A Computational Model for the Prediction of Net Power in Proton Exchange Membrane Fuel Cells

dc.citation.epage313
dc.citation.issue2
dc.citation.spage303
dc.contributor.affiliationAmirkabir University of Technology (Tehran Polytechnic)
dc.contributor.authorNorouzi, Nima
dc.contributor.authorTalebi, Saeed
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T11:13:00Z
dc.date.available2024-01-22T11:13:00Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractПоказано збільшення електричної енергії внаслідок збагачення киснем. З метою максималізації кількості кисню у всіх областях каталітичного шару (CL), для питомої ефективної площі мембрани (MEA) змодельовано поле потоку (FF). За розробленою моделлю 3DCFD спрогнозована швидкість приросту електричної енергії за підвищення кількості кисню в CL на 1 %. Змодельовано зволожену повітряну суміш на паливному елементі протонообмінної мембрани (PEMFC). Показано, що аналітичні та розрахунковий гідродинамічний метод дають подібні результати, а похибка моделі CFD становить приблизно 1,9 % порівняно з аналітичним методом.
dc.description.abstractThis paper aims to quantify the rate of improvement of electrical energy due to oxygen enrichment. For a specific membrane effective area (MEA), the flow field (FF) designer is always ready to design the FF to maximize the amount of oxygen in all areas of the catalyst layer (CL). Using the guidelines in this paper, FF designers, without cumulative computational fluid dynamics (CFD) calculations, can predict the rate of electrical energy gain due to 1 % enrichment in the amount of oxygen present in the CL. A 3D CFD tool was used to answer this question. These three constant steps of the reaction product simulate the humidified air mixture at the proton exchange membrane fuel cell (PEMFC). Results show that the analytic methods and the dynamic computational method introduced in this paper are similar in results, and the error of the CFD model is about 1.9 % compared to the analytic method.
dc.format.extent303-313
dc.format.pages11
dc.identifier.citationNorouzi N. A Computational Model for the Prediction of Net Power in Proton Exchange Membrane Fuel Cells / Nima Norouzi, Saeed Talebi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 303–313.
dc.identifier.citationenNorouzi N. A Computational Model for the Prediction of Net Power in Proton Exchange Membrane Fuel Cells / Nima Norouzi, Saeed Talebi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 303–313.
dc.identifier.doidoi.org/10.23939/chcht16.02.303
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60971
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (16), 2022
dc.relation.references[1] Wang, X.-D.; Duan, Y.-Y.; Yan, W.-M.; Peng, X.-F. Local Transport Phenomena and Cell Performance of PEM Fuel Cells with Various Serpentine Flow Field Designs.J. Power Sources2008, 175, 397-407.https://doi.org/10.1016/j.jpowsour.2007.09.009
dc.relation.references[2] Ramesh, P.;Duttagupta, S.P. Effect of Channel Dimensions on Micro PEM Fuel Cell Performance Using 3D Modeling.Int. J. Renew. Energ. Res.2013, 3, 353-358.
dc.relation.references[3] Choghadi, H.;Kermani, M. 10th Int. Conf. on Sustainable Energy Technologies SET2011, September4-7, 2011, Turkey, Istanbul.
dc.relation.references[4] Bernardi, D.M.;Verbrugge, M.W. A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell.J. Electrochem. 1992, 139, 2477. https://doi.org/10.1149/1.2221251
dc.relation.references[5] Khakbaz-Baboli, M.;Kermani, M.J. A Two-Dimensional, Transient, Compressible Isothermal and Two-Phase Model for the Air-Side Electrode of PEM Fuel Cells.J. Electrochem. Acta2008, 53, 7644-7654. https://doi.org/10.1016/j.electacta.2008.04.017
dc.relation.references[6] Okada, O.; Yokoyama, K.Development of Polymer Electrolyte Fuel Cell Cogeneration Systems for Residential Applications.Fuel Cells2001, 1, 72-77. https://doi.org/10.1002/1615-6854(200105)1:1%3C72::AID-FUCE72%3E3.0.CO;2-P
dc.relation.references[7] Thoennes, M.;Busse, A.; Eckstein, L.Forecast of Performance Parameters of Automotive Fuel Cell Systems – Delphi Study Results.Fuel Cells2014, 14, 781-791. https://doi.org/10.1002/fuce.201400035
dc.relation.references[8] Wieser, C.Novel Polymer Electrolyte Membranes for Automotive Applications – Requirements and Benefits.Fuel Cells2004, 4, 245-250. https://doi.org/10.1002/fuce.200400038
dc.relation.references[9] Britz, P.;Zartenar, N.PEM – Fuel Cell System for Residential Applications. Fuel Cells2004, 4, 269-275. https://doi.org/10.1002/fuce.200400043
dc.relation.references[10] Kakati, B.K.; Mohan, V.Development of Low-CostAdvanced Composite Bipolar Plate for Proton Exchange Membrane Fuel Cell.Fuel Cells2008,8, 45-51. https://doi.org/10.1002/fuce.200700008
dc.relation.references[11] Yi, P.Y.; Peng, L.F.; Lai, X.M.; Liu, D.A.; Ni, J. A Novel Design of Wave-Like PEMFC Stack with Undulate MEAs and Perforated Bipolar Plates.Fuel Cells2010,10, 111-117. https://doi.org/10.1002/fuce.200900031
dc.relation.references[12] Shamardina, O.;Kulikovsky, A.A.;Chertovich, A.V.;Khokhlov, A.R. A Model for High-Temperature PEM Fuel Cell: The Roleof Transport in theCathodeCatalyst Layer.Fuel Cells2012,12, 577-582. https://doi.org/10.1002/fuce.201100144
dc.relation.references[13] Ghanbarian,A.; Kermani, M.J.;Scholta, J.Generalizationof a CFD Model toPredictthe Net Power in PEM Fuel Cells.Iran. J. Hydrogen Fuel Cell2019, 6, 23-37. http://doi.org/10.22104/ijhfc.2019.3176.1179
dc.relation.references[14] Choi, K.-S.; Kim, B.-G.; Park, K.; Kim, H.M. Current Advances in Polymer Electrolyte Fuel Cells Based on the Promotional Role of Under-rib Convection.Fuel Cells2012,12, 908-938. https://doi.org/10.1002/fuce.201200035
dc.relation.references[15] Chapter 1.In Fluid Mechanics(Fifth Edition);Kundu, P.; Cohen, I.; Dowling, D., Eds.; Academic Press, 2012, pp 1-37. https://doi.org/10.1016/B978-0-12-382100-3.10001-0.
dc.relation.references[16] Tehlar, D.;Flückiger,R.;Wokaun, A.;Büchi, F.Investigation of Channel-to-Channel Cross Convection in Serpentine Flow Fields. Fuel Cells2010, 10, 1040-1049. https://doi.org/10.1002/fuce.201000034
dc.relation.references[17] Wang, J.; Wang, H.Flow-Field Designs of Bipolar Plates in PEM Fuel Cells: Theory and Applications.Fuel Cells2012, 12, 989-1003. https://doi.org/10.1002/fuce.201200074
dc.relation.references[18] Liu, H.C.; Yan, W.M.; Soong, C.Y.;Chen, F.;Chu, H.-S.Reactant Gas Transport and Cell Performance of Proton Exchange Membrane Fuel Cells with Tapered Flow Field Design.J. Power Sources2006,158, 78-87. https://doi.org/10.1016/j.jpowsour.2005.09.017
dc.relation.references[19] Hasmady, S.; Wacker, M.;Fushinobu, K.; Okazaki, K. ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, British Columbia, Canada, 2007; 20.
dc.relation.references[20] Akhtar, N.;Qureshi, A.;Scholta, J.;Hartnig, C.;Messerschmidt, M.;Lehnert, W. Investigation of Water Droplet Kinetics and Optimization of Channel Geometry for PEM Fuel Cell Cathodes.Int. J. Hydrogen Energ. 2009,34, 3104-3111. https://doi.org/10.1016/j.ijhydene.2009.01.022
dc.relation.references[21] Klages, M.; Enz, S.; Markötter, H.;Manke, I.; Kardjilov, N.;Scholta, J.Investigations on Dynamic Water Transport Characteristics in Flow Field Channels Using Neutron Imaging Techniques.J. Power Sources2013, 239, 596-603. https://doi.org/10.1016/j.jpowsour.2013.01.196
dc.relation.references[22] Norouzi, N.;Talebi, S.An Overview on the Green Petroleum Production.Chem. Rev. Lett. 2020,3, 38-52. https://doi.org/10.22034/crl.2020.222515.1041
dc.relation.references[23] Norouzi, N.;Fani, M.;Ziarani, Z.K. The Fall of Oil Age:A Scenario Planning Approach over the Last Peak Oil of Human History by 2040.J. Petrol. Sci. Eng. 2020,188, 106827. https://doi.org/10.1016/j.petrol.2019.106827
dc.relation.references[24] Mirvakili, A.; Chahibakhsh, S.;Ebrahimzadehsarvestani, M.;Soroush, E.;Rahimpour, M.R.Modeling and Assessment of Novel Configurations to Enhance Methanol Production in Industrial Mega-Methanol Synthesis Plant. J. Taiwan Inst. Chem. Eng. 2019,104, 40-53. https://doi.org/10.1016/j.jtice.2019.09.018
dc.relation.references[25] Chen, K.; Yu, J.; Liu, B.; Si, C.; Ban, H.; Cai, W.; Li, C.; Li, Z.; Fujimoto, K.Simple Strategy Synthesizing Stable CuZnO/SiO2 Methanol Synthesis Catalyst.J. Catal. 2019,372, 163-173.https://doi.org/10.1016/j.jcat.2019.02.035
dc.relation.referencesen[1] Wang, X.-D.; Duan, Y.-Y.; Yan, W.-M.; Peng, X.-F. Local Transport Phenomena and Cell Performance of PEM Fuel Cells with Various Serpentine Flow Field Designs.J. Power Sources2008, 175, 397-407.https://doi.org/10.1016/j.jpowsour.2007.09.009
dc.relation.referencesen[2] Ramesh, P.;Duttagupta, S.P. Effect of Channel Dimensions on Micro PEM Fuel Cell Performance Using 3D Modeling.Int. J. Renew. Energ. Res.2013, 3, 353-358.
dc.relation.referencesen[3] Choghadi, H.;Kermani, M. 10th Int. Conf. on Sustainable Energy Technologies SET2011, September4-7, 2011, Turkey, Istanbul.
dc.relation.referencesen[4] Bernardi, D.M.;Verbrugge, M.W. A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell.J. Electrochem. 1992, 139, 2477. https://doi.org/10.1149/1.2221251
dc.relation.referencesen[5] Khakbaz-Baboli, M.;Kermani, M.J. A Two-Dimensional, Transient, Compressible Isothermal and Two-Phase Model for the Air-Side Electrode of PEM Fuel Cells.J. Electrochem. Acta2008, 53, 7644-7654. https://doi.org/10.1016/j.electacta.2008.04.017
dc.relation.referencesen[6] Okada, O.; Yokoyama, K.Development of Polymer Electrolyte Fuel Cell Cogeneration Systems for Residential Applications.Fuel Cells2001, 1, 72-77. https://doi.org/10.1002/1615-6854(200105)1:1%3C72::AID-FUCE72%3E3.0.CO;2-P
dc.relation.referencesen[7] Thoennes, M.;Busse, A.; Eckstein, L.Forecast of Performance Parameters of Automotive Fuel Cell Systems – Delphi Study Results.Fuel Cells2014, 14, 781-791. https://doi.org/10.1002/fuce.201400035
dc.relation.referencesen[8] Wieser, C.Novel Polymer Electrolyte Membranes for Automotive Applications – Requirements and Benefits.Fuel Cells2004, 4, 245-250. https://doi.org/10.1002/fuce.200400038
dc.relation.referencesen[9] Britz, P.;Zartenar, N.PEM – Fuel Cell System for Residential Applications. Fuel Cells2004, 4, 269-275. https://doi.org/10.1002/fuce.200400043
dc.relation.referencesen[10] Kakati, B.K.; Mohan, V.Development of Low-CostAdvanced Composite Bipolar Plate for Proton Exchange Membrane Fuel Cell.Fuel Cells2008,8, 45-51. https://doi.org/10.1002/fuce.200700008
dc.relation.referencesen[11] Yi, P.Y.; Peng, L.F.; Lai, X.M.; Liu, D.A.; Ni, J. A Novel Design of Wave-Like PEMFC Stack with Undulate MEAs and Perforated Bipolar Plates.Fuel Cells2010,10, 111-117. https://doi.org/10.1002/fuce.200900031
dc.relation.referencesen[12] Shamardina, O.;Kulikovsky, A.A.;Chertovich, A.V.;Khokhlov, A.R. A Model for High-Temperature PEM Fuel Cell: The Roleof Transport in theCathodeCatalyst Layer.Fuel Cells2012,12, 577-582. https://doi.org/10.1002/fuce.201100144
dc.relation.referencesen[13] Ghanbarian,A.; Kermani, M.J.;Scholta, J.Generalizationof a CFD Model toPredictthe Net Power in PEM Fuel Cells.Iran. J. Hydrogen Fuel Cell2019, 6, 23-37. http://doi.org/10.22104/ijhfc.2019.3176.1179
dc.relation.referencesen[14] Choi, K.-S.; Kim, B.-G.; Park, K.; Kim, H.M. Current Advances in Polymer Electrolyte Fuel Cells Based on the Promotional Role of Under-rib Convection.Fuel Cells2012,12, 908-938. https://doi.org/10.1002/fuce.201200035
dc.relation.referencesen[15] Chapter 1.In Fluid Mechanics(Fifth Edition);Kundu, P.; Cohen, I.; Dowling, D., Eds.; Academic Press, 2012, pp 1-37. https://doi.org/10.1016/B978-0-12-382100-3.10001-0.
dc.relation.referencesen[16] Tehlar, D.;Flückiger,R.;Wokaun, A.;Büchi, F.Investigation of Channel-to-Channel Cross Convection in Serpentine Flow Fields. Fuel Cells2010, 10, 1040-1049. https://doi.org/10.1002/fuce.201000034
dc.relation.referencesen[17] Wang, J.; Wang, H.Flow-Field Designs of Bipolar Plates in PEM Fuel Cells: Theory and Applications.Fuel Cells2012, 12, 989-1003. https://doi.org/10.1002/fuce.201200074
dc.relation.referencesen[18] Liu, H.C.; Yan, W.M.; Soong, C.Y.;Chen, F.;Chu, H.-S.Reactant Gas Transport and Cell Performance of Proton Exchange Membrane Fuel Cells with Tapered Flow Field Design.J. Power Sources2006,158, 78-87. https://doi.org/10.1016/j.jpowsour.2005.09.017
dc.relation.referencesen[19] Hasmady, S.; Wacker, M.;Fushinobu, K.; Okazaki, K. ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, British Columbia, Canada, 2007; 20.
dc.relation.referencesen[20] Akhtar, N.;Qureshi, A.;Scholta, J.;Hartnig, C.;Messerschmidt, M.;Lehnert, W. Investigation of Water Droplet Kinetics and Optimization of Channel Geometry for PEM Fuel Cell Cathodes.Int. J. Hydrogen Energ. 2009,34, 3104-3111. https://doi.org/10.1016/j.ijhydene.2009.01.022
dc.relation.referencesen[21] Klages, M.; Enz, S.; Markötter, H.;Manke, I.; Kardjilov, N.;Scholta, J.Investigations on Dynamic Water Transport Characteristics in Flow Field Channels Using Neutron Imaging Techniques.J. Power Sources2013, 239, 596-603. https://doi.org/10.1016/j.jpowsour.2013.01.196
dc.relation.referencesen[22] Norouzi, N.;Talebi, S.An Overview on the Green Petroleum Production.Chem. Rev. Lett. 2020,3, 38-52. https://doi.org/10.22034/crl.2020.222515.1041
dc.relation.referencesen[23] Norouzi, N.;Fani, M.;Ziarani, Z.K. The Fall of Oil Age:A Scenario Planning Approach over the Last Peak Oil of Human History by 2040.J. Petrol. Sci. Eng. 2020,188, 106827. https://doi.org/10.1016/j.petrol.2019.106827
dc.relation.referencesen[24] Mirvakili, A.; Chahibakhsh, S.;Ebrahimzadehsarvestani, M.;Soroush, E.;Rahimpour, M.R.Modeling and Assessment of Novel Configurations to Enhance Methanol Production in Industrial Mega-Methanol Synthesis Plant. J. Taiwan Inst. Chem. Eng. 2019,104, 40-53. https://doi.org/10.1016/j.jtice.2019.09.018
dc.relation.referencesen[25] Chen, K.; Yu, J.; Liu, B.; Si, C.; Ban, H.; Cai, W.; Li, C.; Li, Z.; Fujimoto, K.Simple Strategy Synthesizing Stable CuZnO/SiO2 Methanol Synthesis Catalyst.J. Catal. 2019,372, 163-173.https://doi.org/10.1016/j.jcat.2019.02.035
dc.relation.urihttps://doi.org/10.1016/j.jpowsour.2007.09.009
dc.relation.urihttps://doi.org/10.1149/1.2221251
dc.relation.urihttps://doi.org/10.1016/j.electacta.2008.04.017
dc.relation.urihttps://doi.org/10.1002/1615-6854(200105)1:1%3C72::AID-FUCE72%3E3.0.CO;2-P
dc.relation.urihttps://doi.org/10.1002/fuce.201400035
dc.relation.urihttps://doi.org/10.1002/fuce.200400038
dc.relation.urihttps://doi.org/10.1002/fuce.200400043
dc.relation.urihttps://doi.org/10.1002/fuce.200700008
dc.relation.urihttps://doi.org/10.1002/fuce.200900031
dc.relation.urihttps://doi.org/10.1002/fuce.201100144
dc.relation.urihttp://doi.org/10.22104/ijhfc.2019.3176.1179
dc.relation.urihttps://doi.org/10.1002/fuce.201200035
dc.relation.urihttps://doi.org/10.1016/B978-0-12-382100-3.10001-0
dc.relation.urihttps://doi.org/10.1002/fuce.201000034
dc.relation.urihttps://doi.org/10.1002/fuce.201200074
dc.relation.urihttps://doi.org/10.1016/j.jpowsour.2005.09.017
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2009.01.022
dc.relation.urihttps://doi.org/10.1016/j.jpowsour.2013.01.196
dc.relation.urihttps://doi.org/10.22034/crl.2020.222515.1041
dc.relation.urihttps://doi.org/10.1016/j.petrol.2019.106827
dc.relation.urihttps://doi.org/10.1016/j.jtice.2019.09.018
dc.relation.urihttps://doi.org/10.1016/j.jcat.2019.02.035
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Norouzi N., Talebi S., 2022
dc.subjectобчислювальна гідродинаміка
dc.subjectмодель поля потоку
dc.subjectпаливний елемент
dc.subjectаналіз ефективності
dc.subjectcomputational fluid dynamics
dc.subjectflow field design
dc.subjectfuel cell
dc.subjectperformance analysis
dc.titleA Computational Model for the Prediction of Net Power in Proton Exchange Membrane Fuel Cells
dc.title.alternativeОбчислювальна модель для прогнозування корисної потужності паливного елементу протонообмінної мембрани
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v16n2_Norouzi_N-A_Computational_Model_for_303-313.pdf
Size:
922.38 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v16n2_Norouzi_N-A_Computational_Model_for_303-313__COVER.png
Size:
506.33 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: