Optical Study and Simulation of Diffusion of Copper Ions in the LiNbO3 Crystal

dc.citation.epage45
dc.citation.issue2
dc.citation.journalTitleОбчислювальні проблеми електротехніки
dc.citation.spage40
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationScientific Research Company “Electron-Carat”
dc.contributor.affiliationInstitute for Energy Research and Physical Technologies, Goslar
dc.contributor.authorСугак, Дмитро
dc.contributor.authorЯхневич, Уляна
dc.contributor.authorБурій, Олег
dc.contributor.authorСиворотка, Ігор
dc.contributor.authorГурський, Степан
dc.contributor.authorSugak, Dmytro
dc.contributor.authorYakhnevych, Uliana
dc.contributor.authorBuryy, Oleh
dc.contributor.authorSyvorotka, Ihor
dc.contributor.authorHurskyy, Stepan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-06T07:20:23Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractДосліджено процеси дифузії та дрейфу іонів міді в кристалі ніобату літію після відпалу за наявності плівки міді, нанесеної на поверхню кристала. Для дослідження вибрано температури T= 600, 650, 700, 750 та 800°C, тривалість високотемпературних відпалів – 6 год кожний зразок. Спектри оптичного поглинання зразків реєстрували в напрямку, перпендикулярному до напрямку дифузії на різних відстанях від краю кристала. Смуги поглинання іонів Cu+ (400 нм) і Cu2+(1000 нм) спостерігали у всіх відпалених зразках. Інтенсивність смуг змінюється залежно від температури відпалу та відстані від джерела дифузії. Концентрації іонів міді розраховано за формулою Смакули–Декстера. Глибинні залежності концентрації іонів Cu апроксимовано у межах моделі з урахуванням як дифузії, так і дрейфу іонів Cu. Експериментально просторові розподіли концентрацій іонів міді добре апроксимуються теоретичними кривими, розрахованими у межах вказаної математичної моделі дифузії. Визначені з наближень коефіцієнти дифузії добре узгоджуються з відомими з літератури.
dc.description.abstractThe article deals with research into the processes of diffusion and drift of copper ions in a lithium niobate crystal after annealing in the presence of a copper film deposited on the crystal surface. For this purpose, there are chosen temperatures T = 600, 650, 700, 750 and 800 °C, with the duration of hightemperature annealing being 6 hours for each sample. The optical absorption spectra of the samples are recorded in the direction perpendicular to the direction of diffusion at different distances from the edge of the crystal. Absorption bands of Cu+(400 nm) and Cu2+(1000 nm) ions are observed in all the samples annealed. The intensity of the bands varies depending on the annealing temperature and the distance from the diffusion source. Concentrations of copper ions are calculated using the Smakula – Dexter formula. Depth dependences of the Cu ions concentration are approximated within the framework of the model, taking into account both diffusion and drift of Cu ions. Experimental spatial distributions of copper ion concentrations are well approximated by theoretical curves calculated within the framework of the mathematical model of diffusion. The diffusion coefficients determined from the approximations are well-agreed with the available data from the literature.
dc.format.extent40-45
dc.format.pages6
dc.identifier.citationOptical Study and Simulation of Diffusion of Copper Ions in the LiNbO3 Crystal / Dmytro Sugak, Uliana Yakhnevych, Oleh Buryy, Ihor Syvorotka, Stepan Hurskyy // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 2. — P. 40–45.
dc.identifier.citationenOptical Study and Simulation of Diffusion of Copper Ions in the LiNbO3 Crystal / Dmytro Sugak, Uliana Yakhnevych, Oleh Buryy, Ihor Syvorotka, Stepan Hurskyy // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 2. — P. 40–45.
dc.identifier.doidoi.org/10.23939/jcpee2022.02.040
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63939
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofОбчислювальні проблеми електротехніки, 2 (12), 2022
dc.relation.ispartofComputational Problems of Electrical Engineering, 2 (12), 2022
dc.relation.references[1] Ed. K. K. Wong, Properties of lithium niobate, London: INSPEC, p. 423, 2002.
dc.relation.references[2] V. Sh. Ivanov, V. A. Ganshin, and Yu. N. Korkishko, “Analysis of ion exchanged Me:LiNbO3 and Cu:LiTaO3 waveguides by AES, SAM, EPR and optical methods”, Vacuum, vol. 43, pp. 317–324, 1992.
dc.relation.references[3] F. Caccavale , C. Sada , F. Segato et al., “Copperlithium ion exchange in LiNbO3”, In: J. Mater. Res., vol. 15, pp. 1120–1124, 2000.
dc.relation.references[4] S. Kar and K. Bartwal, “Cu2+ ion in-diffusion in congruent LiNbO3 single crystals”, In: Mater. Lett., vol. 62, pp. 3934–3936, 2008.
dc.relation.references[5] K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion”, In Physical Review B., vol. 61, pp. 4615–4620, 2000.
dc.relation.references[6] D. Yu. Sugak, I. I. Syvorotka, U. V. Yakhnevych et al., “Optical Investigation of the Cu Ions Diffusion into Bulk Lithium Niobate”, Acta Physica Polonica A., vol. 133, 2018. in press
dc.relation.references[7] I. Solskii, D. Sugak, and M. Vakiv, “Growing large size complex oxide single crystals by Czochralski technique for electronic devices”, Acta Physica Polonica A., vol. 124, no. 2, 2013.
dc.relation.references[8] D. Yu. Sugak, “Coloring changes of congruent LiNbO3 crystals under redox annealing”, Solid State Phenomena, vol. 230, pp. 228–232, 2015.
dc.relation.references[9] D. Sugak, I. Syvorotka, O. Buryy et al., “Spatial distribution of LiNbO3 single crystals optical properties changes after redox high-temperature treatment”, IOP Conf. Series: Materials Science and Engineering, vol. 169, pp. 012019–012026, 2017.
dc.relation.references[10] D. Sugak, I. Syvorotka, O. Buryy et al., “Spatial distribution of optical coloration in single crystalline LiNbO3 after high-temperature H2/air treatments”, Optical Materials, vol. 70, pp. 106–115, 2017.
dc.relation.references[11] T. Kobayashi, K. Muto, J. Kai, and A. Kawamori, “EPR and optical studies of LiNbO3 doped with Cu2+ ions”, J. Mag. Res., vol. 34, pp. 459–466, 1979.
dc.relation.references[12] E. Krätzig, R. Orlowski, “Light induced charge transport in doped LiNbO3 and LiTaO3”, Ferroelectrics, vol. 27, pp. 241–244, 1980.
dc.relation.references[13] A. Petrosyan, R. Khaghatryan, and E. Sharoyan, “Jahn – Teller Effect in EPR and Optical absorption spectra”, Phys. Stat. Sol., vol. 122, pp. 725–734, 1984.
dc.relation.references[14] A. Matkovskii, P. Potera, D. Sugak, Y et al., “Transient and stable color centers in pure and Cu-doped LiNbO3”, Cryst. Res. Technol., vol. 38, pp. 388–393, 2003.
dc.relation.references[15] P. Potera, S. Ubizskii, D. Sugak, and T. Lukasiewicz, “Colour centres in LiNbO3 : Fe and LiNbO3:Cu crystals irradiated by 12C ions”, Radiation Measurements, vol. 42, pp. 232–235, 2007.
dc.relation.references[16] D. L. Dexter, “Absorption of light by atoms in solids”, Phys. Rev., vol. 101, pp. 48–55, 1956.
dc.relation.references[17] U.Schlarb , K.Betzler, “A generalized Sellmeier equation for the refractive indices of lithium niobate”, Ferroelectrics, vol. 156, pp. 99-104, 1994.
dc.relation.references[18] J. Noda, T. Saku, and N. Uchida, “Fabrication of optical waveguiding layer in LiTaO3 by Cu diffusion”, Appl. Phys. Lett., vol. 25, pp. 308–310, 1974.
dc.relation.references[19] Y. S. Kuzminov, “Electro-optical and nonlinearoptical lithium niobate crystal”, Moscow: Main Editorial Board of Physical and Mathematical Literature, 1986 (in Russian).
dc.relation.references[20] D. P. Birnie III, “ Analysius of diffusion in lithium niobate”, Review. J. Mat. Sc., vol. 28, pp. 302–315, 1993.
dc.relation.references[21] F. Caccavale, C. Sada, F. Segato et al., “Copperithium ion exchange in LiNbO3”, J. Mater. Res., vol. 15, pp. 1120–1124, 2000.
dc.relation.references[22] R. Sh. Malkovich, Mathematics of diffusion in semiprovodniks, Moscow, Nauka, 1999 (in Russian).
dc.relation.referencesen[1] Ed. K. K. Wong, Properties of lithium niobate, London: INSPEC, p. 423, 2002.
dc.relation.referencesen[2] V. Sh. Ivanov, V. A. Ganshin, and Yu. N. Korkishko, "Analysis of ion exchanged Me:LiNbO3 and Cu:LiTaO3 waveguides by AES, SAM, EPR and optical methods", Vacuum, vol. 43, pp. 317–324, 1992.
dc.relation.referencesen[3] F. Caccavale , C. Sada , F. Segato et al., "Copperlithium ion exchange in LiNbO3", In: J. Mater. Res., vol. 15, pp. 1120–1124, 2000.
dc.relation.referencesen[4] S. Kar and K. Bartwal, "Cu2+ ion in-diffusion in congruent LiNbO3 single crystals", In: Mater. Lett., vol. 62, pp. 3934–3936, 2008.
dc.relation.referencesen[5] K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, "Photorefractive properties of LiNbO3 crystals doped by copper diffusion", In Physical Review B., vol. 61, pp. 4615–4620, 2000.
dc.relation.referencesen[6] D. Yu. Sugak, I. I. Syvorotka, U. V. Yakhnevych et al., "Optical Investigation of the Cu Ions Diffusion into Bulk Lithium Niobate", Acta Physica Polonica A., vol. 133, 2018. in press
dc.relation.referencesen[7] I. Solskii, D. Sugak, and M. Vakiv, "Growing large size complex oxide single crystals by Czochralski technique for electronic devices", Acta Physica Polonica A., vol. 124, no. 2, 2013.
dc.relation.referencesen[8] D. Yu. Sugak, "Coloring changes of congruent LiNbO3 crystals under redox annealing", Solid State Phenomena, vol. 230, pp. 228–232, 2015.
dc.relation.referencesen[9] D. Sugak, I. Syvorotka, O. Buryy et al., "Spatial distribution of LiNbO3 single crystals optical properties changes after redox high-temperature treatment", IOP Conf. Series: Materials Science and Engineering, vol. 169, pp. 012019–012026, 2017.
dc.relation.referencesen[10] D. Sugak, I. Syvorotka, O. Buryy et al., "Spatial distribution of optical coloration in single crystalline LiNbO3 after high-temperature H2/air treatments", Optical Materials, vol. 70, pp. 106–115, 2017.
dc.relation.referencesen[11] T. Kobayashi, K. Muto, J. Kai, and A. Kawamori, "EPR and optical studies of LiNbO3 doped with Cu2+ ions", J. Mag. Res., vol. 34, pp. 459–466, 1979.
dc.relation.referencesen[12] E. Krätzig, R. Orlowski, "Light induced charge transport in doped LiNbO3 and LiTaO3", Ferroelectrics, vol. 27, pp. 241–244, 1980.
dc.relation.referencesen[13] A. Petrosyan, R. Khaghatryan, and E. Sharoyan, "Jahn – Teller Effect in EPR and Optical absorption spectra", Phys. Stat. Sol., vol. 122, pp. 725–734, 1984.
dc.relation.referencesen[14] A. Matkovskii, P. Potera, D. Sugak, Y et al., "Transient and stable color centers in pure and Cu-doped LiNbO3", Cryst. Res. Technol., vol. 38, pp. 388–393, 2003.
dc.relation.referencesen[15] P. Potera, S. Ubizskii, D. Sugak, and T. Lukasiewicz, "Colour centres in LiNbO3 : Fe and LiNbO3:Cu crystals irradiated by 12C ions", Radiation Measurements, vol. 42, pp. 232–235, 2007.
dc.relation.referencesen[16] D. L. Dexter, "Absorption of light by atoms in solids", Phys. Rev., vol. 101, pp. 48–55, 1956.
dc.relation.referencesen[17] U.Schlarb , K.Betzler, "A generalized Sellmeier equation for the refractive indices of lithium niobate", Ferroelectrics, vol. 156, pp. 99-104, 1994.
dc.relation.referencesen[18] J. Noda, T. Saku, and N. Uchida, "Fabrication of optical waveguiding layer in LiTaO3 by Cu diffusion", Appl. Phys. Lett., vol. 25, pp. 308–310, 1974.
dc.relation.referencesen[19] Y. S. Kuzminov, "Electro-optical and nonlinearoptical lithium niobate crystal", Moscow: Main Editorial Board of Physical and Mathematical Literature, 1986 (in Russian).
dc.relation.referencesen[20] D. P. Birnie III, " Analysius of diffusion in lithium niobate", Review. J. Mat. Sc., vol. 28, pp. 302–315, 1993.
dc.relation.referencesen[21] F. Caccavale, C. Sada, F. Segato et al., "Copperithium ion exchange in LiNbO3", J. Mater. Res., vol. 15, pp. 1120–1124, 2000.
dc.relation.referencesen[22] R. Sh. Malkovich, Mathematics of diffusion in semiprovodniks, Moscow, Nauka, 1999 (in Russian).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectlithium niobate
dc.subjectdiffusion
dc.subjectdrift
dc.subjectoptical spectroscopy
dc.subjectimpurity concentration
dc.titleOptical Study and Simulation of Diffusion of Copper Ions in the LiNbO3 Crystal
dc.title.alternativeОптичне дослідження та моделювання дифузії іонів міді в кристалі LINBO3
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v12n2_Sugak_D-Optical_Study_and_Simulation_40-45.pdf
Size:
363.64 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v12n2_Sugak_D-Optical_Study_and_Simulation_40-45__COVER.png
Size:
510.43 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.93 KB
Format:
Plain Text
Description: