Improvement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking into Account Surface Forces of Heat Carriers

dc.citation.epage616
dc.citation.issue3
dc.citation.spage608
dc.contributor.affiliationStepan Gzytsky National University of Veterinary Medicine and Biotechnologies
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorBilonoga, Yuriy
dc.contributor.authorAtamanyuk, Volodymyr
dc.contributor.authorStybel, Volodymyr
dc.contributor.authorDutsyak, Ihor
dc.contributor.authorDrachuk, Uliana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:51:58Z
dc.date.available2024-02-12T08:51:58Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цьому дослідженні порівнювали класичний метод розрахунку коефіцієнтів тепловіддачі трубного простору кожухотрубного теплообмінника за класичними числами подібності Нуссельта, Рейнольдса і Прандтля з новим методом, який враховує коефіцієнти поверхневого натягу теплоносіїв, їхні перехідні, турбулентні в'язкість і теплопровідність, а також середню товщину ламінарного примежового шару (ЛПШ). Класичний метод показує кращу ефективність води як теплоносія в порівнянні з 45% водним розчином пропіленгліколю. Натомість нова методика розрахунку показує, що 45% водний розчин пропіленгліколю має вищі коефіцієнти тепловіддачі порівняно з водою в діапазоні температур (273…353) К. «Живий переріз» потоку рідинного теплоносія ми розділили на ЛПШ середньої товщини, де застосовується рівняння теплопровідності Фур'є, і на його турбулентну частину, де також застосовується рівняння теплопровідності з турбулентною теплопровідністю. Запропоновано нову формулу для розрахунку середньої товщини ЛПШ на основі радіуса «живого перерізу» потоку теплоносія, а також числа подібності Blturb, отриманого нами в попередніх роботах.
dc.description.abstractThis study compares the classic calculating method of the heat transfer coefficients of the shell-and-tube heat exchanger tubes using the classic Nusselt, Reynolds, and Prandtl similarity numbers with a new method that takes into account the coefficients of surface tension of heat carriers, their transitional, turbulent viscosity and thermal conductivity, as well as the average thickness of the laminar boundary layer (LBL). The classic method shows a better efficiency of water as a heat carrier com-pared to a 45% aqueous solution of propylene glycol. Instead, the new calculation method shows that a 45% aqueous solution of propylene glycol at the same Rey-nolds numbers has higher heat transfer coefficients com-pared to water in the temperature range of 273–353 K. We divided the "live cross-section" of the flow of the liquid coolant into a medium-thick LBL, where the Fourier equation of thermal conductivity is applied, and into its turbulent part, where the equation of thermal conductivity with turbulent thermal conductivity is also applied. A new formula (14) is proposed for calculating the average thickness of the LBL based on the radius of the "live cross-section" of the coolant flow, as well as the Blturb similarity number obtained by us in previous works. A new formula (15) is also proposed for calculating the heat transfer coefficient, which includes the transitional and turbulent thermal conductivity of the corresponding zones of the flow "live section", as well as the average thickness of the LBL.
dc.format.extent608-616
dc.format.pages9
dc.identifier.citationImprovement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking into Account Surface Forces of Heat Carriers / Yuriy Bilonoga, Volodymyr Atamanyuk, Volodymyr Stybel, Ihor Dutsyak, Uliana Drachuk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 608–616.
dc.identifier.citationenImprovement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking into Account Surface Forces of Heat Carriers / Yuriy Bilonoga, Volodymyr Atamanyuk, Volodymyr Stybel, Ihor Dutsyak, Uliana Drachuk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 608–616.
dc.identifier.doidoi.org/10.23939/chcht17.03.608
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61266
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Schlichting, H.; Gersten, K. Boundary Layer Theory; Springer, 2000.
dc.relation.references[2] Bilonoga, Y.; Pokhmurs'kii, V. A Connection between the Fretting-Fatigue Endurance of Steels and the Surface Energy of the Abradant Metal. Soviet Materials Science 1991, 26, 629-633. https://doi.org/10.1007/BF00723647
dc.relation.references[3] Bіlonoga, Y.; Maksysko, O. Modeling the Interaction of Coolant Flows at the Liquid-Solid Boundary with Allowance for the Laminar Boundary Layer. Int. J. Heat Technol. 2017, 35, 678-682. https://doi.org/10.18280/ijht.350329
dc.relation.references[4] Bіlonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. Substantiation of a New Calculation and Selection Algorithm of Optimal Heat Exchangers with Nanofluid Heat Carriers Taking into Account Surface Forces. Int. J. Heat Technol. 2021, 39, 1697-1712 https://doi.org/10.18280/ijht.390602
dc.relation.references[5] Liao, S.M.; Zhao, T.S. Measurements of Heat Transfer Coeffi-cients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels. Int. J. Heat Mass Transf. 2002, 124, 413-420. https://doi.org/10.1115/1.1423906
dc.relation.references[6] Raei, B.; Shahraki, F.; Jamialahmadi, M.; Peyghambarzadeh, S.M. Different methods to calculate heat transfer coefficient in a Double Tube Heat Exchanger: A Comparative Study. Exp. Heat Transf. 2018, 31, 32-46. https://doi.org/10.1080/08916152.2017.1341963
dc.relation.references[7] Naphon, P.; Wongwises, S. An Experimental Study on the in-Tube Convective Heat Transfer Coefficients in a Spiral Coil Heat Exchanger. Int. Commun. Heat Mass Transf. 2002, 29, 797-809. https://doi.org/10.1016/S0735-1933(02)00370-6
dc.relation.references[8] Mehrabian, M.A.; Mansouri, S.H.; Sheikhzadeh, G.A. The Overall Heat Transfer Characteristics of a Double Pipe Heat Ex-changer: Comparison of Experimental Data with Predictions of Standard Correlations. Int. J. of Eng., Trans. B: Applications 2002, 15, 395-406.
dc.relation.references[9] Bahman, Z. Dimensional analysis and self-similarity methods for engineers and scientists; Springer, 2015.
dc.relation.references[10] Bіlonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. A New Universal Numerical Equation and a New Method for Calculating Heat-Exchange Equipment using Nanofluids. Int. J. Heat Technol. 2020, 38, 151-164. https://doi.org/10.18280/ijht.380117
dc.relation.references[11] Devette, M.М. Heat Transfer Analysis of Nanofluids and Phase Change Materials. Sc.D. Thesis, Universitat Politècnica de Catalunya (UPC), 2014.
dc.relation.references[12] Roszko, A.; Fornalik-Wajs, E. Selected Aspects of the Nanof-luids Utilization as the Heat Transfer Carriers. E3S Web of Confe-rences 2019, 108, 01024. https://doi.org/10.1051/e3sconf/201910801024
dc.relation.references[13] Bіlonoga, Y.; Maksysko, O. Specific Features of Heat Ex-changers Calculation Considering the Laminar Boundary Layer, the Transitional and Turbulent Thermal Conductivity of Heat Carriers. Int. J. Heat Technol. 2018, 36, 11-20. https://doi.org/10.18280/ijht.360102
dc.relation.references[14] Bіlonoga, Y.; Maksysko, O. The Laws of Distribution of the Values of Turbulent Thermo-physical Characteristics in the Volume of the Flows of Heat Carriers Taking into Account the Surface Forces. Int. J. Heat Technol. 2019, 36, 1-10. https://doi.org/10.18280/ijht.370101
dc.relation.references[15] Owen, M.S.; Kennedy, H.E.; American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2009 ASHRAE handbook : fundamentals; American Society of Heating, Refrigera-tion, and Air-Conditioning Engineers: Atlanta, GA, USA, 2009.
dc.relation.references[16] Hamid, K.A.; Azmi, W.H.; Mamat, R.; Usri, N.A.; Najafi G. Effect of Temperature on Heat Transfer Coefficient of Titanium Dioxide in Ethylene Glycol-Based Nanofluid. J. Mech. Eng. Sci. 2015, 8, 1367-1375. https://doi.org/10.15282/jmes.8.2015.11.0133
dc.relation.references[17] Atamanyuk, V.; Huzova, I.; Gnativ, Z. Intensification of Dry-ing Process During Activated Carbon Regeneration. Chem. Chem. Technol. 2018, 12, 263-271. https://doi.org/10.23939/chcht12.02.263
dc.relation.referencesen[1] Schlichting, H.; Gersten, K. Boundary Layer Theory; Springer, 2000.
dc.relation.referencesen[2] Bilonoga, Y.; Pokhmurs'kii, V. A Connection between the Fretting-Fatigue Endurance of Steels and the Surface Energy of the Abradant Metal. Soviet Materials Science 1991, 26, 629-633. https://doi.org/10.1007/BF00723647
dc.relation.referencesen[3] Bilonoga, Y.; Maksysko, O. Modeling the Interaction of Coolant Flows at the Liquid-Solid Boundary with Allowance for the Laminar Boundary Layer. Int. J. Heat Technol. 2017, 35, 678-682. https://doi.org/10.18280/ijht.350329
dc.relation.referencesen[4] Bilonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. Substantiation of a New Calculation and Selection Algorithm of Optimal Heat Exchangers with Nanofluid Heat Carriers Taking into Account Surface Forces. Int. J. Heat Technol. 2021, 39, 1697-1712 https://doi.org/10.18280/ijht.390602
dc.relation.referencesen[5] Liao, S.M.; Zhao, T.S. Measurements of Heat Transfer Coeffi-cients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels. Int. J. Heat Mass Transf. 2002, 124, 413-420. https://doi.org/10.1115/1.1423906
dc.relation.referencesen[6] Raei, B.; Shahraki, F.; Jamialahmadi, M.; Peyghambarzadeh, S.M. Different methods to calculate heat transfer coefficient in a Double Tube Heat Exchanger: A Comparative Study. Exp. Heat Transf. 2018, 31, 32-46. https://doi.org/10.1080/08916152.2017.1341963
dc.relation.referencesen[7] Naphon, P.; Wongwises, S. An Experimental Study on the in-Tube Convective Heat Transfer Coefficients in a Spiral Coil Heat Exchanger. Int. Commun. Heat Mass Transf. 2002, 29, 797-809. https://doi.org/10.1016/S0735-1933(02)00370-6
dc.relation.referencesen[8] Mehrabian, M.A.; Mansouri, S.H.; Sheikhzadeh, G.A. The Overall Heat Transfer Characteristics of a Double Pipe Heat Ex-changer: Comparison of Experimental Data with Predictions of Standard Correlations. Int. J. of Eng., Trans. B: Applications 2002, 15, 395-406.
dc.relation.referencesen[9] Bahman, Z. Dimensional analysis and self-similarity methods for engineers and scientists; Springer, 2015.
dc.relation.referencesen[10] Bilonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. A New Universal Numerical Equation and a New Method for Calculating Heat-Exchange Equipment using Nanofluids. Int. J. Heat Technol. 2020, 38, 151-164. https://doi.org/10.18280/ijht.380117
dc.relation.referencesen[11] Devette, M.M. Heat Transfer Analysis of Nanofluids and Phase Change Materials. Sc.D. Thesis, Universitat Politècnica de Catalunya (UPC), 2014.
dc.relation.referencesen[12] Roszko, A.; Fornalik-Wajs, E. Selected Aspects of the Nanof-luids Utilization as the Heat Transfer Carriers. E3S Web of Confe-rences 2019, 108, 01024. https://doi.org/10.1051/e3sconf/201910801024
dc.relation.referencesen[13] Bilonoga, Y.; Maksysko, O. Specific Features of Heat Ex-changers Calculation Considering the Laminar Boundary Layer, the Transitional and Turbulent Thermal Conductivity of Heat Carriers. Int. J. Heat Technol. 2018, 36, 11-20. https://doi.org/10.18280/ijht.360102
dc.relation.referencesen[14] Bilonoga, Y.; Maksysko, O. The Laws of Distribution of the Values of Turbulent Thermo-physical Characteristics in the Volume of the Flows of Heat Carriers Taking into Account the Surface Forces. Int. J. Heat Technol. 2019, 36, 1-10. https://doi.org/10.18280/ijht.370101
dc.relation.referencesen[15] Owen, M.S.; Kennedy, H.E.; American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2009 ASHRAE handbook : fundamentals; American Society of Heating, Refrigera-tion, and Air-Conditioning Engineers: Atlanta, GA, USA, 2009.
dc.relation.referencesen[16] Hamid, K.A.; Azmi, W.H.; Mamat, R.; Usri, N.A.; Najafi G. Effect of Temperature on Heat Transfer Coefficient of Titanium Dioxide in Ethylene Glycol-Based Nanofluid. J. Mech. Eng. Sci. 2015, 8, 1367-1375. https://doi.org/10.15282/jmes.8.2015.11.0133
dc.relation.referencesen[17] Atamanyuk, V.; Huzova, I.; Gnativ, Z. Intensification of Dry-ing Process During Activated Carbon Regeneration. Chem. Chem. Technol. 2018, 12, 263-271. https://doi.org/10.23939/chcht12.02.263
dc.relation.urihttps://doi.org/10.1007/BF00723647
dc.relation.urihttps://doi.org/10.18280/ijht.350329
dc.relation.urihttps://doi.org/10.18280/ijht.390602
dc.relation.urihttps://doi.org/10.1115/1.1423906
dc.relation.urihttps://doi.org/10.1080/08916152.2017.1341963
dc.relation.urihttps://doi.org/10.1016/S0735-1933(02)00370-6
dc.relation.urihttps://doi.org/10.18280/ijht.380117
dc.relation.urihttps://doi.org/10.1051/e3sconf/201910801024
dc.relation.urihttps://doi.org/10.18280/ijht.360102
dc.relation.urihttps://doi.org/10.18280/ijht.370101
dc.relation.urihttps://doi.org/10.15282/jmes.8.2015.11.0133
dc.relation.urihttps://doi.org/10.23939/chcht12.02.263
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Bilonoga Yu., Atamanyuk V., Stybel V., Dutsyak I., Drachuk U., 2023
dc.subjectперехідна
dc.subjectтурбулентна в’язкість і теплопровідність
dc.subjectкожухотрубний теплообмінник
dc.subjectкоефіцієнт тепловіддачі
dc.subjectсередня товщина ЛПШ
dc.subjectкоефіцієнт поверхневого натягу теплоносія
dc.subjecttransitional
dc.subjectturbulent viscosity and thermal conductivity
dc.subjectshell-and-tube heat exchanger
dc.subjectheat transfer coefficient
dc.subjectaverage thickness of the LBL
dc.subjectsurface tension coefficient of the heat carrier
dc.titleImprovement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking into Account Surface Forces of Heat Carriers
dc.title.alternativeОсобливості розрахунку коефіцієнтів теплопередачі за використання гліколів з урахуванням поверхневих сил теплоносія
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n3_Bilonoga_Y-Improvement_of_the_Method_608-616.pdf
Size:
708.63 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n3_Bilonoga_Y-Improvement_of_the_Method_608-616__COVER.png
Size:
542.47 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: