Hybridization of Divide-and-Conquer technique and Neural Network algorithm for better contrast enhancement in medical images

dc.citation.epage935
dc.citation.issue4
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage921
dc.contributor.affiliationПерший університет імені Хасана в Сеттаті
dc.contributor.affiliationУніверситет Мохаммеда Першого
dc.contributor.affiliationУніверситет Каді Айяд
dc.contributor.affiliationHassan First University of Settat
dc.contributor.affiliationUniversity of Mohammed First
dc.contributor.affiliationCadi Ayyad University
dc.contributor.authorАкель, Ф.
dc.contributor.authorАлаа, К.
dc.contributor.authorАлаа, Н. Е.
dc.contributor.authorАтунті, М.
dc.contributor.authorAqel, F.
dc.contributor.authorAlaa, K.
dc.contributor.authorAlaa, N. E.
dc.contributor.authorAtounti, M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-24T09:14:07Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractМетою даної роботи є запропонувати новий метод оптимального контрастного посилення медичного зображення. Основна ідея полягає в удосконаленні методу “розділяй і володарюй” для посилення контрасту та виділення інформації та деталей зображення на основі нової концепції алгоритму нейронної мережі. Техніка “розділяй і володарюй” є відповідним методом для посилення контрасту з ефективністю, яка безпосередньо залежить від вибору вагових коефіцієнтів у підпросторах розкладання. Для оптимального вибору вагових коефіцієнтів було використано новий гібридний алгоритм з урахуванням оптимізації міри покращення (EME). Щоб оцінити ефективність запропонованої моделі, були представлені експериментальні результати, які показують, що запропонована гібридна техніка є надійно ефективною та створює чіткі та висококонтрастні зображення.
dc.description.abstractThe aim of this work is to propose a new method for optimal contrast enhancement of a medical image. The main idea is to improve the Divide-and-Conquer method to enhance the contrast, and highlight the information and details of the image, based on a new conception of the Neural Network algorithm. The Divide-and-Conquer technique is a suitable method for contrast enhancement with an efficiency that directly depends on the choice of weights in the decomposition subspaces. A new hybrid algorithm was used for the optimal selection of weights, considering the optimization of the enhancement measure (EME). To evaluate the proposed model's effectiveness, experimental results were presented showing that the proposed hybrid technique is robustly effective and produces clear and high contrast images.
dc.format.extent921-935
dc.format.pages15
dc.identifier.citationHybridization of Divide-and-Conquer technique and Neural Network algorithm for better contrast enhancement in medical images / F. Aqel, K. Alaa, N. E. Alaa, M. Atounti // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 4. — P. 921–935.
dc.identifier.citationenHybridization of Divide-and-Conquer technique and Neural Network algorithm for better contrast enhancement in medical images / F. Aqel, K. Alaa, N. E. Alaa, M. Atounti // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 4. — P. 921–935.
dc.identifier.doidoi.org/10.23939/mmc2022.04.921
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64229
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 4 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 4 (9), 2022
dc.relation.references[1] Weickert J. Anisotropic Diffusion in Image Processing. Teubner–Verlag, Stuttgart (1998).
dc.relation.references[2] Gonzalez R. C., Woods R. E. Digital Image Processing. Pearson Prenctice Hall (2007).
dc.relation.references[3] Alaa N. E., Zirhem M. Bio-inspired reaction diffusion system applied to image restoration. International Journal of Bio-Inspired Computation. 12 (2), 128–137 (2018).
dc.relation.references[4] Zhang Y., Gong S., Luo M. Image quality guided biology application for genetic analysis. Journal of Visual Communication and Image Representation. 64, 102606 (2019).
dc.relation.references[5] Algazi V. R., Ford G. E., Hildum E. Digital representation and storage of high quality color images by anisotropic enhancement and subsampling. International Conference on Acoustics, Speech, and Signal Processing (1989).
dc.relation.references[6] Goel N., Yadav A., Singh B. M. Medical image processing: A review. 2016 Second International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH). 57–62 (2016).
dc.relation.references[7] Deserno T. M. Fundamentals of biomedical image processing. In: Deserno T. (eds) Biomedical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg (2010).
dc.relation.references[8] Morris P. G. Nuclear magnetic resonance imaging in medicine and biology (1986).
dc.relation.references[9] Stark D. D., Bradley W. G. Magnetic resonance imaging. St. Louis, MO: Mosby (1992).
dc.relation.references[10] Honeyman-Buck J. Deserno T. M. (ed) Biomedical image processing. Journal of Digital Imaging. 25, 689–691 (2012).
dc.relation.references[11] Defrise M., Gullberg G. T. Image reconstruction. Physics in Medicine & Biology. 51 (13), R139 (2006).
dc.relation.references[12] Reader A. J., Zaidi H. Advances in PET image reconstruction. PET Clinics. 2 (2), 173–190 (2007).
dc.relation.references[13] Vasilenko G. I., Taratorin A. M. Image reconstruction. Moscow, Izdatel Radio Sviaz (1986).
dc.relation.references[14] Lu L., Zheng Y., Carneiro G., Yang L. Deep learning and convolutional neural networks for medical image computing. Advances in Computer Vision and Pattern Recognition (2017).
dc.relation.references[15] Analoui M. Radiographic image enhancement. Part I: spatial domain techniques. Dentomaxillofacial Radiology. 30 (1), 1–9 (2001).
dc.relation.references[16] Rahman S., Rahman M. M., Hussain K., Khaled S. M., Shoyaib M. Image enhancement in spatial domain: A comprehensive study. 2014 17th International Conference on Computer and Information Technology (ICCIT). 368–373 (2014).
dc.relation.references[17] Agaian S. S., Panetta K., Grigoryan A. M. A new measure of image enhancement. In: IASTED International Conference on Signal Processing & Communication (pp. 19–22). (2000).
dc.relation.references[18] Dhawan A. P. Medical image analysis. John Wiley & Sons. Vol. 31 (2011).
dc.relation.references[19] Koehring A., Foo J. L., Miyano G., Lobe T., Winer E. A framework for interactive visualization of digital medical images. Journal of Laparoendoscopic & Advanced Surgical Techniques. 18 (5), 697–706 (2008).
dc.relation.references[20] Silva S., Santos B. S., Madeira J., Silva A. Processing, visualization and analysis of medical images of the heart: an example of fast prototyping using MeVisLab. 2009 Second International Conference in Visualisation. 165–170 (2009).
dc.relation.references[21] Deserno T. Medical image processing. Optipedia, SPIE Press, Bellingham, WA (2009).
dc.relation.references[22] Marion J. L. Analysis of justification for modality integration. Proc. SPIE 0418, Picture Archiving and Communication Systems. 418, 17–23 (1983).
dc.relation.references[23] Land E. H. The retinex. American Scientist. 52 (2), 247–264 (1964).
dc.relation.references[24] Land E. H., McCann J. J. Lightness and retinex theory. Journal of the Optical Society of America. 61 (1), 1–11 (1971).
dc.relation.references[25] Fu X., Sun Y., LiWang M., Huang Y., Zhang X.-P., Ding X. A novel retinex based approach for image enhancement with illumination adjustment. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1190–1194 (2014).
dc.relation.references[26] Ng M. K., Wang W. A total variation model for Retinex. SIAM Journal on Imaging Sciences. 4 (1), 345–365 (2011).
dc.relation.references[27] Wang L., Xiao L., Liu H., Wei Z. Variational Bayesian method for retinex. IEEE Transactions on Image Processing. 23 (8), 3381–3396 (2014).
dc.relation.references[28] Polesel A., Ramponi G., Mathews V. J. Image enhancement via adaptive unsharp masking. IEEE transactions on image processing. 9 (3), 505–510 (2000).
dc.relation.references[29] Deng G. A generalized unsharp masking algorithm. IEEE transactions on Image Processing. 20 (5), 1249–1261 (2010).
dc.relation.references[30] Wang Y., Chen Q., Zhang B. Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE transactions on Consumer Electronics. 45 (1), 68–75 (1999).
dc.relation.references[31] Patel S., Goswami M. Comparative analysis of Histogram Equalization techniques. 2014 International Conference on Contemporary Computing and Informatics (IC3I). 167–168 (2014).
dc.relation.references[32] Kim J. Y., Kim L. S., Hwang S. H. An advanced contrast enhancement using partially overlapped subblock histogram equalization. IEEE transactions on circuits and systems for video technology. 11 (4), 475–484 (2001).
dc.relation.references[33] Bacquey N. The packing problem: A divide and conquer algorithm on cellular automata. Automata & JAC. 1–10 (2012).
dc.relation.references[34] Stout Q. F. Supporting divide-and-conquer algorithms for image processing. Journal of Parallel and Distributed Computing. 4 (1), 95–115 (1987).
dc.relation.references[35] Zhuang P., Fu X., Huang Y., Ding X. Image enhancement using divide-and-conquer strategy. Journal of Visual Communication and Image Representation. 45, 137–146 (2017).
dc.relation.references[36] Alaa K., Atounti M., Zirhem M. Image restoration and contrast enhancement based on a nonlinear reactiondiffusion mathematical model and divide & conquer technique. Mathematical Modeling and Computing. 8 (3), 549–559 (2021).
dc.relation.references[37] Zhuang P., Ding X. Divide-and-conquer framework for image restoration and enhancement. Engineering Applications of Artificial Intelligence. 85, 830–844 (2019).
dc.relation.references[38] Liu D. N., Hou R., Wu W. Z., Hua J. W., Wang X. Y., Pang B. Research on infrared image enhancement and segmentation of power equipment based on partial differential equation. Journal of Visual Communication and Image Representation. 64, 102610 (2019).
dc.relation.references[39] Gray P., Scott S. K. Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability. Chemical Engineering Science. 38 (1), 29–43 (1983).
dc.relation.references[40] McGough J. S., Riley K. Pattern formation in the Gray–Scott model. Nonlinear Analysis: Real World Applications. 5 (1), 105–121 (2004).
dc.relation.references[41] Alaa H., Alaa N. E., Aqel F., Lefraich H. A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement. Mathematical Modeling and Computing. 9 (2), 187–202 (2022).
dc.relation.references[42] Li W., Shi M., Ogunbona P. A new divide and conquer algorithm for graph-based image and video segmentation. 2005 IEEE 7th Workshop on Multimedia Signal Processing. 1–4 (2005).
dc.relation.references[43] K¨orting T. S., Castejon E. F., Fonseca L. M. G. The divide and segment method for parallel image segmentation. International Conference on Advanced Concepts for Intelligent Vision Systems. 504–515 (2013).
dc.relation.references[44] Zirhem M., Alaa N. E. Texture synthesis by reaction diffusion process. Annals of the University of CraiovaMathematics and Computer Science Series. 42 (1), 56–69 (2015).
dc.relation.references[45] Alaa N., Zirhem M. Entropy solution for a fourth-order nonlinear degenerate problem for image decomposition. J. Adv. Math. Stud. 11, 412–427 (2018).
dc.relation.references[46] Sadollah A., Sayyaadi H., Yadav A. A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm. Applied Soft Computing. 71, 747–782 (2018).
dc.relation.references[47] Parizeau M. R´eseaux de neurones. GIF-21140 et GIF-64326, 124 (2004).
dc.relation.references[48] Dreyfus G. R´eseaux de neurones: M´ethodologie et applications. Eyrolles (2004).
dc.relation.referencesen[1] Weickert J. Anisotropic Diffusion in Image Processing. Teubner–Verlag, Stuttgart (1998).
dc.relation.referencesen[2] Gonzalez R. C., Woods R. E. Digital Image Processing. Pearson Prenctice Hall (2007).
dc.relation.referencesen[3] Alaa N. E., Zirhem M. Bio-inspired reaction diffusion system applied to image restoration. International Journal of Bio-Inspired Computation. 12 (2), 128–137 (2018).
dc.relation.referencesen[4] Zhang Y., Gong S., Luo M. Image quality guided biology application for genetic analysis. Journal of Visual Communication and Image Representation. 64, 102606 (2019).
dc.relation.referencesen[5] Algazi V. R., Ford G. E., Hildum E. Digital representation and storage of high quality color images by anisotropic enhancement and subsampling. International Conference on Acoustics, Speech, and Signal Processing (1989).
dc.relation.referencesen[6] Goel N., Yadav A., Singh B. M. Medical image processing: A review. 2016 Second International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH). 57–62 (2016).
dc.relation.referencesen[7] Deserno T. M. Fundamentals of biomedical image processing. In: Deserno T. (eds) Biomedical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg (2010).
dc.relation.referencesen[8] Morris P. G. Nuclear magnetic resonance imaging in medicine and biology (1986).
dc.relation.referencesen[9] Stark D. D., Bradley W. G. Magnetic resonance imaging. St. Louis, MO: Mosby (1992).
dc.relation.referencesen[10] Honeyman-Buck J. Deserno T. M. (ed) Biomedical image processing. Journal of Digital Imaging. 25, 689–691 (2012).
dc.relation.referencesen[11] Defrise M., Gullberg G. T. Image reconstruction. Physics in Medicine & Biology. 51 (13), R139 (2006).
dc.relation.referencesen[12] Reader A. J., Zaidi H. Advances in PET image reconstruction. PET Clinics. 2 (2), 173–190 (2007).
dc.relation.referencesen[13] Vasilenko G. I., Taratorin A. M. Image reconstruction. Moscow, Izdatel Radio Sviaz (1986).
dc.relation.referencesen[14] Lu L., Zheng Y., Carneiro G., Yang L. Deep learning and convolutional neural networks for medical image computing. Advances in Computer Vision and Pattern Recognition (2017).
dc.relation.referencesen[15] Analoui M. Radiographic image enhancement. Part I: spatial domain techniques. Dentomaxillofacial Radiology. 30 (1), 1–9 (2001).
dc.relation.referencesen[16] Rahman S., Rahman M. M., Hussain K., Khaled S. M., Shoyaib M. Image enhancement in spatial domain: A comprehensive study. 2014 17th International Conference on Computer and Information Technology (ICCIT). 368–373 (2014).
dc.relation.referencesen[17] Agaian S. S., Panetta K., Grigoryan A. M. A new measure of image enhancement. In: IASTED International Conference on Signal Processing & Communication (pp. 19–22). (2000).
dc.relation.referencesen[18] Dhawan A. P. Medical image analysis. John Wiley & Sons. Vol. 31 (2011).
dc.relation.referencesen[19] Koehring A., Foo J. L., Miyano G., Lobe T., Winer E. A framework for interactive visualization of digital medical images. Journal of Laparoendoscopic & Advanced Surgical Techniques. 18 (5), 697–706 (2008).
dc.relation.referencesen[20] Silva S., Santos B. S., Madeira J., Silva A. Processing, visualization and analysis of medical images of the heart: an example of fast prototyping using MeVisLab. 2009 Second International Conference in Visualisation. 165–170 (2009).
dc.relation.referencesen[21] Deserno T. Medical image processing. Optipedia, SPIE Press, Bellingham, WA (2009).
dc.relation.referencesen[22] Marion J. L. Analysis of justification for modality integration. Proc. SPIE 0418, Picture Archiving and Communication Systems. 418, 17–23 (1983).
dc.relation.referencesen[23] Land E. H. The retinex. American Scientist. 52 (2), 247–264 (1964).
dc.relation.referencesen[24] Land E. H., McCann J. J. Lightness and retinex theory. Journal of the Optical Society of America. 61 (1), 1–11 (1971).
dc.relation.referencesen[25] Fu X., Sun Y., LiWang M., Huang Y., Zhang X.-P., Ding X. A novel retinex based approach for image enhancement with illumination adjustment. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1190–1194 (2014).
dc.relation.referencesen[26] Ng M. K., Wang W. A total variation model for Retinex. SIAM Journal on Imaging Sciences. 4 (1), 345–365 (2011).
dc.relation.referencesen[27] Wang L., Xiao L., Liu H., Wei Z. Variational Bayesian method for retinex. IEEE Transactions on Image Processing. 23 (8), 3381–3396 (2014).
dc.relation.referencesen[28] Polesel A., Ramponi G., Mathews V. J. Image enhancement via adaptive unsharp masking. IEEE transactions on image processing. 9 (3), 505–510 (2000).
dc.relation.referencesen[29] Deng G. A generalized unsharp masking algorithm. IEEE transactions on Image Processing. 20 (5), 1249–1261 (2010).
dc.relation.referencesen[30] Wang Y., Chen Q., Zhang B. Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE transactions on Consumer Electronics. 45 (1), 68–75 (1999).
dc.relation.referencesen[31] Patel S., Goswami M. Comparative analysis of Histogram Equalization techniques. 2014 International Conference on Contemporary Computing and Informatics (IC3I). 167–168 (2014).
dc.relation.referencesen[32] Kim J. Y., Kim L. S., Hwang S. H. An advanced contrast enhancement using partially overlapped subblock histogram equalization. IEEE transactions on circuits and systems for video technology. 11 (4), 475–484 (2001).
dc.relation.referencesen[33] Bacquey N. The packing problem: A divide and conquer algorithm on cellular automata. Automata & JAC. 1–10 (2012).
dc.relation.referencesen[34] Stout Q. F. Supporting divide-and-conquer algorithms for image processing. Journal of Parallel and Distributed Computing. 4 (1), 95–115 (1987).
dc.relation.referencesen[35] Zhuang P., Fu X., Huang Y., Ding X. Image enhancement using divide-and-conquer strategy. Journal of Visual Communication and Image Representation. 45, 137–146 (2017).
dc.relation.referencesen[36] Alaa K., Atounti M., Zirhem M. Image restoration and contrast enhancement based on a nonlinear reactiondiffusion mathematical model and divide & conquer technique. Mathematical Modeling and Computing. 8 (3), 549–559 (2021).
dc.relation.referencesen[37] Zhuang P., Ding X. Divide-and-conquer framework for image restoration and enhancement. Engineering Applications of Artificial Intelligence. 85, 830–844 (2019).
dc.relation.referencesen[38] Liu D. N., Hou R., Wu W. Z., Hua J. W., Wang X. Y., Pang B. Research on infrared image enhancement and segmentation of power equipment based on partial differential equation. Journal of Visual Communication and Image Representation. 64, 102610 (2019).
dc.relation.referencesen[39] Gray P., Scott S. K. Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability. Chemical Engineering Science. 38 (1), 29–43 (1983).
dc.relation.referencesen[40] McGough J. S., Riley K. Pattern formation in the Gray–Scott model. Nonlinear Analysis: Real World Applications. 5 (1), 105–121 (2004).
dc.relation.referencesen[41] Alaa H., Alaa N. E., Aqel F., Lefraich H. A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement. Mathematical Modeling and Computing. 9 (2), 187–202 (2022).
dc.relation.referencesen[42] Li W., Shi M., Ogunbona P. A new divide and conquer algorithm for graph-based image and video segmentation. 2005 IEEE 7th Workshop on Multimedia Signal Processing. 1–4 (2005).
dc.relation.referencesen[43] K¨orting T. S., Castejon E. F., Fonseca L. M. G. The divide and segment method for parallel image segmentation. International Conference on Advanced Concepts for Intelligent Vision Systems. 504–515 (2013).
dc.relation.referencesen[44] Zirhem M., Alaa N. E. Texture synthesis by reaction diffusion process. Annals of the University of CraiovaMathematics and Computer Science Series. 42 (1), 56–69 (2015).
dc.relation.referencesen[45] Alaa N., Zirhem M. Entropy solution for a fourth-order nonlinear degenerate problem for image decomposition. J. Adv. Math. Stud. 11, 412–427 (2018).
dc.relation.referencesen[46] Sadollah A., Sayyaadi H., Yadav A. A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm. Applied Soft Computing. 71, 747–782 (2018).
dc.relation.referencesen[47] Parizeau M. R´eseaux de neurones. GIF-21140 et GIF-64326, 124 (2004).
dc.relation.referencesen[48] Dreyfus G. R´eseaux de neurones: M´ethodologie et applications. Eyrolles (2004).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectмедичні зображення
dc.subjectпідвищення контрастності
dc.subjectтехніка “розділяй і володарюй”
dc.subjectалгоритм нейронної мережі
dc.subjectалгоритм оптимізації
dc.subjectматематична модель Грея–Скотта
dc.subjectmedical images
dc.subjectcontrast enhancement
dc.subjectDivide-and-Conquer technique
dc.subjectNeural Network Algorithm
dc.subjectoptimization algorithm
dc.subjectGray–Scott mathematical model
dc.titleHybridization of Divide-and-Conquer technique and Neural Network algorithm for better contrast enhancement in medical images
dc.title.alternativeГібридизація техніки “розділяй і володарюй” і алгоритму нейронної мережі для покращення контрастності медичних зображень
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n4_Aqel_F-Hybridization_of_Divide_and_921-935.pdf
Size:
1.72 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n4_Aqel_F-Hybridization_of_Divide_and_921-935__COVER.png
Size:
406.12 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: