Improvement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking into Account Surface Forces of Heat Carriers
dc.citation.epage | 616 | |
dc.citation.issue | 3 | |
dc.citation.spage | 608 | |
dc.contributor.affiliation | Stepan Gzytsky National University of Veterinary Medicine and Biotechnologies | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Bilonoga, Yuriy | |
dc.contributor.author | Atamanyuk, Volodymyr | |
dc.contributor.author | Stybel, Volodymyr | |
dc.contributor.author | Dutsyak, Ihor | |
dc.contributor.author | Drachuk, Uliana | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:51:58Z | |
dc.date.available | 2024-02-12T08:51:58Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У цьому дослідженні порівнювали класичний метод розрахунку коефіцієнтів тепловіддачі трубного простору кожухотрубного теплообмінника за класичними числами подібності Нуссельта, Рейнольдса і Прандтля з новим методом, який враховує коефіцієнти поверхневого натягу теплоносіїв, їхні перехідні, турбулентні в'язкість і теплопровідність, а також середню товщину ламінарного примежового шару (ЛПШ). Класичний метод показує кращу ефективність води як теплоносія в порівнянні з 45% водним розчином пропіленгліколю. Натомість нова методика розрахунку показує, що 45% водний розчин пропіленгліколю має вищі коефіцієнти тепловіддачі порівняно з водою в діапазоні температур (273…353) К. «Живий переріз» потоку рідинного теплоносія ми розділили на ЛПШ середньої товщини, де застосовується рівняння теплопровідності Фур'є, і на його турбулентну частину, де також застосовується рівняння теплопровідності з турбулентною теплопровідністю. Запропоновано нову формулу для розрахунку середньої товщини ЛПШ на основі радіуса «живого перерізу» потоку теплоносія, а також числа подібності Blturb, отриманого нами в попередніх роботах. | |
dc.description.abstract | This study compares the classic calculating method of the heat transfer coefficients of the shell-and-tube heat exchanger tubes using the classic Nusselt, Reynolds, and Prandtl similarity numbers with a new method that takes into account the coefficients of surface tension of heat carriers, their transitional, turbulent viscosity and thermal conductivity, as well as the average thickness of the laminar boundary layer (LBL). The classic method shows a better efficiency of water as a heat carrier com-pared to a 45% aqueous solution of propylene glycol. Instead, the new calculation method shows that a 45% aqueous solution of propylene glycol at the same Rey-nolds numbers has higher heat transfer coefficients com-pared to water in the temperature range of 273–353 K. We divided the "live cross-section" of the flow of the liquid coolant into a medium-thick LBL, where the Fourier equation of thermal conductivity is applied, and into its turbulent part, where the equation of thermal conductivity with turbulent thermal conductivity is also applied. A new formula (14) is proposed for calculating the average thickness of the LBL based on the radius of the "live cross-section" of the coolant flow, as well as the Blturb similarity number obtained by us in previous works. A new formula (15) is also proposed for calculating the heat transfer coefficient, which includes the transitional and turbulent thermal conductivity of the corresponding zones of the flow "live section", as well as the average thickness of the LBL. | |
dc.format.extent | 608-616 | |
dc.format.pages | 9 | |
dc.identifier.citation | Improvement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking into Account Surface Forces of Heat Carriers / Yuriy Bilonoga, Volodymyr Atamanyuk, Volodymyr Stybel, Ihor Dutsyak, Uliana Drachuk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 608–616. | |
dc.identifier.citationen | Improvement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking into Account Surface Forces of Heat Carriers / Yuriy Bilonoga, Volodymyr Atamanyuk, Volodymyr Stybel, Ihor Dutsyak, Uliana Drachuk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 608–616. | |
dc.identifier.doi | doi.org/10.23939/chcht17.03.608 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61266 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (17), 2023 | |
dc.relation.references | [1] Schlichting, H.; Gersten, K. Boundary Layer Theory; Springer, 2000. | |
dc.relation.references | [2] Bilonoga, Y.; Pokhmurs'kii, V. A Connection between the Fretting-Fatigue Endurance of Steels and the Surface Energy of the Abradant Metal. Soviet Materials Science 1991, 26, 629-633. https://doi.org/10.1007/BF00723647 | |
dc.relation.references | [3] Bіlonoga, Y.; Maksysko, O. Modeling the Interaction of Coolant Flows at the Liquid-Solid Boundary with Allowance for the Laminar Boundary Layer. Int. J. Heat Technol. 2017, 35, 678-682. https://doi.org/10.18280/ijht.350329 | |
dc.relation.references | [4] Bіlonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. Substantiation of a New Calculation and Selection Algorithm of Optimal Heat Exchangers with Nanofluid Heat Carriers Taking into Account Surface Forces. Int. J. Heat Technol. 2021, 39, 1697-1712 https://doi.org/10.18280/ijht.390602 | |
dc.relation.references | [5] Liao, S.M.; Zhao, T.S. Measurements of Heat Transfer Coeffi-cients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels. Int. J. Heat Mass Transf. 2002, 124, 413-420. https://doi.org/10.1115/1.1423906 | |
dc.relation.references | [6] Raei, B.; Shahraki, F.; Jamialahmadi, M.; Peyghambarzadeh, S.M. Different methods to calculate heat transfer coefficient in a Double Tube Heat Exchanger: A Comparative Study. Exp. Heat Transf. 2018, 31, 32-46. https://doi.org/10.1080/08916152.2017.1341963 | |
dc.relation.references | [7] Naphon, P.; Wongwises, S. An Experimental Study on the in-Tube Convective Heat Transfer Coefficients in a Spiral Coil Heat Exchanger. Int. Commun. Heat Mass Transf. 2002, 29, 797-809. https://doi.org/10.1016/S0735-1933(02)00370-6 | |
dc.relation.references | [8] Mehrabian, M.A.; Mansouri, S.H.; Sheikhzadeh, G.A. The Overall Heat Transfer Characteristics of a Double Pipe Heat Ex-changer: Comparison of Experimental Data with Predictions of Standard Correlations. Int. J. of Eng., Trans. B: Applications 2002, 15, 395-406. | |
dc.relation.references | [9] Bahman, Z. Dimensional analysis and self-similarity methods for engineers and scientists; Springer, 2015. | |
dc.relation.references | [10] Bіlonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. A New Universal Numerical Equation and a New Method for Calculating Heat-Exchange Equipment using Nanofluids. Int. J. Heat Technol. 2020, 38, 151-164. https://doi.org/10.18280/ijht.380117 | |
dc.relation.references | [11] Devette, M.М. Heat Transfer Analysis of Nanofluids and Phase Change Materials. Sc.D. Thesis, Universitat Politècnica de Catalunya (UPC), 2014. | |
dc.relation.references | [12] Roszko, A.; Fornalik-Wajs, E. Selected Aspects of the Nanof-luids Utilization as the Heat Transfer Carriers. E3S Web of Confe-rences 2019, 108, 01024. https://doi.org/10.1051/e3sconf/201910801024 | |
dc.relation.references | [13] Bіlonoga, Y.; Maksysko, O. Specific Features of Heat Ex-changers Calculation Considering the Laminar Boundary Layer, the Transitional and Turbulent Thermal Conductivity of Heat Carriers. Int. J. Heat Technol. 2018, 36, 11-20. https://doi.org/10.18280/ijht.360102 | |
dc.relation.references | [14] Bіlonoga, Y.; Maksysko, O. The Laws of Distribution of the Values of Turbulent Thermo-physical Characteristics in the Volume of the Flows of Heat Carriers Taking into Account the Surface Forces. Int. J. Heat Technol. 2019, 36, 1-10. https://doi.org/10.18280/ijht.370101 | |
dc.relation.references | [15] Owen, M.S.; Kennedy, H.E.; American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2009 ASHRAE handbook : fundamentals; American Society of Heating, Refrigera-tion, and Air-Conditioning Engineers: Atlanta, GA, USA, 2009. | |
dc.relation.references | [16] Hamid, K.A.; Azmi, W.H.; Mamat, R.; Usri, N.A.; Najafi G. Effect of Temperature on Heat Transfer Coefficient of Titanium Dioxide in Ethylene Glycol-Based Nanofluid. J. Mech. Eng. Sci. 2015, 8, 1367-1375. https://doi.org/10.15282/jmes.8.2015.11.0133 | |
dc.relation.references | [17] Atamanyuk, V.; Huzova, I.; Gnativ, Z. Intensification of Dry-ing Process During Activated Carbon Regeneration. Chem. Chem. Technol. 2018, 12, 263-271. https://doi.org/10.23939/chcht12.02.263 | |
dc.relation.referencesen | [1] Schlichting, H.; Gersten, K. Boundary Layer Theory; Springer, 2000. | |
dc.relation.referencesen | [2] Bilonoga, Y.; Pokhmurs'kii, V. A Connection between the Fretting-Fatigue Endurance of Steels and the Surface Energy of the Abradant Metal. Soviet Materials Science 1991, 26, 629-633. https://doi.org/10.1007/BF00723647 | |
dc.relation.referencesen | [3] Bilonoga, Y.; Maksysko, O. Modeling the Interaction of Coolant Flows at the Liquid-Solid Boundary with Allowance for the Laminar Boundary Layer. Int. J. Heat Technol. 2017, 35, 678-682. https://doi.org/10.18280/ijht.350329 | |
dc.relation.referencesen | [4] Bilonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. Substantiation of a New Calculation and Selection Algorithm of Optimal Heat Exchangers with Nanofluid Heat Carriers Taking into Account Surface Forces. Int. J. Heat Technol. 2021, 39, 1697-1712 https://doi.org/10.18280/ijht.390602 | |
dc.relation.referencesen | [5] Liao, S.M.; Zhao, T.S. Measurements of Heat Transfer Coeffi-cients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels. Int. J. Heat Mass Transf. 2002, 124, 413-420. https://doi.org/10.1115/1.1423906 | |
dc.relation.referencesen | [6] Raei, B.; Shahraki, F.; Jamialahmadi, M.; Peyghambarzadeh, S.M. Different methods to calculate heat transfer coefficient in a Double Tube Heat Exchanger: A Comparative Study. Exp. Heat Transf. 2018, 31, 32-46. https://doi.org/10.1080/08916152.2017.1341963 | |
dc.relation.referencesen | [7] Naphon, P.; Wongwises, S. An Experimental Study on the in-Tube Convective Heat Transfer Coefficients in a Spiral Coil Heat Exchanger. Int. Commun. Heat Mass Transf. 2002, 29, 797-809. https://doi.org/10.1016/S0735-1933(02)00370-6 | |
dc.relation.referencesen | [8] Mehrabian, M.A.; Mansouri, S.H.; Sheikhzadeh, G.A. The Overall Heat Transfer Characteristics of a Double Pipe Heat Ex-changer: Comparison of Experimental Data with Predictions of Standard Correlations. Int. J. of Eng., Trans. B: Applications 2002, 15, 395-406. | |
dc.relation.referencesen | [9] Bahman, Z. Dimensional analysis and self-similarity methods for engineers and scientists; Springer, 2015. | |
dc.relation.referencesen | [10] Bilonoga, Y.; Stybel, V.; Maksysko, O.; Drachuk, U. A New Universal Numerical Equation and a New Method for Calculating Heat-Exchange Equipment using Nanofluids. Int. J. Heat Technol. 2020, 38, 151-164. https://doi.org/10.18280/ijht.380117 | |
dc.relation.referencesen | [11] Devette, M.M. Heat Transfer Analysis of Nanofluids and Phase Change Materials. Sc.D. Thesis, Universitat Politècnica de Catalunya (UPC), 2014. | |
dc.relation.referencesen | [12] Roszko, A.; Fornalik-Wajs, E. Selected Aspects of the Nanof-luids Utilization as the Heat Transfer Carriers. E3S Web of Confe-rences 2019, 108, 01024. https://doi.org/10.1051/e3sconf/201910801024 | |
dc.relation.referencesen | [13] Bilonoga, Y.; Maksysko, O. Specific Features of Heat Ex-changers Calculation Considering the Laminar Boundary Layer, the Transitional and Turbulent Thermal Conductivity of Heat Carriers. Int. J. Heat Technol. 2018, 36, 11-20. https://doi.org/10.18280/ijht.360102 | |
dc.relation.referencesen | [14] Bilonoga, Y.; Maksysko, O. The Laws of Distribution of the Values of Turbulent Thermo-physical Characteristics in the Volume of the Flows of Heat Carriers Taking into Account the Surface Forces. Int. J. Heat Technol. 2019, 36, 1-10. https://doi.org/10.18280/ijht.370101 | |
dc.relation.referencesen | [15] Owen, M.S.; Kennedy, H.E.; American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2009 ASHRAE handbook : fundamentals; American Society of Heating, Refrigera-tion, and Air-Conditioning Engineers: Atlanta, GA, USA, 2009. | |
dc.relation.referencesen | [16] Hamid, K.A.; Azmi, W.H.; Mamat, R.; Usri, N.A.; Najafi G. Effect of Temperature on Heat Transfer Coefficient of Titanium Dioxide in Ethylene Glycol-Based Nanofluid. J. Mech. Eng. Sci. 2015, 8, 1367-1375. https://doi.org/10.15282/jmes.8.2015.11.0133 | |
dc.relation.referencesen | [17] Atamanyuk, V.; Huzova, I.; Gnativ, Z. Intensification of Dry-ing Process During Activated Carbon Regeneration. Chem. Chem. Technol. 2018, 12, 263-271. https://doi.org/10.23939/chcht12.02.263 | |
dc.relation.uri | https://doi.org/10.1007/BF00723647 | |
dc.relation.uri | https://doi.org/10.18280/ijht.350329 | |
dc.relation.uri | https://doi.org/10.18280/ijht.390602 | |
dc.relation.uri | https://doi.org/10.1115/1.1423906 | |
dc.relation.uri | https://doi.org/10.1080/08916152.2017.1341963 | |
dc.relation.uri | https://doi.org/10.1016/S0735-1933(02)00370-6 | |
dc.relation.uri | https://doi.org/10.18280/ijht.380117 | |
dc.relation.uri | https://doi.org/10.1051/e3sconf/201910801024 | |
dc.relation.uri | https://doi.org/10.18280/ijht.360102 | |
dc.relation.uri | https://doi.org/10.18280/ijht.370101 | |
dc.relation.uri | https://doi.org/10.15282/jmes.8.2015.11.0133 | |
dc.relation.uri | https://doi.org/10.23939/chcht12.02.263 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Bilonoga Yu., Atamanyuk V., Stybel V., Dutsyak I., Drachuk U., 2023 | |
dc.subject | перехідна | |
dc.subject | турбулентна в’язкість і теплопровідність | |
dc.subject | кожухотрубний теплообмінник | |
dc.subject | коефіцієнт тепловіддачі | |
dc.subject | середня товщина ЛПШ | |
dc.subject | коефіцієнт поверхневого натягу теплоносія | |
dc.subject | transitional | |
dc.subject | turbulent viscosity and thermal conductivity | |
dc.subject | shell-and-tube heat exchanger | |
dc.subject | heat transfer coefficient | |
dc.subject | average thickness of the LBL | |
dc.subject | surface tension coefficient of the heat carrier | |
dc.title | Improvement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking into Account Surface Forces of Heat Carriers | |
dc.title.alternative | Особливості розрахунку коефіцієнтів теплопередачі за використання гліколів з урахуванням поверхневих сил теплоносія | |
dc.type | Article |
Files
License bundle
1 - 1 of 1