Dynamics of carbon dioxide adsorption by carbon nanotubes

dc.citation.epage107
dc.citation.issue2
dc.citation.spage101
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytskyi
dc.contributor.affiliationJan Dlugosz University in Czestochowa
dc.contributor.authorSabadash, Vira
dc.contributor.authorGumnitsky, Jaroslaw
dc.contributor.authorLopushansky, Oleksiy
dc.contributor.authorMatsuska, Oksana
dc.contributor.authorNowik-Zając, Anna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-08T08:43:48Z
dc.date.available2024-02-08T08:43:48Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractThis article is devoted to the study of the carbon dioxide adsorption process. The relevance of using carbon nanotubes for adsorbing carbon dioxide from industrial emissions is that carbon nanotubes have a high surface area and can effectively interact with carbon dioxide molecules. In addition, they have high mechanical strength and chemical resistance, which makes them attractive for industrial use. Carbon nanotubes have the potential to reduce carbon dioxide emissions and reduce the negative impact on the environment. Using carbon nanotubes in the industry can help reduce greenhouse gas emissions and the environmental impact of burning fossil fuels. Purpose. The work aimed to study the prospects of using carbon nanomaterials to purify industrial emissions from carbon dioxide in a fluidized state. The scientific novelty of the topic "Dynamics of carbon dioxide adsorption by carbon nanotubes" is the study of the influence of temperature and gas velocity on the initial curves of CO2 adsorption dynamics in the fluidized state.
dc.format.extent101-107
dc.format.pages7
dc.identifier.citationDynamics of carbon dioxide adsorption by carbon nanotubes / Vira Sabadash, Jaroslaw Gumnitsky, Oleksiy Lopushansky, Oksana Matsuska, Anna Nowik-Zając // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 2. — P. 101–107.
dc.identifier.citationenDynamics of carbon dioxide adsorption by carbon nanotubes / Vira Sabadash, Jaroslaw Gumnitsky, Oleksiy Lopushansky, Oksana Matsuska, Anna Nowik-Zając // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 2. — P. 101–107.
dc.identifier.doidoi.org/10.23939/ep2023.02.101
dc.identifier.issn2414-5955
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61165
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 2 (8), 2023
dc.relation.referencesAbd, A.A., Naji , S.Z., Hashim, A.S., & Othman, M.R. (2020). Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review. Journal of Environmental Chemical Engineering, 8(5), 104142. doi: https://doi.org/10.1016/j.jece.2020.104142
dc.relation.referencesArista, P.C. (2023). Peranan Microorganisms Pendegradasi Plastik: Tinjauan Biodegradation Plastik, Mekanismenya, serta Microorganisms yang Berperan. Journal Pro-Life, 10(1), 743-755. doi: https://doi.org/10.33541/jpvol6Iss2pp102
dc.relation.referencesCinke, M., Li, J., Bauschlicher Jr., CW, Ricca, A., & Meyyappan, M. (2003). CO2 adsorption in single-walled carbon nanotubes. Chemical physics letters, 376(5-6), 761-766. doi: https://doi.org/10.1016/S0009-2614(03)01124-2
dc.relation.referencesGautam, A., & Mondal, M.K. (2023). Review of recent trends and various techniques for CO2 capture: Special emphasis he biphasic amine solvents. Fuel, 334, 126616. doi: https://doi.org/10.1016/j.jclepro.2023.136568
dc.relation.referencesQuan, C., Zhou, Y., Wang, J., Wu, C., & Gao, N. (2023). Biomass-based carbon materials for CO2 capture: A review. Journal of CO2 Utilization, 68, 102373. doi: https://doi.org/10.1016/j.jcou.2022.102373
dc.relation.referencesHayawin, Z.N., Syirat, Z.B., Ibrahim, M.F., Faizah, J.N., Astimar, A.A., Noorshamsiana, A.Wю, & Abd-Aziz, S. (2023). Pollutants removal from palm oil mill effluent (POME) final discharge using oil palm kernel shell activated carbon in the up-flow continuous adsorption system. International Journal of Environmental Science and Technology, 20(4), 4325-4338. doi: https://doi.org/10.1007/s13762-022-04268-8
dc.relation.referencesHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). Statics and kinetics of albumin adsorption by natural zeolite. Chemistry & Chemical Technology, 1(13), 95-100. doi: https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesLi, J.Y., Lin, Y.T., Wang, D.K., Tseng, H.H., & Wey, M.Y. (2023). The planetary cross-linked structure design of hybrid organosilica membrane by amine-driven polymerization for CO2 separation. Journal of Cleaner Production, 398, 136568. doi: https://doi.org/10.1016/j.jclepro.2023.136568
dc.relation.referencesPark, D., Hong, S.H., Kim, K.M., & Lee, C.H. (2020). Adsorption equilibria and kinetics of silica gel for N2O, O2, N2, and CO2. Separation and Purification Technology, 251, 117326. doi: https://doi.org/10.1016/j.seppur.2020.117326
dc.relation.referencesPeng, X., Vicent-Luna, J.M., & Jin, Q. (2021). Water–gas shift reaction that capture carbon dioxide and separately hydrogen he single-walled carbon nanotubes. ACS Applied Materials & Interfaces, 13(9), 11026-11038. doi: https://doi.org/10.1021/acsami.1c00145
dc.relation.referencesWang, L., Rinklebe, J., Tack, F.M., & Hou, D. (2021). A review of green remediation strategies for heavy metal contaminated soil. Soil Use and Management, 37(4), 936-963. doi: https://doi.org/10.1111/sum.12717
dc.relation.referencesWang, F., Gu, Y., Zha, J., & Wei, S. (2023). Synthesis of Graphene Quantum Dots Enhanced Nano Ca(OH)2 from Ammoniated CaCl2. Materials, 16(4), 1568. doi: https://doi.org/10.3390/ma16041568
dc.relation.referencesWijaya, D.T., & Lee, C.W. (2022). Metal-Organic framework catalysts: A versatile platform for bioinspired electrochemical conversion of carbon dioxide. Chemical Engineering Journal, 137311. doi: https://doi.org/10.1016/j.cej.2022.137311
dc.relation.referencesYuan, J., Liu, X., Wang, H., & Li, X. (2023). Evaluation and screening of porous materials containing fluorine for carbon dioxide capture and separation. Computational Materials Science, 216, 111872. doi: https://doi.org/10.1016/j.commatsci.2022.111872
dc.relation.referencesenAbd, A.A., Naji , S.Z., Hashim, A.S., & Othman, M.R. (2020). Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review. Journal of Environmental Chemical Engineering, 8(5), 104142. doi: https://doi.org/10.1016/j.jece.2020.104142
dc.relation.referencesenArista, P.C. (2023). Peranan Microorganisms Pendegradasi Plastik: Tinjauan Biodegradation Plastik, Mekanismenya, serta Microorganisms yang Berperan. Journal Pro-Life, 10(1), 743-755. doi: https://doi.org/10.33541/jpvol6Iss2pp102
dc.relation.referencesenCinke, M., Li, J., Bauschlicher Jr., CW, Ricca, A., & Meyyappan, M. (2003). CO2 adsorption in single-walled carbon nanotubes. Chemical physics letters, 376(5-6), 761-766. doi: https://doi.org/10.1016/S0009-2614(03)01124-2
dc.relation.referencesenGautam, A., & Mondal, M.K. (2023). Review of recent trends and various techniques for CO2 capture: Special emphasis he biphasic amine solvents. Fuel, 334, 126616. doi: https://doi.org/10.1016/j.jclepro.2023.136568
dc.relation.referencesenQuan, C., Zhou, Y., Wang, J., Wu, C., & Gao, N. (2023). Biomass-based carbon materials for CO2 capture: A review. Journal of CO2 Utilization, 68, 102373. doi: https://doi.org/10.1016/j.jcou.2022.102373
dc.relation.referencesenHayawin, Z.N., Syirat, Z.B., Ibrahim, M.F., Faizah, J.N., Astimar, A.A., Noorshamsiana, A.Wiu, & Abd-Aziz, S. (2023). Pollutants removal from palm oil mill effluent (POME) final discharge using oil palm kernel shell activated carbon in the up-flow continuous adsorption system. International Journal of Environmental Science and Technology, 20(4), 4325-4338. doi: https://doi.org/10.1007/s13762-022-04268-8
dc.relation.referencesenHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). Statics and kinetics of albumin adsorption by natural zeolite. Chemistry & Chemical Technology, 1(13), 95-100. doi: https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesenLi, J.Y., Lin, Y.T., Wang, D.K., Tseng, H.H., & Wey, M.Y. (2023). The planetary cross-linked structure design of hybrid organosilica membrane by amine-driven polymerization for CO2 separation. Journal of Cleaner Production, 398, 136568. doi: https://doi.org/10.1016/j.jclepro.2023.136568
dc.relation.referencesenPark, D., Hong, S.H., Kim, K.M., & Lee, C.H. (2020). Adsorption equilibria and kinetics of silica gel for N2O, O2, N2, and CO2. Separation and Purification Technology, 251, 117326. doi: https://doi.org/10.1016/j.seppur.2020.117326
dc.relation.referencesenPeng, X., Vicent-Luna, J.M., & Jin, Q. (2021). Water–gas shift reaction that capture carbon dioxide and separately hydrogen he single-walled carbon nanotubes. ACS Applied Materials & Interfaces, 13(9), 11026-11038. doi: https://doi.org/10.1021/acsami.1c00145
dc.relation.referencesenWang, L., Rinklebe, J., Tack, F.M., & Hou, D. (2021). A review of green remediation strategies for heavy metal contaminated soil. Soil Use and Management, 37(4), 936-963. doi: https://doi.org/10.1111/sum.12717
dc.relation.referencesenWang, F., Gu, Y., Zha, J., & Wei, S. (2023). Synthesis of Graphene Quantum Dots Enhanced Nano Ca(OH)2 from Ammoniated CaCl2. Materials, 16(4), 1568. doi: https://doi.org/10.3390/ma16041568
dc.relation.referencesenWijaya, D.T., & Lee, C.W. (2022). Metal-Organic framework catalysts: A versatile platform for bioinspired electrochemical conversion of carbon dioxide. Chemical Engineering Journal, 137311. doi: https://doi.org/10.1016/j.cej.2022.137311
dc.relation.referencesenYuan, J., Liu, X., Wang, H., & Li, X. (2023). Evaluation and screening of porous materials containing fluorine for carbon dioxide capture and separation. Computational Materials Science, 216, 111872. doi: https://doi.org/10.1016/j.commatsci.2022.111872
dc.relation.urihttps://doi.org/10.1016/j.jece.2020.104142
dc.relation.urihttps://doi.org/10.33541/jpvol6Iss2pp102
dc.relation.urihttps://doi.org/10.1016/S0009-2614(03)01124-2
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2023.136568
dc.relation.urihttps://doi.org/10.1016/j.jcou.2022.102373
dc.relation.urihttps://doi.org/10.1007/s13762-022-04268-8
dc.relation.urihttps://doi.org/10.23939/chcht13.01.095
dc.relation.urihttps://doi.org/10.1016/j.seppur.2020.117326
dc.relation.urihttps://doi.org/10.1021/acsami.1c00145
dc.relation.urihttps://doi.org/10.1111/sum.12717
dc.relation.urihttps://doi.org/10.3390/ma16041568
dc.relation.urihttps://doi.org/10.1016/j.cej.2022.137311
dc.relation.urihttps://doi.org/10.1016/j.commatsci.2022.111872
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Sabadash V., Gumnitsky J., Lopushansky O., Matsuska O., Nowik-Zając A., 2023
dc.subjectadsorption
dc.subjectgreenhouse gases
dc.subjectadsorbent
dc.subjectcarbon nanotubes
dc.titleDynamics of carbon dioxide adsorption by carbon nanotubes
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2023v8n2_Sabadash_V-Dynamics_of_carbon_dioxide_101-107.pdf
Size:
258.33 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2023v8n2_Sabadash_V-Dynamics_of_carbon_dioxide_101-107__COVER.png
Size:
1.09 MB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: