A Computational Model for the Prediction of Net Power in Proton Exchange Membrane Fuel Cells
dc.citation.epage | 313 | |
dc.citation.issue | 2 | |
dc.citation.spage | 303 | |
dc.contributor.affiliation | Amirkabir University of Technology (Tehran Polytechnic) | |
dc.contributor.author | Norouzi, Nima | |
dc.contributor.author | Talebi, Saeed | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T11:13:00Z | |
dc.date.available | 2024-01-22T11:13:00Z | |
dc.date.created | 2022-03-16 | |
dc.date.issued | 2022-03-16 | |
dc.description.abstract | Показано збільшення електричної енергії внаслідок збагачення киснем. З метою максималізації кількості кисню у всіх областях каталітичного шару (CL), для питомої ефективної площі мембрани (MEA) змодельовано поле потоку (FF). За розробленою моделлю 3DCFD спрогнозована швидкість приросту електричної енергії за підвищення кількості кисню в CL на 1 %. Змодельовано зволожену повітряну суміш на паливному елементі протонообмінної мембрани (PEMFC). Показано, що аналітичні та розрахунковий гідродинамічний метод дають подібні результати, а похибка моделі CFD становить приблизно 1,9 % порівняно з аналітичним методом. | |
dc.description.abstract | This paper aims to quantify the rate of improvement of electrical energy due to oxygen enrichment. For a specific membrane effective area (MEA), the flow field (FF) designer is always ready to design the FF to maximize the amount of oxygen in all areas of the catalyst layer (CL). Using the guidelines in this paper, FF designers, without cumulative computational fluid dynamics (CFD) calculations, can predict the rate of electrical energy gain due to 1 % enrichment in the amount of oxygen present in the CL. A 3D CFD tool was used to answer this question. These three constant steps of the reaction product simulate the humidified air mixture at the proton exchange membrane fuel cell (PEMFC). Results show that the analytic methods and the dynamic computational method introduced in this paper are similar in results, and the error of the CFD model is about 1.9 % compared to the analytic method. | |
dc.format.extent | 303-313 | |
dc.format.pages | 11 | |
dc.identifier.citation | Norouzi N. A Computational Model for the Prediction of Net Power in Proton Exchange Membrane Fuel Cells / Nima Norouzi, Saeed Talebi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 303–313. | |
dc.identifier.citationen | Norouzi N. A Computational Model for the Prediction of Net Power in Proton Exchange Membrane Fuel Cells / Nima Norouzi, Saeed Talebi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 303–313. | |
dc.identifier.doi | doi.org/10.23939/chcht16.02.303 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60971 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (16), 2022 | |
dc.relation.references | [1] Wang, X.-D.; Duan, Y.-Y.; Yan, W.-M.; Peng, X.-F. Local Transport Phenomena and Cell Performance of PEM Fuel Cells with Various Serpentine Flow Field Designs.J. Power Sources2008, 175, 397-407.https://doi.org/10.1016/j.jpowsour.2007.09.009 | |
dc.relation.references | [2] Ramesh, P.;Duttagupta, S.P. Effect of Channel Dimensions on Micro PEM Fuel Cell Performance Using 3D Modeling.Int. J. Renew. Energ. Res.2013, 3, 353-358. | |
dc.relation.references | [3] Choghadi, H.;Kermani, M. 10th Int. Conf. on Sustainable Energy Technologies SET2011, September4-7, 2011, Turkey, Istanbul. | |
dc.relation.references | [4] Bernardi, D.M.;Verbrugge, M.W. A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell.J. Electrochem. 1992, 139, 2477. https://doi.org/10.1149/1.2221251 | |
dc.relation.references | [5] Khakbaz-Baboli, M.;Kermani, M.J. A Two-Dimensional, Transient, Compressible Isothermal and Two-Phase Model for the Air-Side Electrode of PEM Fuel Cells.J. Electrochem. Acta2008, 53, 7644-7654. https://doi.org/10.1016/j.electacta.2008.04.017 | |
dc.relation.references | [6] Okada, O.; Yokoyama, K.Development of Polymer Electrolyte Fuel Cell Cogeneration Systems for Residential Applications.Fuel Cells2001, 1, 72-77. https://doi.org/10.1002/1615-6854(200105)1:1%3C72::AID-FUCE72%3E3.0.CO;2-P | |
dc.relation.references | [7] Thoennes, M.;Busse, A.; Eckstein, L.Forecast of Performance Parameters of Automotive Fuel Cell Systems – Delphi Study Results.Fuel Cells2014, 14, 781-791. https://doi.org/10.1002/fuce.201400035 | |
dc.relation.references | [8] Wieser, C.Novel Polymer Electrolyte Membranes for Automotive Applications – Requirements and Benefits.Fuel Cells2004, 4, 245-250. https://doi.org/10.1002/fuce.200400038 | |
dc.relation.references | [9] Britz, P.;Zartenar, N.PEM – Fuel Cell System for Residential Applications. Fuel Cells2004, 4, 269-275. https://doi.org/10.1002/fuce.200400043 | |
dc.relation.references | [10] Kakati, B.K.; Mohan, V.Development of Low-CostAdvanced Composite Bipolar Plate for Proton Exchange Membrane Fuel Cell.Fuel Cells2008,8, 45-51. https://doi.org/10.1002/fuce.200700008 | |
dc.relation.references | [11] Yi, P.Y.; Peng, L.F.; Lai, X.M.; Liu, D.A.; Ni, J. A Novel Design of Wave-Like PEMFC Stack with Undulate MEAs and Perforated Bipolar Plates.Fuel Cells2010,10, 111-117. https://doi.org/10.1002/fuce.200900031 | |
dc.relation.references | [12] Shamardina, O.;Kulikovsky, A.A.;Chertovich, A.V.;Khokhlov, A.R. A Model for High-Temperature PEM Fuel Cell: The Roleof Transport in theCathodeCatalyst Layer.Fuel Cells2012,12, 577-582. https://doi.org/10.1002/fuce.201100144 | |
dc.relation.references | [13] Ghanbarian,A.; Kermani, M.J.;Scholta, J.Generalizationof a CFD Model toPredictthe Net Power in PEM Fuel Cells.Iran. J. Hydrogen Fuel Cell2019, 6, 23-37. http://doi.org/10.22104/ijhfc.2019.3176.1179 | |
dc.relation.references | [14] Choi, K.-S.; Kim, B.-G.; Park, K.; Kim, H.M. Current Advances in Polymer Electrolyte Fuel Cells Based on the Promotional Role of Under-rib Convection.Fuel Cells2012,12, 908-938. https://doi.org/10.1002/fuce.201200035 | |
dc.relation.references | [15] Chapter 1.In Fluid Mechanics(Fifth Edition);Kundu, P.; Cohen, I.; Dowling, D., Eds.; Academic Press, 2012, pp 1-37. https://doi.org/10.1016/B978-0-12-382100-3.10001-0. | |
dc.relation.references | [16] Tehlar, D.;Flückiger,R.;Wokaun, A.;Büchi, F.Investigation of Channel-to-Channel Cross Convection in Serpentine Flow Fields. Fuel Cells2010, 10, 1040-1049. https://doi.org/10.1002/fuce.201000034 | |
dc.relation.references | [17] Wang, J.; Wang, H.Flow-Field Designs of Bipolar Plates in PEM Fuel Cells: Theory and Applications.Fuel Cells2012, 12, 989-1003. https://doi.org/10.1002/fuce.201200074 | |
dc.relation.references | [18] Liu, H.C.; Yan, W.M.; Soong, C.Y.;Chen, F.;Chu, H.-S.Reactant Gas Transport and Cell Performance of Proton Exchange Membrane Fuel Cells with Tapered Flow Field Design.J. Power Sources2006,158, 78-87. https://doi.org/10.1016/j.jpowsour.2005.09.017 | |
dc.relation.references | [19] Hasmady, S.; Wacker, M.;Fushinobu, K.; Okazaki, K. ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, British Columbia, Canada, 2007; 20. | |
dc.relation.references | [20] Akhtar, N.;Qureshi, A.;Scholta, J.;Hartnig, C.;Messerschmidt, M.;Lehnert, W. Investigation of Water Droplet Kinetics and Optimization of Channel Geometry for PEM Fuel Cell Cathodes.Int. J. Hydrogen Energ. 2009,34, 3104-3111. https://doi.org/10.1016/j.ijhydene.2009.01.022 | |
dc.relation.references | [21] Klages, M.; Enz, S.; Markötter, H.;Manke, I.; Kardjilov, N.;Scholta, J.Investigations on Dynamic Water Transport Characteristics in Flow Field Channels Using Neutron Imaging Techniques.J. Power Sources2013, 239, 596-603. https://doi.org/10.1016/j.jpowsour.2013.01.196 | |
dc.relation.references | [22] Norouzi, N.;Talebi, S.An Overview on the Green Petroleum Production.Chem. Rev. Lett. 2020,3, 38-52. https://doi.org/10.22034/crl.2020.222515.1041 | |
dc.relation.references | [23] Norouzi, N.;Fani, M.;Ziarani, Z.K. The Fall of Oil Age:A Scenario Planning Approach over the Last Peak Oil of Human History by 2040.J. Petrol. Sci. Eng. 2020,188, 106827. https://doi.org/10.1016/j.petrol.2019.106827 | |
dc.relation.references | [24] Mirvakili, A.; Chahibakhsh, S.;Ebrahimzadehsarvestani, M.;Soroush, E.;Rahimpour, M.R.Modeling and Assessment of Novel Configurations to Enhance Methanol Production in Industrial Mega-Methanol Synthesis Plant. J. Taiwan Inst. Chem. Eng. 2019,104, 40-53. https://doi.org/10.1016/j.jtice.2019.09.018 | |
dc.relation.references | [25] Chen, K.; Yu, J.; Liu, B.; Si, C.; Ban, H.; Cai, W.; Li, C.; Li, Z.; Fujimoto, K.Simple Strategy Synthesizing Stable CuZnO/SiO2 Methanol Synthesis Catalyst.J. Catal. 2019,372, 163-173.https://doi.org/10.1016/j.jcat.2019.02.035 | |
dc.relation.referencesen | [1] Wang, X.-D.; Duan, Y.-Y.; Yan, W.-M.; Peng, X.-F. Local Transport Phenomena and Cell Performance of PEM Fuel Cells with Various Serpentine Flow Field Designs.J. Power Sources2008, 175, 397-407.https://doi.org/10.1016/j.jpowsour.2007.09.009 | |
dc.relation.referencesen | [2] Ramesh, P.;Duttagupta, S.P. Effect of Channel Dimensions on Micro PEM Fuel Cell Performance Using 3D Modeling.Int. J. Renew. Energ. Res.2013, 3, 353-358. | |
dc.relation.referencesen | [3] Choghadi, H.;Kermani, M. 10th Int. Conf. on Sustainable Energy Technologies SET2011, September4-7, 2011, Turkey, Istanbul. | |
dc.relation.referencesen | [4] Bernardi, D.M.;Verbrugge, M.W. A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell.J. Electrochem. 1992, 139, 2477. https://doi.org/10.1149/1.2221251 | |
dc.relation.referencesen | [5] Khakbaz-Baboli, M.;Kermani, M.J. A Two-Dimensional, Transient, Compressible Isothermal and Two-Phase Model for the Air-Side Electrode of PEM Fuel Cells.J. Electrochem. Acta2008, 53, 7644-7654. https://doi.org/10.1016/j.electacta.2008.04.017 | |
dc.relation.referencesen | [6] Okada, O.; Yokoyama, K.Development of Polymer Electrolyte Fuel Cell Cogeneration Systems for Residential Applications.Fuel Cells2001, 1, 72-77. https://doi.org/10.1002/1615-6854(200105)1:1%3C72::AID-FUCE72%3E3.0.CO;2-P | |
dc.relation.referencesen | [7] Thoennes, M.;Busse, A.; Eckstein, L.Forecast of Performance Parameters of Automotive Fuel Cell Systems – Delphi Study Results.Fuel Cells2014, 14, 781-791. https://doi.org/10.1002/fuce.201400035 | |
dc.relation.referencesen | [8] Wieser, C.Novel Polymer Electrolyte Membranes for Automotive Applications – Requirements and Benefits.Fuel Cells2004, 4, 245-250. https://doi.org/10.1002/fuce.200400038 | |
dc.relation.referencesen | [9] Britz, P.;Zartenar, N.PEM – Fuel Cell System for Residential Applications. Fuel Cells2004, 4, 269-275. https://doi.org/10.1002/fuce.200400043 | |
dc.relation.referencesen | [10] Kakati, B.K.; Mohan, V.Development of Low-CostAdvanced Composite Bipolar Plate for Proton Exchange Membrane Fuel Cell.Fuel Cells2008,8, 45-51. https://doi.org/10.1002/fuce.200700008 | |
dc.relation.referencesen | [11] Yi, P.Y.; Peng, L.F.; Lai, X.M.; Liu, D.A.; Ni, J. A Novel Design of Wave-Like PEMFC Stack with Undulate MEAs and Perforated Bipolar Plates.Fuel Cells2010,10, 111-117. https://doi.org/10.1002/fuce.200900031 | |
dc.relation.referencesen | [12] Shamardina, O.;Kulikovsky, A.A.;Chertovich, A.V.;Khokhlov, A.R. A Model for High-Temperature PEM Fuel Cell: The Roleof Transport in theCathodeCatalyst Layer.Fuel Cells2012,12, 577-582. https://doi.org/10.1002/fuce.201100144 | |
dc.relation.referencesen | [13] Ghanbarian,A.; Kermani, M.J.;Scholta, J.Generalizationof a CFD Model toPredictthe Net Power in PEM Fuel Cells.Iran. J. Hydrogen Fuel Cell2019, 6, 23-37. http://doi.org/10.22104/ijhfc.2019.3176.1179 | |
dc.relation.referencesen | [14] Choi, K.-S.; Kim, B.-G.; Park, K.; Kim, H.M. Current Advances in Polymer Electrolyte Fuel Cells Based on the Promotional Role of Under-rib Convection.Fuel Cells2012,12, 908-938. https://doi.org/10.1002/fuce.201200035 | |
dc.relation.referencesen | [15] Chapter 1.In Fluid Mechanics(Fifth Edition);Kundu, P.; Cohen, I.; Dowling, D., Eds.; Academic Press, 2012, pp 1-37. https://doi.org/10.1016/B978-0-12-382100-3.10001-0. | |
dc.relation.referencesen | [16] Tehlar, D.;Flückiger,R.;Wokaun, A.;Büchi, F.Investigation of Channel-to-Channel Cross Convection in Serpentine Flow Fields. Fuel Cells2010, 10, 1040-1049. https://doi.org/10.1002/fuce.201000034 | |
dc.relation.referencesen | [17] Wang, J.; Wang, H.Flow-Field Designs of Bipolar Plates in PEM Fuel Cells: Theory and Applications.Fuel Cells2012, 12, 989-1003. https://doi.org/10.1002/fuce.201200074 | |
dc.relation.referencesen | [18] Liu, H.C.; Yan, W.M.; Soong, C.Y.;Chen, F.;Chu, H.-S.Reactant Gas Transport and Cell Performance of Proton Exchange Membrane Fuel Cells with Tapered Flow Field Design.J. Power Sources2006,158, 78-87. https://doi.org/10.1016/j.jpowsour.2005.09.017 | |
dc.relation.referencesen | [19] Hasmady, S.; Wacker, M.;Fushinobu, K.; Okazaki, K. ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, British Columbia, Canada, 2007; 20. | |
dc.relation.referencesen | [20] Akhtar, N.;Qureshi, A.;Scholta, J.;Hartnig, C.;Messerschmidt, M.;Lehnert, W. Investigation of Water Droplet Kinetics and Optimization of Channel Geometry for PEM Fuel Cell Cathodes.Int. J. Hydrogen Energ. 2009,34, 3104-3111. https://doi.org/10.1016/j.ijhydene.2009.01.022 | |
dc.relation.referencesen | [21] Klages, M.; Enz, S.; Markötter, H.;Manke, I.; Kardjilov, N.;Scholta, J.Investigations on Dynamic Water Transport Characteristics in Flow Field Channels Using Neutron Imaging Techniques.J. Power Sources2013, 239, 596-603. https://doi.org/10.1016/j.jpowsour.2013.01.196 | |
dc.relation.referencesen | [22] Norouzi, N.;Talebi, S.An Overview on the Green Petroleum Production.Chem. Rev. Lett. 2020,3, 38-52. https://doi.org/10.22034/crl.2020.222515.1041 | |
dc.relation.referencesen | [23] Norouzi, N.;Fani, M.;Ziarani, Z.K. The Fall of Oil Age:A Scenario Planning Approach over the Last Peak Oil of Human History by 2040.J. Petrol. Sci. Eng. 2020,188, 106827. https://doi.org/10.1016/j.petrol.2019.106827 | |
dc.relation.referencesen | [24] Mirvakili, A.; Chahibakhsh, S.;Ebrahimzadehsarvestani, M.;Soroush, E.;Rahimpour, M.R.Modeling and Assessment of Novel Configurations to Enhance Methanol Production in Industrial Mega-Methanol Synthesis Plant. J. Taiwan Inst. Chem. Eng. 2019,104, 40-53. https://doi.org/10.1016/j.jtice.2019.09.018 | |
dc.relation.referencesen | [25] Chen, K.; Yu, J.; Liu, B.; Si, C.; Ban, H.; Cai, W.; Li, C.; Li, Z.; Fujimoto, K.Simple Strategy Synthesizing Stable CuZnO/SiO2 Methanol Synthesis Catalyst.J. Catal. 2019,372, 163-173.https://doi.org/10.1016/j.jcat.2019.02.035 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2007.09.009 | |
dc.relation.uri | https://doi.org/10.1149/1.2221251 | |
dc.relation.uri | https://doi.org/10.1016/j.electacta.2008.04.017 | |
dc.relation.uri | https://doi.org/10.1002/1615-6854(200105)1:1%3C72::AID-FUCE72%3E3.0.CO;2-P | |
dc.relation.uri | https://doi.org/10.1002/fuce.201400035 | |
dc.relation.uri | https://doi.org/10.1002/fuce.200400038 | |
dc.relation.uri | https://doi.org/10.1002/fuce.200400043 | |
dc.relation.uri | https://doi.org/10.1002/fuce.200700008 | |
dc.relation.uri | https://doi.org/10.1002/fuce.200900031 | |
dc.relation.uri | https://doi.org/10.1002/fuce.201100144 | |
dc.relation.uri | http://doi.org/10.22104/ijhfc.2019.3176.1179 | |
dc.relation.uri | https://doi.org/10.1002/fuce.201200035 | |
dc.relation.uri | https://doi.org/10.1016/B978-0-12-382100-3.10001-0 | |
dc.relation.uri | https://doi.org/10.1002/fuce.201000034 | |
dc.relation.uri | https://doi.org/10.1002/fuce.201200074 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2005.09.017 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2009.01.022 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2013.01.196 | |
dc.relation.uri | https://doi.org/10.22034/crl.2020.222515.1041 | |
dc.relation.uri | https://doi.org/10.1016/j.petrol.2019.106827 | |
dc.relation.uri | https://doi.org/10.1016/j.jtice.2019.09.018 | |
dc.relation.uri | https://doi.org/10.1016/j.jcat.2019.02.035 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Norouzi N., Talebi S., 2022 | |
dc.subject | обчислювальна гідродинаміка | |
dc.subject | модель поля потоку | |
dc.subject | паливний елемент | |
dc.subject | аналіз ефективності | |
dc.subject | computational fluid dynamics | |
dc.subject | flow field design | |
dc.subject | fuel cell | |
dc.subject | performance analysis | |
dc.title | A Computational Model for the Prediction of Net Power in Proton Exchange Membrane Fuel Cells | |
dc.title.alternative | Обчислювальна модель для прогнозування корисної потужності паливного елементу протонообмінної мембрани | |
dc.type | Article |
Files
License bundle
1 - 1 of 1