Schiff Base of Isatin Derivatives. J. Adv. Pharm. Technol. Res. 2010, 1, 342-347. https://doi.org/10.4103/0110-5558.72428 | |
dc.relation.referencesen | [11] Chaitanya, M.S.; Nagendrappa, G.; Vaidya, V.P. Synthesis, Biological and Pharmacological Activities of 2-Methyl-4H-Pyrimido[2,1-b][1,3]Benzothiazoles. J. Chem. Pharm. Res. 2010, 2 (3), 206-213. https://www.jocpr.com/abstract/synthesis-biological-and-pharmacological-... | |
dc.relation.referencesen | [12] Hodnett, E.M.; Dunn, W.J. Structure-Antitumor Activity Correlation of Some Schiff Bases. J. Med. Chem. 2002, 13, 768-770. https://doi.org/10.1021/jm00298a054 | |
dc.relation.referencesen | [13] Goel, S.; Gupta, A.; Singh, K.P. Structural and Optical Studies of Polypyrrole Nanostructures. Int. J. Appl. Chem. 2006, 2 (3), 157-168. | |
dc.relation.referencesen | [14] Mohindru, A.; Fisher, J.M.; Rabinovitz, M. Bathocuproine Sulphonate: A Tissue Culture-Compatible Indicator of Copper-Mediated Toxicity. Nature 1983, 303, 64-65. https://doi.org/10.1038/303064A0 | |
dc.relation.referencesen | [15] Thurman, R.B.; Gerba, C.P. The Molecular Mechanisms of Copper and Silver Ion Disinfection of Bacteria and Viruses. Crit. Rev. Environ. Control 1989, 18, 295-315. https://doi.org/10.1080/10643388909388351 | |
dc.relation.referencesen | [16] Thakurta, S.; Rizzoli, C.; Butcher, R.J.; Gómez-García, C.J.; Garribba, E.; Mitra, S. Sterically-Controlled Nuclearity in New Copper(II) Complexes with Di-Compartmental Ligands: Formation of Antiferromagnetically Coupled Angular Trimer and Mononuclear Inclusion Complex. Inorg. Chim. Acta 2010, 363, 1395-1403. https://doi.org/10.1016/j.ica.2009.12.053 | |
dc.relation.referencesen | [17] Mandal, S.; Rout, A.K.; Fleck, M.; Pilet, G.; Ribas, J.; Bandyopadhyay, D. Synthesis, Crystal Structure and Magnetic Characterization of a Series of Four Phenoxo-Bridged Binuclear Manganese(III) Schiff Base Complexes. Inorg. Chim. Acta 2010, 363, 2250-2258. https://doi.org/10.1016/j.ica.2010.03.039 | |
dc.relation.referencesen | [18] Ge, Y.-Y.; Li, G.-B.; Fang, H.-C.; Zhan, X.-L.; Gu, Z.-G.; Chen, J.-H.; Sun, F.; Cai, Y.-P.; Thallapally, P.K. Auxiliary Ligand-Dependent Assembly of Several Ni/Ni−Cd Compounds with N2O2 Donor Tetradentate Symmetrical Schiff Base Ligand. Cryst. Growth Des. 2010, 10, 4987-4994. https://doi.org/10.1021/cg101082t | |
dc.relation.referencesen | [19] Li, X.-G.; Huang, M.-R.; Duan, W.; Yang, Y.-L. Novel Multi-functional Polymers from Aromatic Diamines by Oxidative Polymerizations. Chem. Rev. 2002, 102, 2925-3030. https://doi.org/10.1021/cr010423z | |
dc.relation.referencesen | [20] Chen, D.; Martell, A.E. Dioxygen Affinities of Synthetic Cobalt Schiff Base Complexes. Inorg. Chem. 2002, 26, 1026-1030. https://doi.org/10.1021/ic00254a013 | |
dc.relation.referencesen | [21] Corbert, J.-P.; Mignani, G. Selected Patented Cross-Coupling Reaction Technologies. Chem. Rev. 2006, 106 (7), 2651-2710. https://doi.org/10.1021/cr0505268 | |
dc.relation.referencesen | [22] Kuwabara, Y.; Ogawa, H.; Inada, H.; Noma, N.; Shirota, Y. Thermally Stable Multilared Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4″-Tri(N-Carbazolyl)Triphenylamine (TCTA) and 4,4′,4″-Tris(3-Methylphenylphenylamino)Triphenylamine (m-MTDATA), as Hole-Transport Materials. Adv. Mater. 1994, 6 (9), 677-679. https://doi.org/10.1002/adma.19940060913 | |
dc.relation.referencesen | [23] Maiorana, S.; Baldoli, C.; Del Buttero, P.; Di Ciolo, M.; Pa-pagni, A. Aromatic Nucleophilic Substitution on Haloarene Chro-mium Tricarbonyl Complexes: Mild N-Arylation on Indoles. Syn-thesis 1998, 5, 735-738. https://doi.org/10.1055/S-1998-2058 | |
dc.relation.referencesen | [24] Hu, N.-X.; Xie, S.; Popovic, Z.; Ong, B.; Hor, A.-M.; Wang, S. 5,11-Dihydro-5,11-Di-1-Naphthylindolo[3,2-b]Carbazole: Atropisomerism in a Novel Hole-Transport Molecule for Organic Light-Emitting Diodes. J. Am. Chem. Soc. 1999, 121, 5097-5098. https://doi.org/10.1021/ja9906554 | |
dc.relation.referencesen | [25] Kiyomori, A.; Marcoux, J.F.; Buchwald, S.L. An Efficient Copper-Catalyzed Coupling of Aryl Halides with Imidazoles. Te-trahedron Lett. 1999, 40 (14), 2657-2660. https://doi.org/10.1016/S0040-4039(99)00291-9 | |
dc.relation.referencesen | [26] Smith, W.J.; Sawyer, J.S. A Novel and Selective Method for the N-Arylation of Indoles Mediated by KFAl2O3. Tetrahedron Lett. 1996, 37 (3), 299-302. https://doi.org/10.1016/0040-4039(95)02157-4 | |
dc.relation.referencesen | [27] Heidarizadeh, F.; Majdi-Nasab, A. A Green, Homogeneous and Reusable Surfactant/Copper Based Ionic Liquid for the N-Arylation of Indoles, Pyrazoles and Imidazoles. Tetrahedron Lett. 2015, 56 (46), 6360-6363. https://doi.org/10.1016/j.tetlet.2015.09.128 | |
dc.relation.referencesen | [28] Anbu, N.; Dhakshinamoorthy, A. Cu3(BTC)2 Metal-Organic Framework Catalyzed N-Arylation of Benzimidazoles and Imida-zoles with Phenylboronic Acid. J. Ind. Eng. Chem. 2018, 65, 120-126. https://doi.org/10.1016/j.jiec.2018.04.020 | |
dc.relation.referencesen | [29] Guo, X.X.; Gu, D.W.; Wu, Z.; Zhang, W. Copper-Catalyzed C-H Functionalization Reactions: Efficient Synthesis of Heterocycles. Chem. Rev. 2015, 115 (3), 1622-1651. https://doi.org/10.1021/cr500410y | |
dc.relation.referencesen | [30] Klapars, A.; Huang, X.; Buchwald, S.L. A General and Effi-cient Copper Catalyst for the Amidation of Aryl Halides. J. Am. Chem. Soc. 2002, 124 (25), 7421-7428. https://doi.org/10.1021/ja0260465 | |
dc.relation.referencesen | [31] Lu, Z.; Twieg, R. J. Copper-Catalyzed Aryl Amination in Aqueous Media with 2-Dimethylaminoethanol Ligand. Tetrahedron Lett. 2005, 46 (17), 2997-3001. https://doi.org/10.1016/j.tetlet.2005.03.027 | |
dc.relation.referencesen | [32] Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. Copper-Catalyzed Aryla-tion of Amines Using Diphenyl Pyrrolidine-2-Phosphonate as the New Ligand. J. Org. Chem. 2005, 70 (20), 8107-8109. https://doi.org/10.1021/jo051221w | |
dc.relation.referencesen | [33] Zhang, H.; Cai, Q.; Ma, D. Amino Acid Promoted CuI-Catalyzed C-N Bond Formation between Aryl Halides and Amines or N-Containing Heterocycles. J. Org. Chem. 2005, 70 (13), 5164-5173. https://doi.org/10.1021/jo0504464 | |
dc.relation.referencesen | [34] Chen, Y.J.; Chen, H.H. 1,1,1-Tris(Hydroxymethyl)Ethane as a New, Efficient, and Versatile Tripod Ligand for Copper-Catalyzed Cross-Coupling Reactions of Aryl Iodides with Amides, Thiols, and Phenols. Org. Lett. 2006, 8 (24), 5609-5612. https://doi.org/10.1021/ol062339h | |
dc.relation.referencesen | [35] Liu, P.; Feng, X.-J.; He, R. Salen and Half-Salen Palladium (II) Complexes: Synthesis, Characteriztion and Catalytic Activity toward Suzuki-Miyaura Reaction. Tetrahedron, 2010, 66, 631-636. https://doi.org/10.1016/j.tet.2009.11.072 | |
dc.relation.referencesen | [36] Lubenets, V.; Karpenko, O.; Ponomarenko, M.; Zahoriy, G.; Krychkovska, A.; Novikov, V. Development of New Antimicrobial Compositions of Thiosulfonate Structure. Chem. Chem. Technol. 2013, 7 (2), 119-124. https://doi.org/10.23939/chcht07.02.119 | |
dc.relation.referencesen | [37] Fraser, C.; Bosnich, B. Bimetallic Reactivity. Investigation of Metal-Metal Interaction in Complexes of a Chiral Macrocyclic Binucleating Ligand Bearing 6-and 4-Coordinate Sites. Inorg. Chem. 1994, 33 (2), 338-346. https://doi.org/10.1021/ic00080a024 | |
dc.relation.referencesen | [38] Lever, A.B.P. Inorganic Electronic Spectroscopy; Elsevier: Amsterdam, 1984. | |
dc.relation.referencesen | [39] Tas, E.; Kilic, A.; Konak, N.; Yilmaz, I. The Sterically Hin-dered Salicylaldimine Ligands with Their Copper (II) Metal Com-plexes: Synthesis, Spectroscopy, Electrochemical and Thin-Layer Spectroelectrochemical. Polyhedron 2008, 27, 1024-1032. https://doi.org/10.1016/j.poly.2007.11.038 | |
dc.relation.referencesen | [40] Abdlseed, F.A.; El-ajaily, M.M. Preparation and Spectroscopic Investigation of a Schiff Base Metal Complexes. Int. J. Pharm. Tech. Res. 2009, 1 (4), 1097-1103. https://sphinxsai.com/ PTVOL4/pdf_vol4/PT=21%20(1097-1103).pdf | |
dc.relation.referencesen | [41] Chen, H.-H.; Huang, H.-M.; Chen, S.-C.; Chen, Y.-J. Highly Efficient CuI-Catalyzed N-Arylation of Azaheterocycles with Aryl Iodides Using 1,1,1-Tris(Hydroxymethyl)Ethane as a Tridentate O-Donor Ligand: A Shorter Route to Toloxatone and Formal Synthesis of Linezolid. J. Chin. Chem. Soc. 2010, 57, 14-18. https://doi.org/10.1002/jccs.201000002 | |
dc.relation.referencesen | [42] Swapna, K.; Murthy, S.N.; Nageswar, Y.V.D. Copper Iodide as a Recyclable Catalyst for Buchwald N-Arylation. Eur. J. Org. Chem. 2010, 2010 (34), 6678-6684. https://doi.org/10.1002/ejoc.201000964 | |
dc.relation.referencesen | [43] Yang, Q.; Wang, Y.; Yang, L.; Zhang, M. N-Arylation of Heterocycles Promoted by Tetraethylenepentamine in Water. Tetra-hedron, 2013, 69, 6230-6233. https://doi.org/10.1016%2Fj.tet.2013.05.027 | |
dc.relation.referencesen | [44] Wang, H.; Li, Y.; Sun, F.; Feng, Y.; Jin, K.; Wang, X. 1,2,3,4-Tetrahydro-8-Hydroxyquinoline-Promoted Copper-Catalyzed Coupling of Nitrogen Nucleophiles and Aryl Bromides. J. Org. Chem. 2008, 73, 8639-8642. https://doi.org/10.1021/jo8015488 | |
dc.relation.referencesen | [45] Begtrup, M.; Elguero, J.; Faure, R.; Camps, P.; Estopá, C.; Ilavský, D.; Fruchier, A.; Marzin, C.; de Mendoza, J. Effect of N-Substituents on the 13C NMR Parameters of Azoles. Magn. Reson. Chem. 1988, 26, 134-151. https://doi.org/10.1002/mrc.1260260210 | |
dc.relation.referencesen | [46] Meshram, H.; Reddy, B.; Palakuri, R.; Rao, N.N. An Efficient and Improved Protocol for the N-Arylation of N-Heteroaryls Using Ionic Liquid as a Reaction Media. Der Pharma Chemica 2012, 4 (4), 1544-1551. https://www.derpharmachemica.com/pharma-chemica/an-efficient-and-improve... | |
dc.relation.referencesen | [47] Hu, K.; Niyazymbetov, M. E.; Evans, D. H. Nucleophilic Aromatic Substitution by Paired Electrosynthesis: Reactions of Methoxy Arenes with 1H-Tetrazoles. Tetrahedron Lett. 1995, 36, 7027-7030. https://doi.org/10.1016/0040-4039(95)01455-Q | |
dc.relation.referencesen | [48] Wadia, M.S.; Patil, D.V.A Convenient Preparation of N-Alkyl and N-Arylamines by Smiles Rearrangement - Synthesis of Analo-gues of Diclofenac. Synth. Commun. 2003, 33, 2725-2736. https://doi.org/10.1081/SCC-120021996 | |
dc.relation.referencesen | [49] Chauhan, S.M.S.; Singh, R.; Geetanjali. An Improved Synthe-sis of N-Substituted-2-Nitroanilines. Synth. Commun. 2003, 33, 2899-2906. https://doi.org/10.1081/SCC-120022180 | |
dc.relation.referencesen | [50] Kim, J.; Kim, S.; Kwag, H.J.; Park, S.H. Method for Prepara-tion of 4,4′-Dinitrodiphenylamine and 4,4′-Bis(Alkylamino)Diphenylamine by Using 4-Nitroaniline. U.S. Patent US8759587B2, June 24, 2014. | |
dc.relation.referencesen | [51] Kim, A.Y.; Lee, H.J.; Chan Park, J.; Kang, H.; Yang, H.; Song, H.; Park, K.H. Highly Efficient and Reusable Copper-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles with Aryl Halides. Molecules 2009, 14, 5169-5178. https://doi.org/10.3390/molecules14125169 | |
dc.relation.referencesen | [52] Antilla, J.C.; Baskin, J.M.; Barder, T.E.; Buchwald, S.L. Copper-Diamine-Catalyzed N-Arylation of Pyrroles, Pyrazoles, Indazoles, Imidazoles, and Triazoles. J. Org. Chem. 2004, 69, 5578-5587. https://doi.org/10.1021/jo049658b | |
dc.relation.referencesen | [53] Sobhani, S.; Pordel, M.; Beyramabadi, S.A. Design, Synthesis, Spectral, Antibacterial Activities and Quantum Chemical Calculations of New Cu(II) Complexes of Heterocyclic Ligands. J. Mol. Struct. 2019, 1175, 677-685. https://doi.org/10.1016/j.molstruc.2018.08.034 | |
dc.relation.referencesen | [54] Xu, Y.; Shi, Y.; Lei, F.; Dai, L. A Novel and Green Cellulose-Based Schiff Base-Cu (II) Complex and Its Excellent Antibacterial Activity. Carbohydr. Polym. 2020, 230, 115671. https://doi.org/10.1016/j.carbpol.2019.115671 | |
dc.relation.referencesen | [55] Pan, Y.-Q.; Zhang, Y. Y.; Yu, M.; Zhang, Y.Y.; Wang, L. Newly Synthesized Homomultinuclear Co (II) and Cu (II) Bissala-mo-like Complexes: Structural Characterizations, Hirshfeld Analys-es, Fluorescence and Antibacterial Properties. Appl. Organomet. Chem. 2020, 34, e5441. https://doi.org/10.1002/aoc.5441 | |
dc.relation.uri | https://doi.org/10.1016/J.BMCL.2017.02.031 | |
dc.relation.uri | https://doi.org/10.1021/CG100612B | |
dc.relation.uri | https://doi.org/10.3390/molecules14010519 | |
dc.relation.uri | https://doi.org/10.23939/chcht13.02.198 | |
dc.relation.uri | https://doi.org/10.1021/acs.jafc.1c01804 | |
dc.relation.uri | https://doi.org/10.1155/2013/893512 | |
dc.relation.uri | https://doi.org/10.4103/0110-5558.72428 | |
dc.relation.uri | https://www.jocpr.com/abstract/synthesis-biological-and-pharmacological-.. | |
dc.relation.uri | https://doi.org/10.1021/jm00298a054 | |
dc.relation.uri | https://doi.org/10.1038/303064A0 | |
dc.relation.uri | https://doi.org/10.1080/10643388909388351 | |
dc.relation.uri | https://doi.org/10.1016/j.ica.2009.12.053 | |
dc.relation.uri | https://doi.org/10.1016/j.ica.2010.03.039 | |
dc.relation.uri | https://doi.org/10.1021/cg101082t | |
dc.relation.uri | https://doi.org/10.1021/cr010423z | |
dc.relation.uri | https://doi.org/10.1021/ic00254a013 | |
dc.relation.uri | https://doi.org/10.1021/cr0505268 | |
dc.relation.uri | https://doi.org/10.1002/adma.19940060913 | |
dc.relation.uri | https://doi.org/10.1055/S-1998-2058 | |
dc.relation.uri | https://doi.org/10.1021/ja9906554 | |
dc.relation.uri | https://doi.org/10.1016/S0040-4039(99)00291-9 | |
dc.relation.uri | https://doi.org/10.1016/0040-4039(95)02157-4 | |
dc.relation.uri | https://doi.org/10.1016/j.tetlet.2015.09.128 | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2018.04.020 | |
dc.relation.uri | https://doi.org/10.1021/cr500410y | |
dc.relation.uri | https://doi.org/10.1021/ja0260465 | |
dc.relation.uri | https://doi.org/10.1016/j.tetlet.2005.03.027 | |
dc.relation.uri | https://doi.org/10.1021/jo051221w | |
dc.relation.uri | https://doi.org/10.1021/jo0504464 | |
dc.relation.uri | https://doi.org/10.1021/ol062339h | |
dc.relation.uri | https://doi.org/10.1016/j.tet.2009.11.072 | |
dc.relation.uri | https://doi.org/10.23939/chcht07.02.119 | |
dc.relation.uri | https://doi.org/10.1021/ic00080a024 | |
dc.relation.uri | https://doi.org/10.1016/j.poly.2007.11.038 | |
dc.relation.uri | https://sphinxsai.com/ | |
dc.relation.uri | https://doi.org/10.1002/jccs.201000002 | |
dc.relation.uri | https://doi.org/10.1002/ejoc.201000964 | |
dc.relation.uri | https://doi.org/10.1016%2Fj.tet.2013.05.027 | |
dc.relation.uri | https://doi.org/10.1021/jo8015488 | |
dc.relation.uri | https://doi.org/10.1002/mrc.1260260210 | |
dc.relation.uri | https://www.derpharmachemica.com/pharma-chemica/an-efficient-and-improve.. | |
dc.relation.uri | https://doi.org/10.1016/0040-4039(95)01455-Q | |
dc.relation.uri | https://doi.org/10.1081/SCC-120021996 | |
dc.relation.uri | https://doi.org/10.1081/SCC-120022180 | |
dc.relation.uri | https://doi.org/10.3390/molecules14125169 | |
dc.relation.uri | https://doi.org/10.1021/jo049658b | |
dc.relation.uri | https://doi.org/10.1016/j.molstruc.2018.08.034 | |
dc.relation.uri | https://doi.org/10.1016/j.carbpol.2019.115671 | |
dc.relation.uri | https://doi.org/10.1002/aoc.5441 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Majdi-Nasab A., Heidarizadeh F., Motamedi H., 2023 | |
dc.subject | комплекс саліцилальдегідна основа Шиффа-Cu | |
dc.subject | антимікробне дослідження | |
dc.subject | каталітична активність | |
dc.subject | N-арилювання | |
dc.subject | арилгалогенід | |
dc.subject | salicylaldehyde Schiff base-Cu complex | |
dc.subject | antimicrobial study | |
dc.subject | catalytic activity | |
dc.subject | N-arylation | |
dc.subject | aryl halide | |
dc.title | Synthesis and Antimicrobial Activities of Salicylaldehyde Schiff Base-Cu(II) Complex and Its Catalytic Activity in N-Arylation Reactions | |
dc.title.alternative | Синтез та антимікробна активність комплексу саліцилальдегідна основа шиффа CU(II) та його каталітична активність у реакціях N-арилювання | |
dc.type | Article |
Files
License bundle
1 - 1 of 1