Development of a Needle Trap Device Packed with HKUST-1 Sorbent for Sampling and Analysis of BTEX in Air

dc.citation.epage327
dc.citation.issue2
dc.citation.spage314
dc.contributor.affiliationHamadan University of Medical Sciences
dc.contributor.affiliationBu-Ali-Sina University
dc.contributor.authorSoury, Shiva
dc.contributor.authorBahrami, Abdulrahman
dc.contributor.authorAlizadeh, Saber
dc.contributor.authorShahna, Farshid Ghorbani
dc.contributor.authorNematollahi, Davood
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T11:13:01Z
dc.date.available2024-01-22T11:13:01Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractВперше розроблений пристрій для утримування голки (NTD) з сорбентом HKUST-1 (металоорганічний каркас на основі Cu), який призначений для відбору проб та аналізу бензену, толуену, етилбензену та ксилену (BTEX) в атмосферному повітрі. Синтезований за допомогою електрохімічного процесу адсорбент HKUST-1 розташований у голці 22 розміру. Для забезпечення різних концентрацій BTEX шприцева помпа підключена до скляної камери для впорскування сполук BTEX з певною швидкістю. Для оптимізації аналітичних параметрів, а саме об’єму проскоку, умов десорбції та умов відбору проб використано програмне забезпечення Design-expert (версія 7). Визначено, що оптимальні умови десорбції досягаються за 548 K протягом 6 хв, а найкращі умови відбору проб – за 309 K та 20% вологості. Визначено, що показники LOQ та LOD розробленого пристрою знаходяться в межах 0,52–1,41 та 0,16–0,5 мг/м3, відповідно, а повторюваність та відтворюваність методу становлять 5,5–13,2 та 5,3–12,3 %, відповідно. Встановлено, що NTD, які зберігаються в холодильнику (> 277 K), і за кімнатної температури (298 K), зберігають проби BTEX щонайменше протягом 10 та 6 днів відповідно. Показано, що NTD з сорбентом HKUST-1 може бути використаний як надійний та корисний метод для визначення BTEX у повітрі.
dc.description.abstractIn this study, we developed a needle trap device packed with HKUST-1 (Cu-based metal-organic framework) for the sampling and analysis of benzene, toluene, ethylbenzene, and xylene (BTEX) in ambient air for the first time. The HKUST-1 was synthesized via the electrochemical process. Afterwards, the adsorbent was packed into 22 gauge needles. To provide the different concentrations of BTEX, the syringe pump was connected to the glass chamber to inject a specific rate of the BTEX compounds. Design-expert software (version 7) was used to optimize the analytical parameters including breakthrough volume, desorption conditions and sampling conditions. The best desorption conditions were achieved at 548 K for 6 min, and the best sampling conditions were determined at 309 K of sampling temperature and 20 % of relative humidity. According to the results, the limit of quantification (LOQ) and limit of detection (LOD) of the developed needle trap device (NTD) were in the range of 0.52–1.41 and 0.16–0.5 mg/m3, respectively. In addition, the repeatability and reproducibility of the method were calculated to be in the range of 5.5–13.2 and 5.3–12.3 %, respectively. The analysis of needles stored in the refrigerator (>277 K) and room temperature (298 K) showed that the NTD can store the BTEX analytes for at least 10 and 6 days, respectively. Our findings indicated that the NTD packed with HKUST-1 sorbent can be used as a trustworthy and useful technique for the determination of BTEX in air.
dc.format.extent314-327
dc.format.pages14
dc.identifier.citationDevelopment of a Needle Trap Device Packed with HKUST-1 Sorbent for Sampling and Analysis of BTEX in Air / Shiva Soury, Abdulrahman Bahrami, Saber Alizadeh, Farshid Ghorbani Shahna, Davood Nematollahi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 314–327.
dc.identifier.citationenDevelopment of a Needle Trap Device Packed with HKUST-1 Sorbent for Sampling and Analysis of BTEX in Air / Shiva Soury, Abdulrahman Bahrami, Saber Alizadeh, Farshid Ghorbani Shahna, Davood Nematollahi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 314–327.
dc.identifier.doidoi.org/10.23939/chcht16.02.314
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60972
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (16), 2022
dc.relation.references[1] Durmusoglu, E.; Taspinar, F.; Karademir, A. Health Risk Assessment of BTEX Emissions in the Landfill Environment. J. Hazard. Mater. 2010, 176, 870-877. https://doi.org/10.1016/j.jhazmat.2009.11.117
dc.relation.references[2] IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, v. 100F; International Agency for Research on Cancer: Lyon, 2012.
dc.relation.references[3] Riboni, N.; Trzcinski, J.W.; Bianchi, F.; Massera, C.; Pinalli, R.; Sidisky, L.; Dalcanale, E.; Careri, M. Conformationally Blocked Quinoxaline Cavitand as Solid-Phase Microextraction Coating for the Selective Detection of BTEX in Air. Anal. Chim. Acta 2016, 905, 79-84. https://doi.org/10.1016/j.aca.2015.12.005
dc.relation.references[4] Ma J-Q., Liu L., Wang X.; Chen, L.-Z.; Lin, J.-M.; Zhao, R.-S. Development of Dispersive Solid-Phase Extraction with Polyphenylene Conjugated Microporous Polymers for Sensitive Determination of Phenoxycarboxylic Acids in Environmental Water Samples. J. Hazard. Mater. 2019, 371, 433-439. https://doi.org/10.1016/j.jhazmat.2019.03.033
dc.relation.references[5] Wang, R.; Ma, X.; Zhang, X.; Li, X.; Li, D.; Dang, Y. C8-Modified Magnetic Graphene Oxide Based Solid-Phase Extraction Coupled with Dispersive Liquid-Liquid Microextraction for Detection of Trace Phthalate Acid Esters in Water Samples. Ecotox. Environ. Safe. 2019, 170, 789-795. https://doi.org/10.1016/j.ecoenv.2018.12.051
dc.relation.references[6] Lendor, S.; Hassani, S.-A.; Boyaci, E.; Singh, V.; Womelsdorf, T.; Pawliszyn, J. Solid Phase Microextraction-Based Miniaturized Probe and Protocol for Extraction of Neurotransmitters from Brains in Vivo. Anal. Chem. 2019, 91, 4896-4905. https://doi.org/10.1021/acs.analchem.9b00995
dc.relation.references[7] Ghavidel, F.; Shahtaheri, S.J.; Jazani, R.K.; Torabbeigi, M.; Froushani, A.R.; Khadem, M. Optimization of Solid Phase Microextraction Procedure Followed by Gas Chromatography with Electron Capture Detector for Pesticides Butachlor and Chlorpyrifos. Am. J. Anal. Chem. 2014, 5, 535-546. https://doi.org/10.4236/ajac.2014.59061
dc.relation.references[8] Koziel, J.A.; Odziemkowski, M.; Pawliszyn, J. Sampling and Analysis of Airborne Particulate Matter and Aerosols Using In-Needle Trap and SPME Fiber Devices. Anal. Chem. 2001, 73, 47-54. https://doi.org/10.1021/ac000835s
dc.relation.references[9] Chen, J.; Zhang, B.; Zheng, D.; Dang, X.; Ai, Y.; Chen, H. A Novel Needle Trap Device Coupled with Gas Chromatography for Determination of Five Fatty Alcohols in Tea Samples. Anal. Methods 2018, 10, 5783-5789. https://doi.org/10.1039/C8AY01894D
dc.relation.references[10] Kleeblatt, J.; Schubert, J.K.; Zimmermann, R. Detection of Gaseous Compounds by Needle Trap Sampling and Direct Thermal-Desorption Photoionization Mass Spectrometry: Concept and Demonstrative Application to Breath Gas Analysis. Anal. Chem. 2015, 87, 1773-1781. https://doi.org/10.1021/ac5039829
dc.relation.references[11] Mesarchaki, E.; Yassaa, N.; Hein, D.; Lutterbeck, H.E.; Zindler, C.; Williams, J. A Novel Method for the Measurement of VOCs in Seawater Using Needle Trap Devices and GC–MS. Marine Chem. 2014, 159, 1-8. https://doi.org/10.1016/j.marchem.2013.12.001
dc.relation.references[12] Reyes-Garcés, N.; Gómez-Ríos, G.A.; Souza Silva, É.A.; Pawliszyn, J. Coupling Needle Trap Devices with Gas Chromatography–Ion Mobility Spectrometry Detection as a Simple Approach for On-Site Quantitative Analysis. J. Chromatogr. A 2013, 1300, 193-198. https://doi.org/10.1016/j.chroma.2013.05.042
dc.relation.references[13] Warren, J.M.; Parkinson, D.-R.; Pawliszyn, J. Assessment of Thiol Compounds from Garlic by Automated Headspace Derivatized In-Needle-NTD-GC-MS and Derivatized In-Fiber-SPME-GC-MS. J. Agricult. Food Chem. 2013, 61, 492-500. https://doi.org/10.1021/jf303508m
dc.relation.references[14] Eom, I.-Y.; Risticevic, S.; Pawliszyn, J. Simultaneous Sampling and Analysis of Indoor Air Infested with Cimex Lectularius L. (Hemiptera: Cimicidae) by Solid Phase Microextraction, Thin Film Microextraction and Needle Trap Device. Anal. Chim. Acta 2012, 716, 2-10. https://doi.org/10.1016/j.aca.2011.06.010
dc.relation.references[15] Vallecillos, L.; Borrull, F.; Sanchez, J.M.; Pocurull, E. Sorbent-Packed Needle Microextraction Trap for Synthetic Musks Determination in Wastewater Samples. Talanta 2015, 132, 548-556. https://doi.org/10.1016/j.talanta.2014.08.016
dc.relation.references[16] Eom, I.-Y.; Jung, M.-J. Identification of Coffee Fragrances Using Needle Trap Device-Gas Chromatograph/Mass Spectrometry (NTD-GC/MS). Bull. Korean Chem. Soc. 2013, 34, 1703-1707. https://doi.org/10.5012/bkcs.2013.34.6.1703
dc.relation.references[17] Trefz, P.; Kischkel, S.; Hein, D.; James, E.S.; Schubert, J.K.; Miekisch, W. Needle Trap Micro-Extraction for VOC Analysis: Effects of Packing Materials and Desorption Parameters. J. Chromatogr. A 2012, 1219, 29-38. https://doi.org/10.1016/j.chroma.2011.10.077
dc.relation.references[18] Alizadeh, S.; Nematollahi, D. Electrochemically Assisted Self-Assembly Technique for the Fabrication of Mesoporous Metal–Organic Framework Thin Films: Composition of 3D Hexagonally Packed Crystals with 2D Honeycomb-like Mesopores. J. Am. Chem. Soc. 2017, 139, 4753-4761. https://doi.org/10.1021/jacs.6b12564
dc.relation.references[19] Alizadeh, S.; Nematollahi, D. Convergent and Divergent Paired Electrodeposition of Metal-Organic Framework Thin Films. Sci. Rep. 2019, 9, 14325. https://doi.org/10.1038/s41598-019-50390-y
dc.relation.references[20] Liu, C.; Yu, L-Q.; Zhao, Y-T.; Lv, Y-K. Recent Advances in Metal-Organic Frameworks for Adsorption of Common Aromatic Pollutants. Microchim. Acta 2018, 185, 342. https://doi.org/10.1007/s00604-018-2879-2
dc.relation.references[21] Li, J-R.; Sculley, J.; Zhou, H-C. Metal–Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869-932. https://doi.org/10.1021/cr200190s
dc.relation.references[22] Lin, K-S.; Adhikari, A.K.; Ku, C-N.; Chiang, C.-L.; Kuo, H. Synthesis and Characterization of Porous HKUST-1 Metal Organic Frameworks for Hydrogen Storage. Int. J. Hydrogen Energ. 2012, 37, 13865-13871. https://doi.org/10.1016/j.ijhydene.2012.04.105
dc.relation.references[23] Chui, S.S.-Y.; Lo, S.M.-F.; Charmant, J.P.H.; Orpen, A.G.; Williams, I.D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148-1150. https://doi.org/10.1126/science.283.5405.1148
dc.relation.references[24] Bentley, J.; Foo, G.S.; Rungta, M.; Sangar, N.; Sievers, C.; Sholl, D.S.; Nair, S. Effects of Open Metal Site Availability on Adsorption Capacity and Olefin/Paraffin Selectivity in the Metal–Organic Framework Cu3(BTC)2. Ind. Eng. Chem. Res. 2016, 55, 5043-5053. https://doi.org/10.1021/acs.iecr.6b00774
dc.relation.references[25] NIOSH Manual of Analytical Methods; Eller, P., Cassinelli, M., Eds.; Diane Publ., 1994.
dc.relation.references[26] Poormohammadi, A.; Bahrami, A.; Farhadian, M.; Ghorbani-Shahna, F.; Ghiasvand, A. Development of Carbotrap B-Packed Needle Trap Device for Determination of Volatile Organic Compounds in Air. J. Chromatogr. A 2017, 1527, 33-42. https://doi.org/10.1016/j.chroma.2017.10.062
dc.relation.references[27] Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of Response Surface Methodology and Artificial Neural Network Methods in Modelling and optimization of Biosorption Process. Biores. Technol. 2014, 160, 150-160. https://doi.org/10.1016/j.biortech.2014.01.021
dc.relation.references[28] Soury, S.; Bahrami, A.; Alizadeh, S.; Ghorbani-Shahna, F.; Nematollahi, D. Development of a Needle Trap Device Packed with Zinc Based Metal-Organic Framework Sorbent for the Sampling and Analysis of Polycyclic Aromatic Hydrocarbons in the Air. Microchem. J. 2019, 148, 346-354. https://doi.org/10.1016/j.microc.2019.05.019
dc.relation.references[29] Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835-855. https://doi.org/10.1351/pac200274050835
dc.relation.references[30] Zali, S.; Jalali, F.; Es-haghi, A.; Shamsipur, M. New Nanostructure of Polydimethylsiloxane Coating as a Solid-Phase Microextraction Fiber: Application to Analysis of BTEX in Aquatic Environmental Samples. J. Chromatogr. B 2016, 1033, 287-295. https://doi.org/10.1016/j.jchromb.2016.08.045
dc.relation.references[31] Orazbayeva, D.; Kenessov, B.; Koziel, J.A.; Nassyrova, D.; Lyabukhova, N.V. Quantification of BTEX in Soil by Headspace SPME–GC–MS Using Combined Standard Addition and Internal Standard Calibration. Chromatographia 2017, 80, 1249-1256. https://doi.org/10.1007/s10337-017-3340-0
dc.relation.references[32] Zhao, Z.; Wang, S.; Yang, Y.; Li, X.; Li, J.; Li, Z. Competitive Adsorption and Selectivity of Benzene and Water Vapor on the Microporous Metal Organic Frameworks (HKUST-1). Chem. Eng. J. 2015, 259, 79-89. https://doi.org/10.1016/j.cej.2014.08.012
dc.relation.references[33] Wang, A.; Fang, F.; Pawliszyn, J. Sampling and Determination of Volatile Organic Compounds with Needle Trap Devices. J. Chromatogr. A 2005, 1072, 127-135. https://doi.org/10.1016/j.chroma.2004.12.064
dc.relation.references[34] Zeverdegani, S.K.; Bahrami, A.; Rismanchian, M.; Shahna, F.G. Analysis of Xylene in Aqueous Media Using Needle-Trap Microextraction with a Carbon Nanotube Sorbent. J. Sep. Sci. 2014, 37, 1850-1855. https://doi.org/10.1002/jssc.201400262
dc.relation.references[35] Warren, J.M.; Pawliszyn, J. Development and Evaluation of Needle Trap Device Geometry and Packing Methods for Automated and Manual Analysis. J. Chromatogr. A 2011, 1218, 8982-8988. https://doi.org/10.1016/j.chroma.2011.10.017
dc.relation.referencesen[1] Durmusoglu, E.; Taspinar, F.; Karademir, A. Health Risk Assessment of BTEX Emissions in the Landfill Environment. J. Hazard. Mater. 2010, 176, 870-877. https://doi.org/10.1016/j.jhazmat.2009.11.117
dc.relation.referencesen[2] IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, v. 100F; International Agency for Research on Cancer: Lyon, 2012.
dc.relation.referencesen[3] Riboni, N.; Trzcinski, J.W.; Bianchi, F.; Massera, C.; Pinalli, R.; Sidisky, L.; Dalcanale, E.; Careri, M. Conformationally Blocked Quinoxaline Cavitand as Solid-Phase Microextraction Coating for the Selective Detection of BTEX in Air. Anal. Chim. Acta 2016, 905, 79-84. https://doi.org/10.1016/j.aca.2015.12.005
dc.relation.referencesen[4] Ma J-Q., Liu L., Wang X.; Chen, L.-Z.; Lin, J.-M.; Zhao, R.-S. Development of Dispersive Solid-Phase Extraction with Polyphenylene Conjugated Microporous Polymers for Sensitive Determination of Phenoxycarboxylic Acids in Environmental Water Samples. J. Hazard. Mater. 2019, 371, 433-439. https://doi.org/10.1016/j.jhazmat.2019.03.033
dc.relation.referencesen[5] Wang, R.; Ma, X.; Zhang, X.; Li, X.; Li, D.; Dang, Y. P.8-Modified Magnetic Graphene Oxide Based Solid-Phase Extraction Coupled with Dispersive Liquid-Liquid Microextraction for Detection of Trace Phthalate Acid Esters in Water Samples. Ecotox. Environ. Safe. 2019, 170, 789-795. https://doi.org/10.1016/j.ecoenv.2018.12.051
dc.relation.referencesen[6] Lendor, S.; Hassani, S.-A.; Boyaci, E.; Singh, V.; Womelsdorf, T.; Pawliszyn, J. Solid Phase Microextraction-Based Miniaturized Probe and Protocol for Extraction of Neurotransmitters from Brains in Vivo. Anal. Chem. 2019, 91, 4896-4905. https://doi.org/10.1021/acs.analchem.9b00995
dc.relation.referencesen[7] Ghavidel, F.; Shahtaheri, S.J.; Jazani, R.K.; Torabbeigi, M.; Froushani, A.R.; Khadem, M. Optimization of Solid Phase Microextraction Procedure Followed by Gas Chromatography with Electron Capture Detector for Pesticides Butachlor and Chlorpyrifos. Am. J. Anal. Chem. 2014, 5, 535-546. https://doi.org/10.4236/ajac.2014.59061
dc.relation.referencesen[8] Koziel, J.A.; Odziemkowski, M.; Pawliszyn, J. Sampling and Analysis of Airborne Particulate Matter and Aerosols Using In-Needle Trap and SPME Fiber Devices. Anal. Chem. 2001, 73, 47-54. https://doi.org/10.1021/ac000835s
dc.relation.referencesen[9] Chen, J.; Zhang, B.; Zheng, D.; Dang, X.; Ai, Y.; Chen, H. A Novel Needle Trap Device Coupled with Gas Chromatography for Determination of Five Fatty Alcohols in Tea Samples. Anal. Methods 2018, 10, 5783-5789. https://doi.org/10.1039/P.8AY01894D
dc.relation.referencesen[10] Kleeblatt, J.; Schubert, J.K.; Zimmermann, R. Detection of Gaseous Compounds by Needle Trap Sampling and Direct Thermal-Desorption Photoionization Mass Spectrometry: Concept and Demonstrative Application to Breath Gas Analysis. Anal. Chem. 2015, 87, 1773-1781. https://doi.org/10.1021/ac5039829
dc.relation.referencesen[11] Mesarchaki, E.; Yassaa, N.; Hein, D.; Lutterbeck, H.E.; Zindler, C.; Williams, J. A Novel Method for the Measurement of VOCs in Seawater Using Needle Trap Devices and GC–MS. Marine Chem. 2014, 159, 1-8. https://doi.org/10.1016/j.marchem.2013.12.001
dc.relation.referencesen[12] Reyes-Garcés, N.; Gómez-Ríos, G.A.; Souza Silva, É.A.; Pawliszyn, J. Coupling Needle Trap Devices with Gas Chromatography–Ion Mobility Spectrometry Detection as a Simple Approach for On-Site Quantitative Analysis. J. Chromatogr. A 2013, 1300, 193-198. https://doi.org/10.1016/j.chroma.2013.05.042
dc.relation.referencesen[13] Warren, J.M.; Parkinson, D.-R.; Pawliszyn, J. Assessment of Thiol Compounds from Garlic by Automated Headspace Derivatized In-Needle-NTD-GC-MS and Derivatized In-Fiber-SPME-GC-MS. J. Agricult. Food Chem. 2013, 61, 492-500. https://doi.org/10.1021/jf303508m
dc.relation.referencesen[14] Eom, I.-Y.; Risticevic, S.; Pawliszyn, J. Simultaneous Sampling and Analysis of Indoor Air Infested with Cimex Lectularius L. (Hemiptera: Cimicidae) by Solid Phase Microextraction, Thin Film Microextraction and Needle Trap Device. Anal. Chim. Acta 2012, 716, 2-10. https://doi.org/10.1016/j.aca.2011.06.010
dc.relation.referencesen[15] Vallecillos, L.; Borrull, F.; Sanchez, J.M.; Pocurull, E. Sorbent-Packed Needle Microextraction Trap for Synthetic Musks Determination in Wastewater Samples. Talanta 2015, 132, 548-556. https://doi.org/10.1016/j.talanta.2014.08.016
dc.relation.referencesen[16] Eom, I.-Y.; Jung, M.-J. Identification of Coffee Fragrances Using Needle Trap Device-Gas Chromatograph/Mass Spectrometry (NTD-GC/MS). Bull. Korean Chem. Soc. 2013, 34, 1703-1707. https://doi.org/10.5012/bkcs.2013.34.6.1703
dc.relation.referencesen[17] Trefz, P.; Kischkel, S.; Hein, D.; James, E.S.; Schubert, J.K.; Miekisch, W. Needle Trap Micro-Extraction for VOC Analysis: Effects of Packing Materials and Desorption Parameters. J. Chromatogr. A 2012, 1219, 29-38. https://doi.org/10.1016/j.chroma.2011.10.077
dc.relation.referencesen[18] Alizadeh, S.; Nematollahi, D. Electrochemically Assisted Self-Assembly Technique for the Fabrication of Mesoporous Metal–Organic Framework Thin Films: Composition of 3D Hexagonally Packed Crystals with 2D Honeycomb-like Mesopores. J. Am. Chem. Soc. 2017, 139, 4753-4761. https://doi.org/10.1021/jacs.6b12564
dc.relation.referencesen[19] Alizadeh, S.; Nematollahi, D. Convergent and Divergent Paired Electrodeposition of Metal-Organic Framework Thin Films. Sci. Rep. 2019, 9, 14325. https://doi.org/10.1038/s41598-019-50390-y
dc.relation.referencesen[20] Liu, C.; Yu, L-Q.; Zhao, Y-T.; Lv, Y-K. Recent Advances in Metal-Organic Frameworks for Adsorption of Common Aromatic Pollutants. Microchim. Acta 2018, 185, 342. https://doi.org/10.1007/s00604-018-2879-2
dc.relation.referencesen[21] Li, J-R.; Sculley, J.; Zhou, H-C. Metal–Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869-932. https://doi.org/10.1021/cr200190s
dc.relation.referencesen[22] Lin, K-S.; Adhikari, A.K.; Ku, C-N.; Chiang, C.-L.; Kuo, H. Synthesis and Characterization of Porous HKUST-1 Metal Organic Frameworks for Hydrogen Storage. Int. J. Hydrogen Energ. 2012, 37, 13865-13871. https://doi.org/10.1016/j.ijhydene.2012.04.105
dc.relation.referencesen[23] Chui, S.S.-Y.; Lo, S.M.-F.; Charmant, J.P.H.; Orpen, A.G.; Williams, I.D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148-1150. https://doi.org/10.1126/science.283.5405.1148
dc.relation.referencesen[24] Bentley, J.; Foo, G.S.; Rungta, M.; Sangar, N.; Sievers, C.; Sholl, D.S.; Nair, S. Effects of Open Metal Site Availability on Adsorption Capacity and Olefin/Paraffin Selectivity in the Metal–Organic Framework Cu3(BTC)2. Ind. Eng. Chem. Res. 2016, 55, 5043-5053. https://doi.org/10.1021/acs.iecr.6b00774
dc.relation.referencesen[25] NIOSH Manual of Analytical Methods; Eller, P., Cassinelli, M., Eds.; Diane Publ., 1994.
dc.relation.referencesen[26] Poormohammadi, A.; Bahrami, A.; Farhadian, M.; Ghorbani-Shahna, F.; Ghiasvand, A. Development of Carbotrap B-Packed Needle Trap Device for Determination of Volatile Organic Compounds in Air. J. Chromatogr. A 2017, 1527, 33-42. https://doi.org/10.1016/j.chroma.2017.10.062
dc.relation.referencesen[27] Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of Response Surface Methodology and Artificial Neural Network Methods in Modelling and optimization of Biosorption Process. Biores. Technol. 2014, 160, 150-160. https://doi.org/10.1016/j.biortech.2014.01.021
dc.relation.referencesen[28] Soury, S.; Bahrami, A.; Alizadeh, S.; Ghorbani-Shahna, F.; Nematollahi, D. Development of a Needle Trap Device Packed with Zinc Based Metal-Organic Framework Sorbent for the Sampling and Analysis of Polycyclic Aromatic Hydrocarbons in the Air. Microchem. J. 2019, 148, 346-354. https://doi.org/10.1016/j.microc.2019.05.019
dc.relation.referencesen[29] Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835-855. https://doi.org/10.1351/pac200274050835
dc.relation.referencesen[30] Zali, S.; Jalali, F.; Es-haghi, A.; Shamsipur, M. New Nanostructure of Polydimethylsiloxane Coating as a Solid-Phase Microextraction Fiber: Application to Analysis of BTEX in Aquatic Environmental Samples. J. Chromatogr. B 2016, 1033, 287-295. https://doi.org/10.1016/j.jchromb.2016.08.045
dc.relation.referencesen[31] Orazbayeva, D.; Kenessov, B.; Koziel, J.A.; Nassyrova, D.; Lyabukhova, N.V. Quantification of BTEX in Soil by Headspace SPME–GC–MS Using Combined Standard Addition and Internal Standard Calibration. Chromatographia 2017, 80, 1249-1256. https://doi.org/10.1007/s10337-017-3340-0
dc.relation.referencesen[32] Zhao, Z.; Wang, S.; Yang, Y.; Li, X.; Li, J.; Li, Z. Competitive Adsorption and Selectivity of Benzene and Water Vapor on the Microporous Metal Organic Frameworks (HKUST-1). Chem. Eng. J. 2015, 259, 79-89. https://doi.org/10.1016/j.cej.2014.08.012
dc.relation.referencesen[33] Wang, A.; Fang, F.; Pawliszyn, J. Sampling and Determination of Volatile Organic Compounds with Needle Trap Devices. J. Chromatogr. A 2005, 1072, 127-135. https://doi.org/10.1016/j.chroma.2004.12.064
dc.relation.referencesen[34] Zeverdegani, S.K.; Bahrami, A.; Rismanchian, M.; Shahna, F.G. Analysis of Xylene in Aqueous Media Using Needle-Trap Microextraction with a Carbon Nanotube Sorbent. J. Sep. Sci. 2014, 37, 1850-1855. https://doi.org/10.1002/jssc.201400262
dc.relation.referencesen[35] Warren, J.M.; Pawliszyn, J. Development and Evaluation of Needle Trap Device Geometry and Packing Methods for Automated and Manual Analysis. J. Chromatogr. A 2011, 1218, 8982-8988. https://doi.org/10.1016/j.chroma.2011.10.017
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2009.11.117
dc.relation.urihttps://doi.org/10.1016/j.aca.2015.12.005
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2019.03.033
dc.relation.urihttps://doi.org/10.1016/j.ecoenv.2018.12.051
dc.relation.urihttps://doi.org/10.1021/acs.analchem.9b00995
dc.relation.urihttps://doi.org/10.4236/ajac.2014.59061
dc.relation.urihttps://doi.org/10.1021/ac000835s
dc.relation.urihttps://doi.org/10.1039/C8AY01894D
dc.relation.urihttps://doi.org/10.1021/ac5039829
dc.relation.urihttps://doi.org/10.1016/j.marchem.2013.12.001
dc.relation.urihttps://doi.org/10.1016/j.chroma.2013.05.042
dc.relation.urihttps://doi.org/10.1021/jf303508m
dc.relation.urihttps://doi.org/10.1016/j.aca.2011.06.010
dc.relation.urihttps://doi.org/10.1016/j.talanta.2014.08.016
dc.relation.urihttps://doi.org/10.5012/bkcs.2013.34.6.1703
dc.relation.urihttps://doi.org/10.1016/j.chroma.2011.10.077
dc.relation.urihttps://doi.org/10.1021/jacs.6b12564
dc.relation.urihttps://doi.org/10.1038/s41598-019-50390-y
dc.relation.urihttps://doi.org/10.1007/s00604-018-2879-2
dc.relation.urihttps://doi.org/10.1021/cr200190s
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2012.04.105
dc.relation.urihttps://doi.org/10.1126/science.283.5405.1148
dc.relation.urihttps://doi.org/10.1021/acs.iecr.6b00774
dc.relation.urihttps://doi.org/10.1016/j.chroma.2017.10.062
dc.relation.urihttps://doi.org/10.1016/j.biortech.2014.01.021
dc.relation.urihttps://doi.org/10.1016/j.microc.2019.05.019
dc.relation.urihttps://doi.org/10.1351/pac200274050835
dc.relation.urihttps://doi.org/10.1016/j.jchromb.2016.08.045
dc.relation.urihttps://doi.org/10.1007/s10337-017-3340-0
dc.relation.urihttps://doi.org/10.1016/j.cej.2014.08.012
dc.relation.urihttps://doi.org/10.1016/j.chroma.2004.12.064
dc.relation.urihttps://doi.org/10.1002/jssc.201400262
dc.relation.urihttps://doi.org/10.1016/j.chroma.2011.10.017
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Soury S., Bahrami A., Alizadeh S., Shahna F. G., Nematollahi D., 2022
dc.subjectповітря
dc.subjectHKUST-1
dc.subjectметалоорганічний каркас
dc.subjectелектрохімія
dc.subjectпристрій для утримування голки
dc.subjectлеткі органічні сполуки
dc.subjectair
dc.subjectHKUST-1
dc.subjectmetal-organic framework
dc.subjectelectrochemical
dc.subjectneedle trap device
dc.subjectvolatile organic compounds
dc.titleDevelopment of a Needle Trap Device Packed with HKUST-1 Sorbent for Sampling and Analysis of BTEX in Air
dc.title.alternativeРозроблення пристрою для утримування голки з сорбентом HKUST-1 для відбору проб і аналізу BTEX в повітрі
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n2_Soury_S-Development_of_a_Needle_Trap_314-327.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n2_Soury_S-Development_of_a_Needle_Trap_314-327__COVER.png
Size:
507.49 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: