Огляд можливостей алгоритму JPEG-LS для його використання із сканерами земної поверхні

dc.citation.epage25
dc.citation.issue2
dc.citation.journalTitleКомп'ютерні системи та мережі
dc.citation.spage15
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГрицько, Т. Л.
dc.contributor.authorЛенський, Д.
dc.contributor.authorГлухов, В. С.
dc.contributor.authorHrytsko, T.
dc.contributor.authorLenskiy, D.
dc.contributor.authorHlukhov, V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-12-11T11:15:21Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractВ статті досліджено можливості реалізації алгоритму стиснення зображень JPEG-LS на програмованих логічних інтегральних схемах (ПЛІС) для обробки монохромних відеопотоків від сканерів земної поверхні. Проведено порівняння програмних реалізацій алгоритмів, їх рівень стиснення та час виконання. Розглянуто способи покращення роботи ПЛІС, використовуючи паралельну обробку даних та оптимізовані структури даних для прискорення процесів стиснення та відновлення. Результати тестування програмної реалізації алгоритму демонструють середню швидкість обробки 179,2 Мбіт/с при стисненні та 169,6 Мбіт/с при відновленні зображень. Можливо досягнути рівня стиснення від 1,2 до 7,4 залежно від складності зображення.
dc.description.abstractThe article explores the possibilities of implementing the JPEG-LS image compression algorithm on Field Programmable Gate Arrays (FPGA) for processing monochrome video streams from Earth surface scanners. A comparison of software implementations of the algorithms, their compression ratio, and execution time is conducted. Methods for improving FPGA performance are considered, using parallel data processing and optimized data structures to accelerate compression and decompression processes. Test results of the software implementation of the algorithm show an average processing speed of 179.2 Mbit/s during compression and 169.6 Mbit/s during decompression. A compression ratio from 1.2 to 7.4 can be achieved depending on the complexity of the image.
dc.format.extent15-25
dc.format.pages11
dc.identifier.citationГрицько Т. Л. Огляд можливостей алгоритму JPEG-LS для його використання із сканерами земної поверхні / Т. Л. Грицько, Д. Ленський, В. С. Глухов // Комп'ютерні системи та мережі. — Львів : Видавництво Львівської політехніки, 2024. — Том 6. — № 2. — С. 15–25.
dc.identifier.citation2015Грицько Т. Л., Глухов В. С. Огляд можливостей алгоритму JPEG-LS для його використання із сканерами земної поверхні // Комп'ютерні системи та мережі, Львів. 2024. Том 6. № 2. С. 15–25.
dc.identifier.citationenAPAHrytsko, T., Lenskiy, D., & Hlukhov, V. (2024). Ohliad mozhlyvostei alhorytmu JPEG-LS dlia yoho vykorystannia iz skaneramy zemnoi poverkhni [Review of the capabilities of the JPEG-LS algorithm for its use with earth surface scanners]. Computer Systems and Networks, 6(2), 15-25. Lviv Politechnic Publishing House. [in Ukrainian].
dc.identifier.citationenCHICAGOHrytsko T., Lenskiy D., Hlukhov V. (2024) Ohliad mozhlyvostei alhorytmu JPEG-LS dlia yoho vykorystannia iz skaneramy zemnoi poverkhni [Review of the capabilities of the JPEG-LS algorithm for its use with earth surface scanners]. Computer Systems and Networks (Lviv), vol. 6, no 2, pp. 15-25 [in Ukrainian].
dc.identifier.doiDOI: https://doi.org/10.23939/csn2024.02.015
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/123981
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп'ютерні системи та мережі, 2 (6), 2024
dc.relation.ispartofComputer Systems and Networks, 2 (6), 2024
dc.relation.references1. Weinberger M. J., Seroussi G., and Sapiro G. “The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS,” IEEE Transactions on Image Processing, vol. 9, n 8, pp. 1309–1324, Aug. 2000,doi: 10.1109/83.855427.
dc.relation.references2. Dong X. and Li P. “Implementation of A Real-Time Lossless JPEG-LS Compression Algorithm Based on FPGA,” in 2022 14th International Conference on Signal Processing Systems (ICSPS), Nov. 2022, pp. 523–528. doi:10.1109/ICSPS58776.2022.00096.
dc.relation.references3. S. M. S. H. M. A. Hossain, “Classification on Image Compression Methods: Review Paper,” International Journal of Data Science Research, vol. 1, no. 1, Art. no. 1, Apr. 2018, Accessed: Sep. 25, 2024. [Online]. Available: http://ojs.mediu.edu.my/index.php/IJDSR/article/view/1395
dc.relation.references4. Dunn C.“Smile! You’re on RLE!,” The Transactor, vol. 7 (6), pp. 16–18.
dc.relation.references5. “LZW Compression Encoding.” Accessed: Oct. 16, 2024. [Online]. Available: https://www.loc.gov/preservation/digital/formats/fdd/fdd000135.shtml
dc.relation.references6. Cormen T. H. Ed., Introduction to algorithms, 2nd. ed., 10th pr. Cambridge, Mass.: MIT Press [u.a.], 2007.
dc.relation.references7. Kyrki V. “JBIG image compression standard,” Apr. 1999.
dc.relation.references8. Alakuijala J. et al., “Benchmarking JPEG XL image compression,” in Optics, Photonics and Digital Technologies for Imaging Applications VI, P. Schelkens and T. Kozacki, Eds., Online Only, France: SPIE, Apr. 2020, p.32. doi: 10.1117/12.2556264.
dc.relation.references9. Dr. W. X, WangXuan95/NBLI. (Oct. 07, 2024). C++. Accessed: Oct. 08, 2024. [Online]. Available:https://github.com/WangXuan95/NBLI
dc.relation.references10. Öztürk E. and Mesut A. “Performance Evaluation of JPEG Standards, WebP and PNG in Terms of Compression Ratio and Time for Lossless Encoding,” in 2021 6th International Conference on Computer Science and Engineering (UBMK), Sep. 2021, pp. 15–20. doi: 10.1109/UBMK52708.2021.9558922.
dc.relation.references11. “Fractal image compression - ProQuest.” Accessed: Oct. 16, 2024. [Online]. Available:https://www.proquest.com/docview/215266230?sourcetype=Scholarly%20Journals
dc.relation.references12. “Real-Time H.265/HEVC Intra Encoding with a Configurable Architecture on FPGA Platform.” Accessed:Oct. 16, 2024. [Online]. Available: https://cje.ejournal.org.cn/en/article/doi/10.1049/cje.2019.06.020
dc.relation.references13. “Standards – MPEG.” Accessed: Oct. 16, 2024. [Online]. Available: https://www.mpeg.org/standards/
dc.relation.references14. “RTP Payload Format For AV1.” Accessed: Oct. 16, 2024. [Online]. Available: https://aomediacodec.github.io/av1-rtp-spec/#71-media-type-definition
dc.relation.references15. “SIPI Image Database.” Accessed: Oct. 09, 2024. [Online]. Available: https://sipi.usc.edu/database/
dc.relation.references16. Dr.W.X, WangXuan95/Image-Compression-Benchmark. (Oct. 16, 2024). Python. Accessed: Oct. 17, 2024. [Online]. Available: https://github.com/WangXuan95/Image-Compression-Benchmark
dc.relation.references17. “JPEG - About JPEG.” Accessed: Oct. 16, 2024. [Online]. Available: https://jpeg.org/about.html
dc.relation.references18. “JPEG-LS-E | Lossless & Near-Lossless JPEG-LS Encoder IP Core,” CAST. Accessed: Oct. 17, 2024. [Online]. Available: https://www.cast-inc.com/compression/lossless-image-compression/jpeg-ls-e
dc.relation.references19. “JPEG-LS-D | Lossless & Near-Lossless JPEG-LS Decoder IP Core,” CAST. Accessed: Oct. 17, 2024. [Online]. Available: https://www.cast-inc.com/compression/lossless-image-compression/jpeg-ls-d
dc.relation.references20. Wei W., Lei J., and Li Y. “Onboard optimized hardware implementation of JPEG-LS encoder based on FPGA,” in Satellite Data Compression, Communications, and Processing VIII, SPIE, Oct. 2012, pp. 49–58. doi:10.1117/12.930869.
dc.relation.references21. Chen S.-L., Liu T.-Y., Shen C.-W., and Tuan M.-C.,“VLSI Implementation of a Cost-Efficient Near-Lossless CFA Image Compressor for Wireless Capsule Endoscopy,” IEEE Access, vol. 4, pp. 10235–10245, 2016, doi:10.1109/ACCESS.2016.2638475.
dc.relation.references22. Daryanavard H., Abbasi O., and Talebi R. “FPGA implementation of JPEG-LS compression algorithm for real time applications,” in 2011 19th Iranian Conference on Electrical Engineering, May 2011, pp. 1–4. Accessed: Oct.17, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/5955727
dc.relation.references23. Asuni N. and Giachetti A. “TESTIMAGES: a Large-scale Archive for Testing Visual Devices and BasicImage Processing Algorithms,” 2014, The Eurographics Association. doi: 10.2312/STAG.20141242.
dc.relation.references24. Dr. W. X, WangXuan95/FPGA-JPEG-LS-encoder. (Oct. 17, 2024). Verilog. Accessed: Oct. 17, 2024.[Online]. Available: https://github.com/WangXuan95/FPGA-JPEG-LS-encoder
dc.relation.referencesen1. Weinberger M. J., Seroussi G., and Sapiro G. "The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS," IEEE Transactions on Image Processing, vol. 9, n 8, pp. 1309–1324, Aug. 2000,doi: 10.1109/83.855427.
dc.relation.referencesen2. Dong X. and Li P. "Implementation of A Real-Time Lossless JPEG-LS Compression Algorithm Based on FPGA," in 2022 14th International Conference on Signal Processing Systems (ICSPS), Nov. 2022, pp. 523–528. doi:10.1109/ICSPS58776.2022.00096.
dc.relation.referencesen3. S. M. S. H. M. A. Hossain, "Classification on Image Compression Methods: Review Paper," International Journal of Data Science Research, vol. 1, no. 1, Art. no. 1, Apr. 2018, Accessed: Sep. 25, 2024. [Online]. Available: http://ojs.mediu.edu.my/index.php/IJDSR/article/view/1395
dc.relation.referencesen4. Dunn C."Smile! You’re on RLE!," The Transactor, vol. 7 (6), pp. 16–18.
dc.relation.referencesen5. "LZW Compression Encoding." Accessed: Oct. 16, 2024. [Online]. Available: https://www.loc.gov/preservation/digital/formats/fdd/fdd000135.shtml
dc.relation.referencesen6. Cormen T. H. Ed., Introduction to algorithms, 2nd. ed., 10th pr. Cambridge, Mass., MIT Press [u.a.], 2007.
dc.relation.referencesen7. Kyrki V. "JBIG image compression standard," Apr. 1999.
dc.relation.referencesen8. Alakuijala J. et al., "Benchmarking JPEG XL image compression," in Optics, Photonics and Digital Technologies for Imaging Applications VI, P. Schelkens and T. Kozacki, Eds., Online Only, France: SPIE, Apr. 2020, p.32. doi: 10.1117/12.2556264.
dc.relation.referencesen9. Dr. W. X, WangXuan95/NBLI. (Oct. 07, 2024). C++. Accessed: Oct. 08, 2024. [Online]. Available:https://github.com/WangXuan95/NBLI
dc.relation.referencesen10. Öztürk E. and Mesut A. "Performance Evaluation of JPEG Standards, WebP and PNG in Terms of Compression Ratio and Time for Lossless Encoding," in 2021 6th International Conference on Computer Science and Engineering (UBMK), Sep. 2021, pp. 15–20. doi: 10.1109/UBMK52708.2021.9558922.
dc.relation.referencesen11. "Fractal image compression - ProQuest." Accessed: Oct. 16, 2024. [Online]. Available:https://www.proquest.com/docview/215266230?sourcetype=Scholarly%20Journals
dc.relation.referencesen12. "Real-Time H.265/HEVC Intra Encoding with a Configurable Architecture on FPGA Platform." Accessed:Oct. 16, 2024. [Online]. Available: https://cje.ejournal.org.cn/en/article/doi/10.1049/cje.2019.06.020
dc.relation.referencesen13. "Standards – MPEG." Accessed: Oct. 16, 2024. [Online]. Available: https://www.mpeg.org/standards/
dc.relation.referencesen14. "RTP Payload Format For AV1." Accessed: Oct. 16, 2024. [Online]. Available: https://aomediacodec.github.io/av1-rtp-spec/#71-media-type-definition
dc.relation.referencesen15. "SIPI Image Database." Accessed: Oct. 09, 2024. [Online]. Available: https://sipi.usc.edu/database/
dc.relation.referencesen16. Dr.W.X, WangXuan95/Image-Compression-Benchmark. (Oct. 16, 2024). Python. Accessed: Oct. 17, 2024. [Online]. Available: https://github.com/WangXuan95/Image-Compression-Benchmark
dc.relation.referencesen17. "JPEG - About JPEG." Accessed: Oct. 16, 2024. [Online]. Available: https://jpeg.org/about.html
dc.relation.referencesen18. "JPEG-LS-E | Lossless & Near-Lossless JPEG-LS Encoder IP Core," CAST. Accessed: Oct. 17, 2024. [Online]. Available: https://www.cast-inc.com/compression/lossless-image-compression/jpeg-ls-e
dc.relation.referencesen19. "JPEG-LS-D | Lossless & Near-Lossless JPEG-LS Decoder IP Core," CAST. Accessed: Oct. 17, 2024. [Online]. Available: https://www.cast-inc.com/compression/lossless-image-compression/jpeg-ls-d
dc.relation.referencesen20. Wei W., Lei J., and Li Y. "Onboard optimized hardware implementation of JPEG-LS encoder based on FPGA," in Satellite Data Compression, Communications, and Processing VIII, SPIE, Oct. 2012, pp. 49–58. doi:10.1117/12.930869.
dc.relation.referencesen21. Chen S.-L., Liu T.-Y., Shen C.-W., and Tuan M.-C.,"VLSI Implementation of a Cost-Efficient Near-Lossless CFA Image Compressor for Wireless Capsule Endoscopy," IEEE Access, vol. 4, pp. 10235–10245, 2016, doi:10.1109/ACCESS.2016.2638475.
dc.relation.referencesen22. Daryanavard H., Abbasi O., and Talebi R. "FPGA implementation of JPEG-LS compression algorithm for real time applications," in 2011 19th Iranian Conference on Electrical Engineering, May 2011, pp. 1–4. Accessed: Oct.17, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/5955727
dc.relation.referencesen23. Asuni N. and Giachetti A. "TESTIMAGES: a Large-scale Archive for Testing Visual Devices and BasicImage Processing Algorithms," 2014, The Eurographics Association. doi: 10.2312/STAG.20141242.
dc.relation.referencesen24. Dr. W. X, WangXuan95/FPGA-JPEG-LS-encoder. (Oct. 17, 2024). Verilog. Accessed: Oct. 17, 2024.[Online]. Available: https://github.com/WangXuan95/FPGA-JPEG-LS-encoder
dc.relation.urihttp://ojs.mediu.edu.my/index.php/IJDSR/article/view/1395
dc.relation.urihttps://www.loc.gov/preservation/digital/formats/fdd/fdd000135.shtml
dc.relation.urihttps://github.com/WangXuan95/NBLI
dc.relation.urihttps://www.proquest.com/docview/215266230?sourcetype=Scholarly%20Journals
dc.relation.urihttps://cje.ejournal.org.cn/en/article/doi/10.1049/cje.2019.06.020
dc.relation.urihttps://www.mpeg.org/standards/
dc.relation.urihttps://aomediacodec.github.io/av1-rtp-spec/#71-media-type-definition
dc.relation.urihttps://sipi.usc.edu/database/
dc.relation.urihttps://github.com/WangXuan95/Image-Compression-Benchmark
dc.relation.urihttps://jpeg.org/about.html
dc.relation.urihttps://www.cast-inc.com/compression/lossless-image-compression/jpeg-ls-e
dc.relation.urihttps://www.cast-inc.com/compression/lossless-image-compression/jpeg-ls-d
dc.relation.urihttps://ieeexplore.ieee.org/document/5955727
dc.relation.urihttps://github.com/WangXuan95/FPGA-JPEG-LS-encoder
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.rights.holder© Грицько Т. Л., Ленський Д., Глухов В. С., 2024
dc.subjectJPEG-LS
dc.subjectобробка відеопотоків
dc.subjectобробка зображень
dc.subjectПЛІС
dc.subjectпрогра- мовані логічні інтегральні схеми
dc.subjectстиснення відео
dc.subjectстиснення зображень
dc.subjectFPGA
dc.subjectJPEG-LS
dc.subjectField-programmable gate arrays
dc.subjectImage compression
dc.subjectImage processing
dc.subjectVideo compression
dc.subjectVideo stream processing
dc.subject.udc004.382
dc.titleОгляд можливостей алгоритму JPEG-LS для його використання із сканерами земної поверхні
dc.title.alternativeReview of the capabilities of the JPEG-LS algorithm for its use with earth surface scanners
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v6n2_Hrytsko_T-Review_of_the_capabilities_15-25.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: