Predicate data model in the form of a linear space
dc.citation.epage | 54 | |
dc.citation.issue | 4 | |
dc.citation.spage | 51 | |
dc.citation.volume | 8 | |
dc.contributor.affiliation | Kharkiv National University of Radioelectronics | |
dc.contributor.author | Shliakhov, V. | |
dc.contributor.author | Chetverykov, G. | |
dc.contributor.author | Bozhko, I. | |
dc.contributor.author | Shliakhova, N. | |
dc.coverage.placename | Lublin | |
dc.date.accessioned | 2020-02-28T09:27:47Z | |
dc.date.available | 2020-02-28T09:27:47Z | |
dc.date.created | 2019-06-26 | |
dc.date.issued | 2019-06-26 | |
dc.description.abstract | The restriction of the input set in the form of a positive cone of the space <L, R> is not always correct. For instance, while studying the organ of vision, people are limited not only to positive, but also to radiation with not very high energies, because excessively intense can disturb the visual organ. In this particular case, a convex body of a linear space is a fairly acceptable model of the set of input signals. Therefore, we consider linear predicates with this domain of definition. | |
dc.format.extent | 51-54 | |
dc.format.pages | 4 | |
dc.identifier.citation | Predicate data model in the form of a linear space / V. Shliakhov, G. Chetverykov, I. Bozhko, N. Shliakhova // Econtechmod : scientific journal. — Lublin, 2019. — Vol 8. — No 4. — P. 51–54. | |
dc.identifier.citationen | Predicate data model in the form of a linear space / V. Shliakhov, G. Chetverykov, I. Bozhko, N. Shliakhova // Econtechmod : scientific journal. — Lublin, 2019. — Vol 8. — No 4. — P. 51–54. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46306 | |
dc.language.iso | en | |
dc.relation.ispartof | Econtechmod : scientific journal, 4 (8), 2019 | |
dc.relation.references | 1. Maltsev A. 1973. Algebraic Systems”. SpringerVerlag Berlin Heidelberg, 320 p. | |
dc.relation.references | 2. Chetverikov G.G. , Vechirska I.Dtanyanskiy. S.S. 2014. The methods of algebra of finite predicates in the intellectual system of complex calculations of telecommunication companies. In: CriMiCo 2014, 24th International Crimean Conference Microwave and Telecommunication Technology, Sevastopol, 2014: 346–347. | |
dc.relation.references | 3. Mousavi S. M. H., Lyashenko V. 2017. Extracting Old Persian Cuneiform Font Out of Noisy Images (Handwritten or Inscription). In: IEEE 10th Iranian Conference on Machine Vision and Image Processing (MVIP), 241–246. | |
dc.relation.references | 4. Sharonova N., Doroshenko A., Cherednichenko O. 2018. Issues of fact-based information analysis . In: Proc. of the International Conference on Computational linguistics and intelligent systems. Volume 2136: 11–19 | |
dc.relation.references | 5. Kosar O., Shakhovska N. 2018. An Overview of Denoising Methods for Different Types of Noises Present on Graphic Images. In: Conference on Computer Science and Information Technologies CSIT 2018: 38–47. | |
dc.relation.references | 6. Khairova N., Petrasova S., Gautam Ajit Pratap Singh. 2015. The logic and linguistic model for automatic extraction of collocation similarity. Econtechmod. Vol. 4. No. 4: 43–48. | |
dc.relation.referencesen | 1. Maltsev A. 1973. Algebraic Systems". SpringerVerlag Berlin Heidelberg, 320 p. | |
dc.relation.referencesen | 2. Chetverikov G.G. , Vechirska I.Dtanyanskiy. S.S. 2014. The methods of algebra of finite predicates in the intellectual system of complex calculations of telecommunication companies. In: CriMiCo 2014, 24th International Crimean Conference Microwave and Telecommunication Technology, Sevastopol, 2014: 346–347. | |
dc.relation.referencesen | 3. Mousavi S. M. H., Lyashenko V. 2017. Extracting Old Persian Cuneiform Font Out of Noisy Images (Handwritten or Inscription). In: IEEE 10th Iranian Conference on Machine Vision and Image Processing (MVIP), 241–246. | |
dc.relation.referencesen | 4. Sharonova N., Doroshenko A., Cherednichenko O. 2018. Issues of fact-based information analysis . In: Proc. of the International Conference on Computational linguistics and intelligent systems. Volume 2136: 11–19 | |
dc.relation.referencesen | 5. Kosar O., Shakhovska N. 2018. An Overview of Denoising Methods for Different Types of Noises Present on Graphic Images. In: Conference on Computer Science and Information Technologies CSIT 2018: 38–47. | |
dc.relation.referencesen | 6. Khairova N., Petrasova S., Gautam Ajit Pratap Singh. 2015. The logic and linguistic model for automatic extraction of collocation similarity. Econtechmod. Vol. 4. No. 4: 43–48. | |
dc.rights.holder | © Copyright by Lviv Polytechnic National University 2019 | |
dc.rights.holder | © Copyright by University of Engineering and Economics in Rzeszów 2019 | |
dc.subject | predicate model | |
dc.subject | linear space | |
dc.subject | predicate algebra | |
dc.subject | algebraic structure | |
dc.title | Predicate data model in the form of a linear space | |
dc.type | Article |
Files
License bundle
1 - 1 of 1