Shapley value cost allocation model for multimodal freight transport carriers
dc.citation.epage | 63 | |
dc.citation.issue | 1 | |
dc.citation.spage | 53 | |
dc.contributor.affiliation | Federal University of Technology Owerri | |
dc.contributor.affiliation | Federal College of Fisheries and Marine Technology | |
dc.contributor.affiliation | Ibrahim Badamasi Babangida University | |
dc.contributor.author | Amuji, Harrison Obiora | |
dc.contributor.author | Onwuegbuchunam, Donatus Eberechukwu | |
dc.contributor.author | Okeke, Kenneth Okechukwu | |
dc.contributor.author | Ojutalayo, John Folayan | |
dc.contributor.author | Nwachi, Christy Chidiebere | |
dc.contributor.author | Mustapha, Abdulmalik Muhammad | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-06-27T09:07:54Z | |
dc.date.available | 2024-06-27T09:07:54Z | |
dc.date.created | 2024-02-28 | |
dc.date.issued | 2024-02-28 | |
dc.description.abstract | Розподіл нафтопродуктів у секторі переробки та збуту стикається зі значними проблемами через старіння трубопровідної інфраструктури, вандалізм на трубопроводах та інші логістичні обмеження. Ці проблеми призвели до стрімкого зростання цін на пальне, дефіциту та недоступності продукту в деяких регіонах Нігерії. Зважаючи на це, використання альтернативних видів транспорту для розподілу нафтопродуктів вивчають з метою підвищення ефективності розподілу цієї продукції. Рішення поєднати внутрішній водний транспорт (замість трубопровідної мережі) та автомобільний транспорт активізує переваги, притаманні мультимодальній транспортній системі. Однак ефективність використання мультимодальних перевезень може знизитись, якщо оператори мультимодальних перевезень будуть конкурувати (замість того, щоб співпрацювати) у наданні послуг. У статті досліджено економічну ефективність кооперативної співпраці між мультимодальними перевізниками. Розглянуто співпрацю між шістьма операторами мультимодальних перевезень. Метою заохочення такої масштабної коаліції (S) є очікування, що витрати, які виникають в результаті їхньої спільної діяльності, будуть зменшені. Застосовано метод розподілу вартісних витрат Шеплі для розподілу операційних витрат і прибутку між учасниками коаліції. Результати аналізу показали, що витрати на одиницю продукції для коаліції S1 зменшилися на 17,16 (5,10 %) млн. найр. Аналогічно, спостерігається відповідне зниження питомих витрат для коаліцій S2, ..., S10. Відбулося зниження витрат на 107,84 млн найр, що становить 6,15 % зниження загальних витрат на одиницю продукції для мультимодальних перевізників. Отже, спостережувана економічна ефективність є економією завдяки ефективності ланцюга розподілу, якщо мультимодальні транспортні перевізники співпрацюють для покращення доступності продукції. Робота в коаліціїкомпенсує коливання цін на пальне, спричинене неефективністю ланцюга розподілу. | |
dc.description.abstract | The downstream petroleum products distribution is beset with significant challenges due to ageing pipeline infrastructure, pipeline vandalism and other logistical constraints. These challenges have given rise to soaring pump prices of premium motor spirit (PMS), product shortages and unavailability across some locations in Nigeria. Thus, deploying alternative transport modes for PMS distribution is explored to improve product distribution efficiency. The decision to combine inland waterway transport (instead of pipeline network) and road transport modes would activate the intrinsic advantages inherent in the multimodal transport system. However, the efficiency outcome of using multi-modes may be eroded if the multimodal transport operators compete (instead of collaborating) in service provisions. This research investigated cost efficiency in cooperative collaboration among multimodal transport carriers. We proposed collaboration among six multimodal transport operators. The aim of encouraging such a large-scale coalition (S) is the expectation that costs emanating from their joint operation would be reduced. We applied the Shapley value cost allocation method to distribute the costs of operation and profit to the collaborators. After the analysis, we observed that the unit cost for coalition S1 was reduced by N17.16 (5.10 %) million naira. Similarly, we observed respective reductions in unit costs for coalitions S2, …, S10. We observed a reduction in cost by N107.84 million naira, which represents a 6.15 % reduction in total unit cost for the multimodal transportation carriers. Thus, the observed cost efficiency represents savings due to distribution chain efficiency if the multimodal transport carriers collaborate to improve product availability. Working as a coalition would offset PMS pump price variation attributable to distribution chain inefficiency. | |
dc.format.extent | 53-63 | |
dc.format.pages | 11 | |
dc.identifier.citation | Shapley value cost allocation model for multimodal freight transport carriers / Harrison Obiora Amuji, Donatus Eberechukwu Onwuegbuchunam, Kenneth Okechukwu Okeke, John Folayan Ojutalayo, Christy Chidiebere Nwachi, Abdulmalik Muhammad Mustapha // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 5. — No 1. — P. 53–63. | |
dc.identifier.citationen | Shapley value cost allocation model for multimodal freight transport carriers / Harrison Obiora Amuji, Donatus Eberechukwu Onwuegbuchunam, Kenneth Okechukwu Okeke, John Folayan Ojutalayo, Christy Chidiebere Nwachi, Abdulmalik Muhammad Mustapha // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 5. — No 1. — P. 53–63. | |
dc.identifier.doi | doi.org/10.23939/tt2024.01.053 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/62294 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Transport Technologies, 1 (5), 2024 | |
dc.relation.references | 1. Cruijssen, F., Cools, M., & Dullaert, W. (2007). Horizontal cooperation in logistics: opportunities and impediments. Transportation Research Part E: Logistics and Transportation Review, 43(2), 129-142. doi: 10.1016/j.tre.2005.09.007 (in English). https://doi.org/10.1016/j.tre.2005.09.007 | |
dc.relation.references | 2. Wang, Y. (2023). A collaborative approach based on Shapley value for carriers in the supply chain distribution. Heliyon, 9(7). e17967. doi: 10.1016/j.heliyon.2023.e17967 (in English). https://doi.org/10.1016/j.heliyon.2023.e17967 | |
dc.relation.references | 3. Agarwal, R., & Ergun, Ö. (2010). Network design and allocation mechanisms for carrier alliances in liner shipping. Operations research, 58(6), 1726-1742. doi: 10.1287/opre.1100.0848 (in English). https://doi.org/10.1287/opre.1100.0848 | |
dc.relation.references | 4. Ivanov, D., Pavlov, A., & Sokolov, B. (2014). Optimal distribution (re) planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics. European Journal of Operational Research, 237(2), 758-770. doi: 10.1016/j.ejor.2014.02.023 (in English). https://doi.org/10.1016/j.ejor.2014.02.023 | |
dc.relation.references | 5. Kayikci, Y. (2020). Analysis of Cost Allocation Methods in International Sea-Rail Multimodal Freight Transportation. Yaşar Üniversitesi E-Dergisi, 15(57), 129-142. doi: 10.19168/jyasar.568692 (in English). https://doi.org/10.19168/jyasar.568692 | |
dc.relation.references | 6. Audy, J. F., D'Amours, S., & Rousseau, L. M. (2010). Erratum: Cost allocation in the establishment of a collaborative transportation agreement-an application in the furniture industry. Journal of the operational research society, 61(10), 1559-1559. doi: 10.1057/jors.2010.139 (in English). https://doi.org/10.1057/jors.2010.139 | |
dc.relation.references | 7. Zaremba, L., Zaremba, C. S., & Suchenek, M. (2017). Modification of shapley value and its implementation in decision making. Foundations of Management, 9(1), 257-272. doi: 10.1515/fman-2017-0020 (in English). https://doi.org/10.1515/fman-2017-0020 | |
dc.relation.references | 8. Thomas, L. (1986). Games, Theory & Applications. Chichester: Ellis Horwood (in English). | |
dc.relation.references | 9. Aziz, H., Cahan, C., Gretton, C., Kilby, P., Mattei, N., & Walsh, T. (2014). A Study of Proxies for Shapley Allocations of Transport Costs. Computer Science and Game Theory, 51, 1-35. doi: 10.48550/arXiv.1408.4901 (in English). | |
dc.relation.references | 10. Li, J., Cai, X., & Zeng, Y. (2016). Cost allocation for less-than-truckload collaboration among perishable product retailers. OR spectrum, 38(1), 81-117. doi: 10.1007/s00291-015-0424-9 (in English). https://doi.org/10.1007/s00291-015-0424-9 | |
dc.relation.references | 11. Aloui, A., Hamani, N., & Delahoche, L. (2021). An integrated optimization approach using a collaborative strategy for sustainable cities freight transportation: A Case study. Sustainable Cities and Society, 75, 103331. doi: 10.1016/J.SCS.2021.103331 (in English). https://doi.org/10.1016/j.scs.2021.103331 | |
dc.relation.references | 12. Pavlidis, K., Ioannis, P., & Folinas, D. (2016). Application of game theory in multimodal transport operator processes. Retrieved from: https://www.zbw.eu/econis-archiv/handle/11159/686 (in English). | |
dc.relation.references | 13. Masimli, A. (2023). Shapley Value for Shortest Path Routing in Dynamic Networks. Retrieved from: https://www.preprints.org/manuscript/202304.1115/v1 (in English). https://doi.org/10.20944/preprints202304.1115.v1 | |
dc.relation.references | 14. Amuji, H. O., Ugwuanyim, G. U., & Anyiam, K. E. (2019). Application of game theory in maintaining the academic standard in the Nigerian Universities. World Scientific News, (125), 72-82. (in English). | |
dc.relation.references | 15. Young, H. P. (1985). Monotonic solutions of cooperative games. International Journal of Game Theory, 14(2), 65-72. doi: 10.1007/BF01769885 (in English). https://doi.org/10.1007/BF01769885 | |
dc.relation.references | 16. Shapley, L. S. (1953). A value for n-person games. (in English). https://doi.org/10.1515/9781400881970-018 | |
dc.relation.references | 17. Dai, B., & Chen, H. (2012). Profit allocation mechanisms for carrier collaboration in pickup and delivery service. Computers & Industrial Engineering, 62(2), 633-643. doi: 10.1016/j.cie.2011.11.029 (in English). https://doi.org/10.1016/j.cie.2011.11.029 | |
dc.relation.references | 18. Malawski, M., Wieczorek, A., & Sosnowska, H. (2006). Konkurencja i kooperacja - teoria gier w ekonomii i naukach społecznych (Competition and Cooperation - Theory of Games in Economics and Social Science), Warszawa: Wydawnictwo Naukowe PWN. | |
dc.relation.referencesen | 1. Cruijssen, F., Cools, M., & Dullaert, W. (2007). Horizontal cooperation in logistics: opportunities and impediments. Transportation Research Part E: Logistics and Transportation Review, 43(2), 129-142. doi: 10.1016/j.tre.2005.09.007 (in English). https://doi.org/10.1016/j.tre.2005.09.007 | |
dc.relation.referencesen | 2. Wang, Y. (2023). A collaborative approach based on Shapley value for carriers in the supply chain distribution. Heliyon, 9(7). e17967. doi: 10.1016/j.heliyon.2023.e17967 (in English). https://doi.org/10.1016/j.heliyon.2023.e17967 | |
dc.relation.referencesen | 3. Agarwal, R., & Ergun, Ö. (2010). Network design and allocation mechanisms for carrier alliances in liner shipping. Operations research, 58(6), 1726-1742. doi: 10.1287/opre.1100.0848 (in English). https://doi.org/10.1287/opre.1100.0848 | |
dc.relation.referencesen | 4. Ivanov, D., Pavlov, A., & Sokolov, B. (2014). Optimal distribution (re) planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics. European Journal of Operational Research, 237(2), 758-770. doi: 10.1016/j.ejor.2014.02.023 (in English). https://doi.org/10.1016/j.ejor.2014.02.023 | |
dc.relation.referencesen | 5. Kayikci, Y. (2020). Analysis of Cost Allocation Methods in International Sea-Rail Multimodal Freight Transportation. Yaşar Üniversitesi E-Dergisi, 15(57), 129-142. doi: 10.19168/jyasar.568692 (in English). https://doi.org/10.19168/jyasar.568692 | |
dc.relation.referencesen | 6. Audy, J. F., D'Amours, S., & Rousseau, L. M. (2010). Erratum: Cost allocation in the establishment of a collaborative transportation agreement-an application in the furniture industry. Journal of the operational research society, 61(10), 1559-1559. doi: 10.1057/jors.2010.139 (in English). https://doi.org/10.1057/jors.2010.139 | |
dc.relation.referencesen | 7. Zaremba, L., Zaremba, C. S., & Suchenek, M. (2017). Modification of shapley value and its implementation in decision making. Foundations of Management, 9(1), 257-272. doi: 10.1515/fman-2017-0020 (in English). https://doi.org/10.1515/fman-2017-0020 | |
dc.relation.referencesen | 8. Thomas, L. (1986). Games, Theory & Applications. Chichester: Ellis Horwood (in English). | |
dc.relation.referencesen | 9. Aziz, H., Cahan, C., Gretton, C., Kilby, P., Mattei, N., & Walsh, T. (2014). A Study of Proxies for Shapley Allocations of Transport Costs. Computer Science and Game Theory, 51, 1-35. doi: 10.48550/arXiv.1408.4901 (in English). | |
dc.relation.referencesen | 10. Li, J., Cai, X., & Zeng, Y. (2016). Cost allocation for less-than-truckload collaboration among perishable product retailers. OR spectrum, 38(1), 81-117. doi: 10.1007/s00291-015-0424-9 (in English). https://doi.org/10.1007/s00291-015-0424-9 | |
dc.relation.referencesen | 11. Aloui, A., Hamani, N., & Delahoche, L. (2021). An integrated optimization approach using a collaborative strategy for sustainable cities freight transportation: A Case study. Sustainable Cities and Society, 75, 103331. doi: 10.1016/J.SCS.2021.103331 (in English). https://doi.org/10.1016/j.scs.2021.103331 | |
dc.relation.referencesen | 12. Pavlidis, K., Ioannis, P., & Folinas, D. (2016). Application of game theory in multimodal transport operator processes. Retrieved from: https://www.zbw.eu/econis-archiv/handle/11159/686 (in English). | |
dc.relation.referencesen | 13. Masimli, A. (2023). Shapley Value for Shortest Path Routing in Dynamic Networks. Retrieved from: https://www.preprints.org/manuscript/202304.1115/v1 (in English). https://doi.org/10.20944/preprints202304.1115.v1 | |
dc.relation.referencesen | 14. Amuji, H. O., Ugwuanyim, G. U., & Anyiam, K. E. (2019). Application of game theory in maintaining the academic standard in the Nigerian Universities. World Scientific News, (125), 72-82. (in English). | |
dc.relation.referencesen | 15. Young, H. P. (1985). Monotonic solutions of cooperative games. International Journal of Game Theory, 14(2), 65-72. doi: 10.1007/BF01769885 (in English). https://doi.org/10.1007/BF01769885 | |
dc.relation.referencesen | 16. Shapley, L. S. (1953). A value for n-person games. (in English). https://doi.org/10.1515/9781400881970-018 | |
dc.relation.referencesen | 17. Dai, B., & Chen, H. (2012). Profit allocation mechanisms for carrier collaboration in pickup and delivery service. Computers & Industrial Engineering, 62(2), 633-643. doi: 10.1016/j.cie.2011.11.029 (in English). https://doi.org/10.1016/j.cie.2011.11.029 | |
dc.relation.referencesen | 18. Malawski, M., Wieczorek, A., & Sosnowska, H. (2006). Konkurencja i kooperacja - teoria gier w ekonomii i naukach społecznych (Competition and Cooperation - Theory of Games in Economics and Social Science), Warszawa: Wydawnictwo Naukowe PWN. | |
dc.relation.uri | https://doi.org/10.1016/j.tre.2005.09.007 | |
dc.relation.uri | https://doi.org/10.1016/j.heliyon.2023.e17967 | |
dc.relation.uri | https://doi.org/10.1287/opre.1100.0848 | |
dc.relation.uri | https://doi.org/10.1016/j.ejor.2014.02.023 | |
dc.relation.uri | https://doi.org/10.19168/jyasar.568692 | |
dc.relation.uri | https://doi.org/10.1057/jors.2010.139 | |
dc.relation.uri | https://doi.org/10.1515/fman-2017-0020 | |
dc.relation.uri | https://doi.org/10.1007/s00291-015-0424-9 | |
dc.relation.uri | https://doi.org/10.1016/j.scs.2021.103331 | |
dc.relation.uri | https://www.zbw.eu/econis-archiv/handle/11159/686 | |
dc.relation.uri | https://www.preprints.org/manuscript/202304.1115/v1 | |
dc.relation.uri | https://doi.org/10.20944/preprints202304.1115.v1 | |
dc.relation.uri | https://doi.org/10.1007/BF01769885 | |
dc.relation.uri | https://doi.org/10.1515/9781400881970-018 | |
dc.relation.uri | https://doi.org/10.1016/j.cie.2011.11.029 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.rights.holder | © H. O. Amuji, D. E. Onwuegbuchunam, K. O. Okeke, J. F. Ojutalayo, C. C. Nwachi, A. M. Mustapha, 2024 | |
dc.subject | показник Шеплі | |
dc.subject | розподіл витрат | |
dc.subject | мультимодальні вантажні перевезення | |
dc.subject | дистрибуція нафтопродуктів | |
dc.subject | співпраця перевізників | |
dc.subject | теорія ігор | |
dc.subject | Shapely value | |
dc.subject | cost allocation | |
dc.subject | multimodal freight transport | |
dc.subject | petroleum products distribution | |
dc.subject | carrier collaboration | |
dc.subject | Game theory | |
dc.title | Shapley value cost allocation model for multimodal freight transport carriers | |
dc.title.alternative | Модель розподілу витрат Шеплі для мультимодальних вантажних перевізників | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1