A Lévy process approach coupled to the stochastic Leslie–Gower model
| dc.citation.epage | 188 | |
| dc.citation.issue | 11 | |
| dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
| dc.citation.spage | 178 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Університет Абдельмалека Ессааді | |
| dc.contributor.affiliation | Університет Мухаммеда V у Рабаті | |
| dc.contributor.affiliation | Abdelmalek Essaadi University | |
| dc.contributor.affiliation | Mohammed V University in Rabat | |
| dc.contributor.author | Бен Саїд, М. | |
| dc.contributor.author | Агутан, Н. | |
| dc.contributor.author | Азрар, Л. | |
| dc.contributor.author | Ben Said, M. | |
| dc.contributor.author | Aghoutane, N. | |
| dc.contributor.author | Azrar, L. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-10-20T07:44:11Z | |
| dc.date.created | 2024-02-24 | |
| dc.date.issued | 2024-02-24 | |
| dc.description.abstract | Стаття присвячена двовимірній стохастичній системі хижак-жертва з неперервним часом Леслі-Гроуера та стрибками Леві. Спершу доведено, що існує єдиний позитивний розв'язок системи з позитивним початковим значенням. Потім встановлено достатні умови для середньої стійкості та зникнення розглянутої системи. Розроблено числові алгоритми вищого порядку. Отримані результати показують, що стрибки Леві суттєво змінюють властивості популяційних систем. | |
| dc.description.abstract | This paper focuses on a two-dimensional Leslie–Grower continuous-time stochastic predator–prey system with Lévy jumps. Firstly, we prove that there exists a unique positive solution of the system with a positive initial value. Then, we establish sufficient conditions for the mean stability and extinction of the considered system. Numerical algorithms of higher order are elaborated. The obtained results show that Lévy jumps significantly change the properties of population systems. | |
| dc.format.extent | 178-188 | |
| dc.format.pages | 11 | |
| dc.identifier.citation | Ben Said M. A Lévy process approach coupled to the stochastic Leslie–Gower model / M. Ben Said, N. Aghoutane, L. Azrar // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 178–188. | |
| dc.identifier.citationen | Ben Said M. A Lévy process approach coupled to the stochastic Leslie–Gower model / M. Ben Said, N. Aghoutane, L. Azrar // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 178–188. | |
| dc.identifier.doi | 10.23939/mmc2024.01.178 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/113777 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Математичне моделювання та комп'ютинг, 11 (1), 2024 | |
| dc.relation.ispartof | Mathematical Modeling and Computing, 11 (1), 2024 | |
| dc.relation.references | [1] Liu M., Wang K. Survival analysis of a stochastic cooperation system in a polluted environment. Journal of Biological Systems. 19 (02), 183–204 (2011). | |
| dc.relation.references | [2] Lipster R. Sh. A strong law of large numbers for local martingales. Stochastics. 3 (1–4), 217–228 (1980). | |
| dc.relation.references | [3] Lotka A. J. The Elements of Physical Biology. Williams and Wilkins, Baltimore (1925). | |
| dc.relation.references | [4] Leslie P. H. Some further notes on the use of matrices in populationmathematic. Biometrica. 35 (3–4), 213–245 (1948). | |
| dc.relation.references | [5] Leslie P. H., Gower J. C. The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrica. 47 (3–4), 219–234 (1960). | |
| dc.relation.references | [6] Korobeinikov A. A Lyapunov function for Leslie–Gower predator–prey models. Applied Mathematics Letters. 14 (6), 697–699 (2001). | |
| dc.relation.references | [7] Lahrouz A., Ben Said M., Azrar L. Dynamical Behavior Analysis of the Leslie–Gower Model in Random Environment. Differential Equations and Dynamical systems. 30, 817–843 (2022). | |
| dc.relation.references | [8] Bao J., Mao X., Yin G., Yuan C. Competitive Lotka–Volterra population dynamics with jumps. Nonlinear Analysis: Theory, Methods & Applications. 74 (17), 6601–6616 (2011). | |
| dc.relation.references | [9] Applebaum D. L´evy Processes and Stochastics Calculus. Cambridge University Press (2009). | |
| dc.relation.references | [10] Kunita H. Itˆo’s stochastic calculus: Its surprising power for applications. Stochastic Processes and their Applications. 120 (5), 622–652 (2010). | |
| dc.relation.references | [11] Luo Q., Mao X. Stochastic population dynamics under regime switching. Journal of Mathematical Analysis and Applications. 334 (1), 69–84 (2007). | |
| dc.relation.references | [12] Ikeda N., Wantanabe S. Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam (1981). | |
| dc.relation.references | [13] Bao J., Mao X., Yin G., Yuan C. Competitive Lotka–Volterra population dynamics with jumps. Nonlinear Analysis: Theory, Methods & Applications. 74 (17), 6601–6616 (2011). | |
| dc.relation.references | [14] Luo Q., Mao X. Stochastic population dynamics under regime switching. Journal of Mathematical Analysis and Applications. 334 (1), 69–84 (2007). | |
| dc.relation.references | [15] Polasek W., Shaparova E. Numerical Solution of Stochastic Differential Equations with Jumps in Finance by Eckhard Platen, Nicola Bruti–Liberati. International Statistical Review. 81 (2), 307–335 (2013). | |
| dc.relation.referencesen | [1] Liu M., Wang K. Survival analysis of a stochastic cooperation system in a polluted environment. Journal of Biological Systems. 19 (02), 183–204 (2011). | |
| dc.relation.referencesen | [2] Lipster R. Sh. A strong law of large numbers for local martingales. Stochastics. 3 (1–4), 217–228 (1980). | |
| dc.relation.referencesen | [3] Lotka A. J. The Elements of Physical Biology. Williams and Wilkins, Baltimore (1925). | |
| dc.relation.referencesen | [4] Leslie P. H. Some further notes on the use of matrices in populationmathematic. Biometrica. 35 (3–4), 213–245 (1948). | |
| dc.relation.referencesen | [5] Leslie P. H., Gower J. C. The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrica. 47 (3–4), 219–234 (1960). | |
| dc.relation.referencesen | [6] Korobeinikov A. A Lyapunov function for Leslie–Gower predator–prey models. Applied Mathematics Letters. 14 (6), 697–699 (2001). | |
| dc.relation.referencesen | [7] Lahrouz A., Ben Said M., Azrar L. Dynamical Behavior Analysis of the Leslie–Gower Model in Random Environment. Differential Equations and Dynamical systems. 30, 817–843 (2022). | |
| dc.relation.referencesen | [8] Bao J., Mao X., Yin G., Yuan C. Competitive Lotka–Volterra population dynamics with jumps. Nonlinear Analysis: Theory, Methods & Applications. 74 (17), 6601–6616 (2011). | |
| dc.relation.referencesen | [9] Applebaum D. L´evy Processes and Stochastics Calculus. Cambridge University Press (2009). | |
| dc.relation.referencesen | [10] Kunita H. Itˆo’s stochastic calculus: Its surprising power for applications. Stochastic Processes and their Applications. 120 (5), 622–652 (2010). | |
| dc.relation.referencesen | [11] Luo Q., Mao X. Stochastic population dynamics under regime switching. Journal of Mathematical Analysis and Applications. 334 (1), 69–84 (2007). | |
| dc.relation.referencesen | [12] Ikeda N., Wantanabe S. Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam (1981). | |
| dc.relation.referencesen | [13] Bao J., Mao X., Yin G., Yuan C. Competitive Lotka–Volterra population dynamics with jumps. Nonlinear Analysis: Theory, Methods & Applications. 74 (17), 6601–6616 (2011). | |
| dc.relation.referencesen | [14] Luo Q., Mao X. Stochastic population dynamics under regime switching. Journal of Mathematical Analysis and Applications. 334 (1), 69–84 (2007). | |
| dc.relation.referencesen | [15] Polasek W., Shaparova E. Numerical Solution of Stochastic Differential Equations with Jumps in Finance by Eckhard Platen, Nicola Bruti–Liberati. International Statistical Review. 81 (2), 307–335 (2013). | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | Леслі–Гауер | |
| dc.subject | SDEs | |
| dc.subject | формула Іто | |
| dc.subject | загасання | |
| dc.subject | стохастична модель “хижак–жертва” | |
| dc.subject | метод Тейлора | |
| dc.subject | Leslie–Gower | |
| dc.subject | SDEs | |
| dc.subject | Itˆo’s formula | |
| dc.subject | extinction | |
| dc.subject | stochastic predator–prey model | |
| dc.subject | Taylor method | |
| dc.title | A Lévy process approach coupled to the stochastic Leslie–Gower model | |
| dc.title.alternative | Підхід на основі процесу Леві в поєднанні зі стохастичною моделлю Леслі–Гауера | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1