A survey of the vehicle routing problem and its variants: formulations and solutions

dc.citation.epage343
dc.citation.issue11
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage333
dc.citation.volume1
dc.contributor.affiliationКоманда MMCS, Лабораторія LMAID, ENSMR-Рабат
dc.contributor.affiliationУніверситет Аль-Ахавейн в Іфрані
dc.contributor.affiliationMMCS Team, LMAID Laboratory, ENSMR-Rabat
dc.contributor.affiliationAl Akhawayn University in Ifrane
dc.contributor.authorХайя, Е.
dc.contributor.authorМедархрі, І.
dc.contributor.authorЗіне, Р.
dc.contributor.authorKhayya, E.
dc.contributor.authorMedarhri, I.
dc.contributor.authorZine, R.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T07:44:24Z
dc.date.created2024-02-24
dc.date.issued2024-02-24
dc.description.abstractУ сфері промислових підприємств підвищення логістичної ефективності є головним завданням. Мета полягає в організації оптимізованого сервісу з безперебійним потоком товарів та мінімізацією витрат. Ключовим компонентом будь-якої логістичної структури є адміністрування та розробка стратегій розподільчих мереж для автопарків, що зазвичай називають проблемою маршрутизації транспортних засобів (VRP). Ця робота заглиблюється в дослідження VRP та її різних ітерацій, пропонуючи категоризацію та опис поширених формулювань та алгоритмів, що використовуються в наукових працях протягом останніх двох десятиліть.
dc.description.abstractIn the realm of industrial enterprises, enhancing logistical efficiency stands as a focal concern. The objective lies in orchestrating an optimized service with seamless flow of goods while minimizing expenses. A crucial component within any logistics framework is the administration and strategizing of distribution networks for vehicle fleets, commonly referred to as the Vehicle Routing Problem (VRP). This composition delves into an exploration of VRP and its various iterations, offering categorization and depiction of prevalent formulations and algorithms prevalent in scholarly works over the past two decades.
dc.format.extent333-343
dc.format.pages11
dc.identifier.citationKhayya E. A survey of the vehicle routing problem and its variants: formulations and solutions / E. Khayya, I. Medarhri, R. Zine // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 333–343.
dc.identifier.citationenKhayya E. A survey of the vehicle routing problem and its variants: formulations and solutions / E. Khayya, I. Medarhri, R. Zine // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 333–343.
dc.identifier.doi10.23939/mmc2024.01.333
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113793
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 11 (1), 2024
dc.relation.ispartofMathematical Modeling and Computing, 11 (1), 2024
dc.relation.references[1] Dantzig G. B., Ramser J. H. The truck dispatching problem. Management Science. 6 (1), 80–91 (1959).
dc.relation.references[2] Clarke G., Wright J. W. Scheduling of vehicles from a central depot to a number of delivery points. Operations Research. 12 (4), 568–581 (1964).
dc.relation.references[3] Toth P., Vigo D. The vehicle routing problem. SIAM (2002).
dc.relation.references[4] Lenstra J. K., Kan A. R. Complexity of vehicle routing and scheduling problems. Networks. 11 (2), 221–227 (1981).
dc.relation.references[5] Laporte G., Nobert Y., Desrochers M. Optimal routing under capacity and distance restrictions. Operations Research. 33 (5), 1050–1073 (1985).
dc.relation.references[6] Balinski M. L., Quandt R. E. On an integer program for a delivery problem. Operations Research. 12 (2), 300–304 (1964).
dc.relation.references[7] Garvin W. W., Crandall H., John J., Spellman R. Applications of linear programming in the oil industry. Management Science. 3 (4), 407–430 (1957).
dc.relation.references[8] Laporte G. The vehicle routing problem: An overview of exact and approximate algorithms. European journal of operational research. 59 (3), 345–358 (1992).
dc.relation.references[9] Baldacci R., Hadjiconstantinou E., Mingozzi A. An exact algorithm for the capacitated vehicle routing problem based on a two-commodity network flow formulation. Operations Research. 52 (5), 723–738 (2004).
dc.relation.references[10] Mirabi M., Ghomi S. F., Jolai F. Efficient stochastic hybrid heuristics for the multi-depot vehicle routing problem. Robotics and Computer-Integrated Manufacturing. 26 (6), 564–569 (2010).
dc.relation.references[11] Subramanian A., Penna P. H. V., Uchoa E., Ochi L. S. A hybrid algorithm for the heterogeneous fleet vehicle routing problem. European Journal of Operational Research. 221 (2), 285–295 (2012).
dc.relation.references[12] Choi E., Tcha D. W. A column generation approach to the heterogeneous fleet vehicle routing problem. Computers & Operations Research. 34 (7), 2080–2095 (2007).
dc.relation.references[13] Contardo C., Martinelli R. A new exact algorithm for the multi-depot vehicle routing problem under capacity and route length constraints. Discrete Optimization. 12, 129–146 (2014).
dc.relation.references[14] Ba˜nos R., Ortega J., Gil C., Fern´andez A., De Toro F. A simulated annealing-based parallel multi-objective approach to vehicle routing problems with time windows. Expert Systems with Applications. 40 (5), 1696–1707 (2013).
dc.relation.references[15] Ombuki B., Ross B. J., Hanshar F. Multi-objective genetic algorithms for vehicle routing problem with time windows. Applied Intelligence. 24, 17–30 (2006).
dc.relation.references[16] Lau H. C., Sim M., Teo K. M. Vehicle routing problem with time windows and a limited number of vehicles. European Journal of Operational Research. 148 (3), 559–569 (2003).
dc.relation.references[17] Huerta-Mu˜noz D. L., Archetti C., Fern´andez E., Perea F. The heterogeneous flexible periodic vehicle routing problem: Mathematical formulations and solution algorithms. Computers & Operations Research. 141, 105662 (2022).
dc.relation.references[18] Montan´e F. A. T., Galvao R. D. A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service. Computers & Operations Research. 33 (3), 595–619 (2006).
dc.relation.references[19] Hornstra R. P., Silva A., Roodbergen K. J., Coelho L. C. The vehicle routing problem with simultaneous pickup and delivery and handling costs. Computers & Operations Research. 115, 104858 (2020).
dc.relation.references[20] Balseiro S. R., Loiseau I., Ramonet J. An ant colony algorithm hybridized with insertion heuristics for the time dependent vehicle routing problem with time windows. Computers & Operations Research. 38 (6), 954–966 (2011).
dc.relation.references[21] Dabia S., Ropke S., Van Woensel T., De Kok T. Branch and price for the time-dependent vehicle routing problem with time windows. Transportation Science. 47 (3), 380–396 (2013).
dc.relation.references[22] Afshar-Nadjafi B., Afshar-Nadjafi A. A constructive heuristic for time-dependent multi-depot vehicle routing problem with time-windows and heterogeneous fleet. Journal of King Saud University-Engineering Sciences. 29 (1), 29–34 (2017).
dc.relation.references[23] Bettinelli A., Ceselli A., Righini G. A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing problem with time windows. Transportation Research Part C: Emerging Technologies. 19 (5), 723–740 (2011).
dc.relation.references[24] Lysgaard J., Letchford A. N., Eglese R. W. A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming. 100, 423–445 (2004).
dc.relation.references[25] Baldacci R., Christofides N., Mingozzi A. An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Mathematical Programming. 115, 351–385 (2008).
dc.relation.references[26] Croes G. A. A method for solving traveling-salesman problems. Operations research. 6 (6), 791–812 (1958).
dc.relation.references[27] Lin S. Computer solutions of the traveling salesman problem. Bell System Technical Journal. 44 (10), 2245–2269 (1965).
dc.relation.references[28] Gmira M., Gendreau M., Lodi A., Potvin J. Y. Tabu search for the time-dependent vehicle routing problem with time windows on a road network. European Journal of Operational Research. 288 (1), 129–140 (2021).
dc.relation.references[29] Lin S. W., Lee Z. J., Ying K. C., Lee C. Y. Applying hybrid meta-heuristics for capacitated vehicle routing problem. Expert Systems with Applications. 36 (2), 1505–1512 (2009).
dc.relation.references[30] Ai T. J., Kachitvichyanukul V. A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery. Computers & Operations Research. 36 (5), 1693–1702 (2009).
dc.relation.references[31] Chen A. L., Yang G. K., Wu Z. M. Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. Journal of Zhejiang University-Science A. 7 (4), 607–614 (2006).
dc.relation.references[32] Subramanian A., Uchoa E., Ochi L. S. A hybrid algorithm for a class of vehicle routing problems. Computers & Operations Research. 40 (10), 2519–2531 (2013).
dc.relation.references[33] Yu B., Yang Z. Z., Yao B. An improved ant colony optimization for vehicle routing problem. European Journal of Operational Research. 196 (1), 171–176 (2009).
dc.relation.references[34] De Oliveira F. B., Enayatifar R., Sadaei H. J., Guimar˜aes F. G., Potvin J. Y. A cooperative coevolutionary algorithm for the multi-depot vehicle routing problem. Expert Systems with Applications. 43, 117–130 (2016).
dc.relation.references[35] Pessoa A., Sadykov R., Uchoa E., Vanderbeck F. A generic exact solver for vehicle routing and related problems. Mathematical Programming. 183, 483–523 (2020).
dc.relation.references[36] Achuthan N. R., Caccetta L., Hill S. P. An improved branch-and-cut algorithm for the capacitated vehicle routing problem. Transportation Science. 37 (2), 153–169 (2003).
dc.relation.references[37] Calvet L., Ferrer A., Gomes M. I., Juan A. A., Masip D. Combining statistical learning with metaheuristics for the multi-depot vehicle routing problem with market segmentation. Computers & Industrial Engineering. 94, 93–104 (2016).
dc.relation.references[38] Altabeeb A. M., Mohsen A. M., Ghallab A. An improved hybrid firefly algorithm for capacitated vehicle routing problem. Applied Soft Computing. 84, 105728 (2019).
dc.relation.references[39] Reyes-Rubiano L., Calvet L., Juan A. A., Faulin J., Bov´e L. A biased-randomized variable neighborhood search for sustainable multi-depot vehicle routing problems. Journal of Heuristics. 26, 401–422 (2020).
dc.relation.references[40] Escobar J. W., Linfati R., Toth P., Baldoquin M. G. A hybrid granular tabu search algorithm for the multidepot vehicle routing problem. Journal of heuristics. 20, 483–509 (2014).
dc.relation.references[41] Penna P. H. V., Subramanian A., Ochi L. S. An iterated local search heuristic for the heterogeneous fleetvehicle routing problem. Journal of Heuristics. 19 (2), 201–232 (2013).
dc.relation.references[42] Polacek M., Hartl R. F., Doerner K., Reimann M. A variable neighborhood search for the multi depot vehicle routing problem with time windows. Journal of heuristics. 10, 613–627 (2004).
dc.relation.references[43] Pichpibul T., Kawtummachai R. An improved Clarke and Wright savings algorithm for the capacitated vehicle routing problem. ScienceAsia. 38 (3), 307–318 (2012).
dc.relation.references[44] Pecin D., Pessoa A., Poggi M., Uchoa E., Santos H. Limited memory rank-1 cuts for vehicle routing problems. Operations Research Letters. 45 (3), 206–209 (2017).
dc.relation.referencesen[1] Dantzig G. B., Ramser J. H. The truck dispatching problem. Management Science. 6 (1), 80–91 (1959).
dc.relation.referencesen[2] Clarke G., Wright J. W. Scheduling of vehicles from a central depot to a number of delivery points. Operations Research. 12 (4), 568–581 (1964).
dc.relation.referencesen[3] Toth P., Vigo D. The vehicle routing problem. SIAM (2002).
dc.relation.referencesen[4] Lenstra J. K., Kan A. R. Complexity of vehicle routing and scheduling problems. Networks. 11 (2), 221–227 (1981).
dc.relation.referencesen[5] Laporte G., Nobert Y., Desrochers M. Optimal routing under capacity and distance restrictions. Operations Research. 33 (5), 1050–1073 (1985).
dc.relation.referencesen[6] Balinski M. L., Quandt R. E. On an integer program for a delivery problem. Operations Research. 12 (2), 300–304 (1964).
dc.relation.referencesen[7] Garvin W. W., Crandall H., John J., Spellman R. Applications of linear programming in the oil industry. Management Science. 3 (4), 407–430 (1957).
dc.relation.referencesen[8] Laporte G. The vehicle routing problem: An overview of exact and approximate algorithms. European journal of operational research. 59 (3), 345–358 (1992).
dc.relation.referencesen[9] Baldacci R., Hadjiconstantinou E., Mingozzi A. An exact algorithm for the capacitated vehicle routing problem based on a two-commodity network flow formulation. Operations Research. 52 (5), 723–738 (2004).
dc.relation.referencesen[10] Mirabi M., Ghomi S. F., Jolai F. Efficient stochastic hybrid heuristics for the multi-depot vehicle routing problem. Robotics and Computer-Integrated Manufacturing. 26 (6), 564–569 (2010).
dc.relation.referencesen[11] Subramanian A., Penna P. H. V., Uchoa E., Ochi L. S. A hybrid algorithm for the heterogeneous fleet vehicle routing problem. European Journal of Operational Research. 221 (2), 285–295 (2012).
dc.relation.referencesen[12] Choi E., Tcha D. W. A column generation approach to the heterogeneous fleet vehicle routing problem. Computers & Operations Research. 34 (7), 2080–2095 (2007).
dc.relation.referencesen[13] Contardo C., Martinelli R. A new exact algorithm for the multi-depot vehicle routing problem under capacity and route length constraints. Discrete Optimization. 12, 129–146 (2014).
dc.relation.referencesen[14] Ba˜nos R., Ortega J., Gil C., Fern´andez A., De Toro F. A simulated annealing-based parallel multi-objective approach to vehicle routing problems with time windows. Expert Systems with Applications. 40 (5), 1696–1707 (2013).
dc.relation.referencesen[15] Ombuki B., Ross B. J., Hanshar F. Multi-objective genetic algorithms for vehicle routing problem with time windows. Applied Intelligence. 24, 17–30 (2006).
dc.relation.referencesen[16] Lau H. C., Sim M., Teo K. M. Vehicle routing problem with time windows and a limited number of vehicles. European Journal of Operational Research. 148 (3), 559–569 (2003).
dc.relation.referencesen[17] Huerta-Mu˜noz D. L., Archetti C., Fern´andez E., Perea F. The heterogeneous flexible periodic vehicle routing problem: Mathematical formulations and solution algorithms. Computers & Operations Research. 141, 105662 (2022).
dc.relation.referencesen[18] Montan´e F. A. T., Galvao R. D. A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service. Computers & Operations Research. 33 (3), 595–619 (2006).
dc.relation.referencesen[19] Hornstra R. P., Silva A., Roodbergen K. J., Coelho L. C. The vehicle routing problem with simultaneous pickup and delivery and handling costs. Computers & Operations Research. 115, 104858 (2020).
dc.relation.referencesen[20] Balseiro S. R., Loiseau I., Ramonet J. An ant colony algorithm hybridized with insertion heuristics for the time dependent vehicle routing problem with time windows. Computers & Operations Research. 38 (6), 954–966 (2011).
dc.relation.referencesen[21] Dabia S., Ropke S., Van Woensel T., De Kok T. Branch and price for the time-dependent vehicle routing problem with time windows. Transportation Science. 47 (3), 380–396 (2013).
dc.relation.referencesen[22] Afshar-Nadjafi B., Afshar-Nadjafi A. A constructive heuristic for time-dependent multi-depot vehicle routing problem with time-windows and heterogeneous fleet. Journal of King Saud University-Engineering Sciences. 29 (1), 29–34 (2017).
dc.relation.referencesen[23] Bettinelli A., Ceselli A., Righini G. A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing problem with time windows. Transportation Research Part C: Emerging Technologies. 19 (5), 723–740 (2011).
dc.relation.referencesen[24] Lysgaard J., Letchford A. N., Eglese R. W. A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming. 100, 423–445 (2004).
dc.relation.referencesen[25] Baldacci R., Christofides N., Mingozzi A. An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Mathematical Programming. 115, 351–385 (2008).
dc.relation.referencesen[26] Croes G. A. A method for solving traveling-salesman problems. Operations research. 6 (6), 791–812 (1958).
dc.relation.referencesen[27] Lin S. Computer solutions of the traveling salesman problem. Bell System Technical Journal. 44 (10), 2245–2269 (1965).
dc.relation.referencesen[28] Gmira M., Gendreau M., Lodi A., Potvin J. Y. Tabu search for the time-dependent vehicle routing problem with time windows on a road network. European Journal of Operational Research. 288 (1), 129–140 (2021).
dc.relation.referencesen[29] Lin S. W., Lee Z. J., Ying K. C., Lee C. Y. Applying hybrid meta-heuristics for capacitated vehicle routing problem. Expert Systems with Applications. 36 (2), 1505–1512 (2009).
dc.relation.referencesen[30] Ai T. J., Kachitvichyanukul V. A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery. Computers & Operations Research. 36 (5), 1693–1702 (2009).
dc.relation.referencesen[31] Chen A. L., Yang G. K., Wu Z. M. Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. Journal of Zhejiang University-Science A. 7 (4), 607–614 (2006).
dc.relation.referencesen[32] Subramanian A., Uchoa E., Ochi L. S. A hybrid algorithm for a class of vehicle routing problems. Computers & Operations Research. 40 (10), 2519–2531 (2013).
dc.relation.referencesen[33] Yu B., Yang Z. Z., Yao B. An improved ant colony optimization for vehicle routing problem. European Journal of Operational Research. 196 (1), 171–176 (2009).
dc.relation.referencesen[34] De Oliveira F. B., Enayatifar R., Sadaei H. J., Guimar˜aes F. G., Potvin J. Y. A cooperative coevolutionary algorithm for the multi-depot vehicle routing problem. Expert Systems with Applications. 43, 117–130 (2016).
dc.relation.referencesen[35] Pessoa A., Sadykov R., Uchoa E., Vanderbeck F. A generic exact solver for vehicle routing and related problems. Mathematical Programming. 183, 483–523 (2020).
dc.relation.referencesen[36] Achuthan N. R., Caccetta L., Hill S. P. An improved branch-and-cut algorithm for the capacitated vehicle routing problem. Transportation Science. 37 (2), 153–169 (2003).
dc.relation.referencesen[37] Calvet L., Ferrer A., Gomes M. I., Juan A. A., Masip D. Combining statistical learning with metaheuristics for the multi-depot vehicle routing problem with market segmentation. Computers & Industrial Engineering. 94, 93–104 (2016).
dc.relation.referencesen[38] Altabeeb A. M., Mohsen A. M., Ghallab A. An improved hybrid firefly algorithm for capacitated vehicle routing problem. Applied Soft Computing. 84, 105728 (2019).
dc.relation.referencesen[39] Reyes-Rubiano L., Calvet L., Juan A. A., Faulin J., Bov´e L. A biased-randomized variable neighborhood search for sustainable multi-depot vehicle routing problems. Journal of Heuristics. 26, 401–422 (2020).
dc.relation.referencesen[40] Escobar J. W., Linfati R., Toth P., Baldoquin M. G. A hybrid granular tabu search algorithm for the multidepot vehicle routing problem. Journal of heuristics. 20, 483–509 (2014).
dc.relation.referencesen[41] Penna P. H. V., Subramanian A., Ochi L. S. An iterated local search heuristic for the heterogeneous fleetvehicle routing problem. Journal of Heuristics. 19 (2), 201–232 (2013).
dc.relation.referencesen[42] Polacek M., Hartl R. F., Doerner K., Reimann M. A variable neighborhood search for the multi depot vehicle routing problem with time windows. Journal of heuristics. 10, 613–627 (2004).
dc.relation.referencesen[43] Pichpibul T., Kawtummachai R. An improved Clarke and Wright savings algorithm for the capacitated vehicle routing problem. ScienceAsia. 38 (3), 307–318 (2012).
dc.relation.referencesen[44] Pecin D., Pessoa A., Poggi M., Uchoa E., Santos H. Limited memory rank-1 cuts for vehicle routing problems. Operations Research Letters. 45 (3), 206–209 (2017).
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectVRP
dc.subjectопитування
dc.subjectточні методи
dc.subjectматематичне формулювання
dc.subjectмета-евристики
dc.subjectVRP
dc.subjectsurvey
dc.subjectexact methods
dc.subjectmathematical formulation
dc.subjectmeta-heuristics
dc.titleA survey of the vehicle routing problem and its variants: formulations and solutions
dc.title.alternativeОгляд задачі маршрутизації транспортного засобу та її варіантів: постановки та розв’язування
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n11_Khayya_E-A_survey_of_the_vehicle_333-343.pdf
Size:
7.06 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n11_Khayya_E-A_survey_of_the_vehicle_333-343__COVER.png
Size:
448.87 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: