Modeling of property evaluation of system-oriented measuring instruments

dc.citation.epage91
dc.citation.issue2
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage87
dc.contributor.affiliationState Enterprise “Ukrmetrteststandard”
dc.contributor.affiliationState Enterprise “Ukrmetrteststandard”
dc.contributor.authorVelychko, Oleh
dc.contributor.authorKursin, Sergii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-25T13:14:00Z
dc.date.created2025-06-20
dc.date.issued2025-06-20
dc.description.abstractThe main purpose of system-oriented measuring instruments (MI) is to ensure automated collection, processing, analysis and transmission of measurement data as part of complex information and measurement systems. Such MI are used in automated production systems, intelligent measuring systems, in the control of technological processes and in conducting scientific research, etc. The main properties of system-oriented MI are provided by a combination of modern hardware, powerful digital processing algorithms and integration into automated systems. They implement microprocessor systems with the implementation of self-diagnostic algorithms, built-in real-time controllers, etc. They have a modular architecture with the possibility of software configurability. In addition to the traditionalMI testing methods, system-orientedMI is subject to mandatory testing of its software. To build a mathematical model of a system-oriented MI, a block-hierarchical approach was applied for different hierarchical levels. The mathematical modeling conducted allowed us to develop a multiple model of the system of indicators of the MI properties. The proposed model allows for the study of the influence of the MI properties and their evaluation at all stages of the MI life cycle. It also allows taking into account specific parameters of the MI properties and the corresponding methods for their determination. The model allows taking into account the features of system-oriented MIs, in particular, indicators of the MI’s properties in terms of ensuring system functions and the corresponding methods for their determination. At each phase of the MI life cycle, both the appropriate verification for the sets of MI properties and their validation should be carried out. When implementing these procedures, it is necessary to use the established requirements of widely used international and regional metrology guidelines.
dc.format.extent87-91
dc.format.pages5
dc.identifier.citationVelychko O. Modeling of property evaluation of system-oriented measuring instruments / Oleh Velychko, Sergii Kursin // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 86. — No 2. — P. 87–91.
dc.identifier.citation2015Velychko O., Kursin S. Modeling of property evaluation of system-oriented measuring instruments // Measuring Equipment and Metrology, Lviv. 2025. Vol 86. No 2. P. 87–91.
dc.identifier.citationenAPAVelychko, O., & Kursin, S. (2025). Modeling of property evaluation of system-oriented measuring instruments. Measuring Equipment and Metrology, 86(2), 87-91. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOVelychko O., Kursin S. (2025) Modeling of property evaluation of system-oriented measuring instruments. Measuring Equipment and Metrology (Lviv), vol. 86, no 2, pp. 87-91.
dc.identifier.doihttps://doi.org/10.23939/istcmtm2025.02.087
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/121870
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 2 (86), 2025
dc.relation.ispartofMeasuring Equipment and Metrology, 2 (86), 2025
dc.relation.referencesen[1] ISO/IEC 17025, “General requirements for the competence of testing and calibration laboratories”, ISO/IEC, 2017.https://www.iso.org/ISO-IEC-17025-testing-andcalibration-laboratories.html
dc.relation.referencesen[2] OIML D 31, “General requirements for software controlled measuring instruments”, OIML, 2023. https://www.oiml.org/en/publications/documents/en/files/pdf_d/d031-e23.pdf
dc.relation.referencesen[3] WELMEC Guide 7.2, “Software Guide (Measuring Instruments Directive 2014/32/EU)”, WELMEC, 2023.https://www.welmec.org/welmec/documents/guides/7.2/2023/WELMEC_Guide_7.2_2023.pdf
dc.relation.referencesen[4] WELMEC Guide 7.6, “Software Risk Assessment”, WELMEC,2021. https://www.welmec.org/welmec/documents/ guides/7.6/2021/WELMEC_Guide_7.6_v2021.pdf
dc.relation.referencesen[5] Velychko O., Gordiyenko T., “Comparative research of quality indicators of measuring instruments: practical aspects”, Ukrainian Metrological Journal, 2021, iss. 3, pp. 24–30. https://doi.org/10.24027/2306-7039.3.2021.241620
dc.relation.referencesen[6] Velychko O., Hrabovskyi O., Gordiyenko T., Volkov S., “Modeling of a system of quality assessment indicators of measuring instruments”, Eastern-European Journal of Enterprise Technologies. Information and controlling systems,2021, No. 2/9(110), pp. 69–78. https://doi.org/10.15587/1729-4061.2021.228853
dc.relation.referencesen[7] Cain J.W., “MathematicalModels in the Sciences. Molecular Life Sciences”, Springer, New York, NY, 2014, 6 p. https://doi.org/10.1007/978-1-4614-6436-5_561-1
dc.relation.referencesen[8] Velychko O., Hrabovskyi O., “The Mathematical Model of the System Oriented Measuring Instrument”, Ukrainian Metrological Journal, 2021, issue 2, pp. 15–19. https://doi.org/10.24027/2306-7039.2.2021.236057
dc.relation.referencesen[9] Velychko O., Gordiyenko T., Hrabovskyi O., “Testing of measurement instrument software on the national level”, Eastern-European Journal of Enterprise Technologies. Information and controlling systems, 2018, 2/9 (92), pp. 13–20. https://doi.org/10.15587/1729-4061.2018.125994
dc.relation.referencesen[10] Velychko O., Gaman V., Gordiyenko T., Hrabovskyi O., “Testing of measurement instrument software with the purpose of conformity assessment”, Eastern-European Journal of Enterprise Technologies. Information and controlling systems,2019, 1/9 (97), pp. 19–26. https://doi.org/10.15587/1729-4061.2019.154352
dc.relation.referencesen[11] K. D. Sommer and B. R. L. Siebert, “Systematic approach to the modelling of measurements for uncertainty evaluation”, Metrologia, vol. 43, 2006, No. 4. https://doi.org/10.1088/0026-1394/43/4/S06
dc.relation.referencesen[12] Q. Yang and C. Butler, “An Object-Oriented Model of Measurement Systems”, IEEE Transactions on Instrumentation and Measurement, vol. 47, 1998, No. 1,pp. 104–107. https://doi.org/10.1109/19.728800
dc.relation.referencesen[13] Yan S., Yan X., “Joint monitoring of multiple quality-related indicators in nonlinear processes based on multi-task learning”, Measurement. vol. 165, 2020. 108158. https://doi.org/10.1016/j.measurement.2020.108158
dc.relation.referencesen[14] Ravber M., Mernik M., Crepinsek M., “The impact of Quality Indicators on the rating of Multi-objective Evolutionary Algorithms”, Applied Soft Computing, vol. 55,2017, pp. 265–275. https://doi.org/10.1016/j.asoc.2017.01.038
dc.relation.referencesen[15] S. Volkov, “Set-theoretic model of the information State of the industrial cyber-physical system”, Scientific Journal of the Ternopil National Technical University, 2018, No. 1 (89), pp. 132–138. https://journals.indexcopernicus.com/search/article?articleId=1655920
dc.relation.referencesen[16] JCGM 200, “International vocabulary of metrology – Basic and general concepts and associated terms (VIM)”, BIPM,2012. https://doi.org/10.59161/JCGM200-2012
dc.relation.referencesen[17] JCGM 100, “Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)”. BIPM, 2008. https://doi.org/10.59161/JCGM100-2008E
dc.relation.referencesen[18] ILAC-G24/OIML D10, “Guidelines for the Determination of Recalibration Intervals of Measuring Equipment Used in Testing Laboratories”, OIML, 2022. https://www.oiml.org/en/files/pdf_d/d010-e22.pdf
dc.relation.urihttps://www.iso.org/ISO-IEC-17025-testing-andcalibration-laboratories.html
dc.relation.urihttps://www.oiml.org/en/publications/documents/en/files/pdf_d/d031-e23.pdf
dc.relation.urihttps://www.welmec.org/welmec/documents/guides/7.2/2023/WELMEC_Guide_7.2_2023.pdf
dc.relation.urihttps://www.welmec.org/welmec/documents/
dc.relation.urihttps://doi.org/10.24027/2306-7039.3.2021.241620
dc.relation.urihttps://doi.org/10.15587/1729-4061.2021.228853
dc.relation.urihttps://doi.org/10.1007/978-1-4614-6436-5_561-1
dc.relation.urihttps://doi.org/10.24027/2306-7039.2.2021.236057
dc.relation.urihttps://doi.org/10.15587/1729-4061.2018.125994
dc.relation.urihttps://doi.org/10.15587/1729-4061.2019.154352
dc.relation.urihttps://doi.org/10.1088/0026-1394/43/4/S06
dc.relation.urihttps://doi.org/10.1109/19.728800
dc.relation.urihttps://doi.org/10.1016/j.measurement.2020.108158
dc.relation.urihttps://doi.org/10.1016/j.asoc.2017.01.038
dc.relation.urihttps://journals.indexcopernicus.com/search/article?articleId=1655920
dc.relation.urihttps://doi.org/10.59161/JCGM200-2012
dc.relation.urihttps://doi.org/10.59161/JCGM100-2008E
dc.relation.urihttps://www.oiml.org/en/files/pdf_d/d010-e22.pdf
dc.rights.holder© Національний університет „Львівська політехніка“, 2025
dc.subjectmodeling
dc.subjectmathematical model
dc.subjectproperty evaluation
dc.subjectmeasuring instrument
dc.subjectsystem-oriented tool
dc.titleModeling of property evaluation of system-oriented measuring instruments
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025v86n2_Velychko_O-Modeling_of_property_evaluation_87-91.pdf
Size:
135.12 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description: