Investigation of ultrasonic flowmeter error in distorted flow using two-peaks Salami functions

dc.citation.epage151
dc.citation.issue2
dc.citation.spage144
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМатіко, Федір
dc.contributor.authorРоман, Віталій
dc.contributor.authorМатіко, Галина
dc.contributor.authorЯлінський, Дмитро
dc.contributor.authorMatiko, Fedir
dc.contributor.authorRoman, Vitalii
dc.contributor.authorMatiko, Halyna
dc.contributor.authorYalinskyi, Dmytro
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-09-19T07:59:57Z
dc.date.available2023-09-19T07:59:57Z
dc.date.created2021-06-01
dc.date.issued2021-06-01
dc.description.abstractНаведено результати досліджень додаткової похибки ультразвукових витратомірів (УЗВ), спричиненої спотворенням профілю швидкості потоку. Координати розташування хордових акустичних каналів (АК) обчислено для 1–6 АК за допомогою різних числових методів інтегрування: Гаусса (Гаусса – Лежандра, Гаусса – Якобі), Чебишева (рівновіддалене розміщення АК), методу Westinghouse, методу OWICS (Optimal Weighted Integration for Circular Sections). Це дало можливість реалізувати рівняння витрати багатоканального УЗВ та оцінити додаткову похибку УЗВ за різного розміщення АК. Значення середньої швидкості потоку вздовж кожного АК визначено розрахунково на основі профілю швидкості потоку в поперечному перерізі ВТ. Для обчислення профілю швидкості спотвореного потоку, сформованого типовими місцевими опорами, використано чотири двоядерні функції швидкості Саламі. За результатами дослідження додаткової похибки УЗВ в умовах спотвореного потоку розроблено рекомендації щодо вибору кількості акустичних каналів УЗВ та застосування методів визначення координат розташування акустичних каналів.
dc.description.abstractResults of investigating the additional error of ultrasonic flowmeters caused by the distortion of the flow are presented in the article. The location coordinates of acoustic paths were calculated for their number from 1 to 6 according to the different numerical integrating methods: Gauss (Gauss-Legendre, Gauss-Jacobi), Chebyshev (equidistant location of acoustic paths), Westinghouse method, method of OWICS (Optimal Weighted Integration for Circular Sections). This made it possible to realize the flowrate equation for multi-path ultrasonic flowmeters and to determine their additional error for different location of the acoustic paths. The average flow velocity along each path is calculated based on the flow velocity profile in the pipe cross section. Four two-peak Salami functions of velocity are used to calculate the velocity profile of the distorted flow caused by typical local resistances. According to the research results the recommendations were developed for choosing the number of the acoustic paths of the ultrasonic flowmeters and for using the methods for determining the location coordinates of the acoustic paths.
dc.format.extent144-151
dc.format.pages8
dc.identifier.citationInvestigation of ultrasonic flowmeter error in distorted flow using two-peaks Salami functions / Fedir Matiko, Vitalii Roman, Halyna Matiko, Dmytro Yalinskyi // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 7. — No 2. — P. 144–151.
dc.identifier.citationenInvestigation of ultrasonic flowmeter error in distorted flow using two-peaks Salami functions / Fedir Matiko, Vitalii Roman, Halyna Matiko, Dmytro Yalinskyi // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 7. — No 2. — P. 144–151.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60146
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnergy Engineering and Control Systems, 2 (7), 2021
dc.relation.references[1] ISO 17089-1: Measurement of fluid flow in closed conduits – Ultrasonic meters for gas. Part 1: Meters for custody transfer and allocation measurement, Geneva, 2010.
dc.relation.references[2] Lunde, P., Froysa, K.-E. and Vestrheim, M. (2000). GERG Project on ultrasonic gas flow meters, Phase II: technical monograph TM 11, Brussels.
dc.relation.references[3] Roman, V. I. and Matiko, F. D. (2017) Investigation of ultrasonic flowmeter error in conditions of distortion of flow structure using one peak functions Salami. Metrology and devices, 3, 36–43 (in Ukrainian).
dc.relation.references[4] Salami, L. A. (1984) Application of a computer to asymmetric flow measurement in circular pipes. Trans. Inst. Meas. Control, 6, 197–206. https://doi.org/10.1177/014233128400600403.
dc.relation.references[5] Moore, P. L., Brown, G. J. and Stimpson, B. P. (2000) Ultrasonic transit-time flowmeters modelled with theoretical velocity profiles: Methodology. Meas. Sci. Technol., 11, 1802–1811. https://doi.org/10.1088/0957-0233/11/12/321.
dc.relation.references[6] Dorozhovets, M. M., Semenystyi, A. V. and Stadnyk, B. I. (2004). Theoretical analysis of the spatial distribution of the fluid velocity using functions Salami for multi-path ultrasonic flowmeter. Bulletin of LPNU: Automation, measurement and control, 500, 131–134 (in Ukrainian).
dc.relation.references[7] Korobko, I. V. and Volynska, Ya. V. (2013). Assessment of fluid flow asymmetry in the measurement of flow rate and volume. Bulletin of NTUU “KPI”: Instrument engineering, 45, 91–98 (in Ukrainian).
dc.relation.references[8] Masloboev, Ju. P., Ruchkin, S. V., Rychagov, M. N. and Tereshhenko, S. A. (2002). Characterization of perturbed streams based on ultrasonic measurements using a set of basic Salami functions. Proceedings of the Nizhny Novgorod acoustic scientific session, 1, 388–390 (in Russian).
dc.relation.references[9] Zanker, K. J. (1999). The effects of Reynolds number, wall roughness, and profile asymmetry on single- and multi-path ultrasonic meters. Proceedings of XVII International North Sea Flow Measurement Workshop, Oslo, 25–28 October 1999, 117–129.
dc.relation.references[10] Dandan Zheng, Dan Zhao and Jianqiang Mei (2015). Improved numerical integration method for flowrate of ultrasonic flowmeter based on Gauss quadrature for non-ideal flow fields. Flow Measurement and Instrumentation, 41, 28–35. https://doi.org/10.1016/j.flowmeasinst.2014.10.005.
dc.relation.references[11] Tresch, T., Gruber, P. and Staubli, T. (2006). Comparison of integration methods for multipath acoustic discharge measurements. Proceedings of VI International Conference on “IGHEM”, Portland Oregon, 30 July – 1 August 2006.
dc.relation.references[12] Duffell, C. J., Brown, G. J., Barton, N. A. and Stimpson, B. P. (2003). Using optimization algorithms and CFD to improve performance of ultrasonic flowmeters. Proceedings of II International South East Asia Hydrocarbon Flow Measurement Workshop, Kuala Lumpur, 25–28 March 2003.
dc.relation.references[13] Roman, V. I. and Matiko, F. D. (2014). Definition of weighting coefficients of acoustic channels for ultrasonic flowmeters. Metrology and devices, 3, 11–20 (in Ukrainian).
dc.relation.referencesen[1] ISO 17089-1: Measurement of fluid flow in closed conduits – Ultrasonic meters for gas. Part 1: Meters for custody transfer and allocation measurement, Geneva, 2010.
dc.relation.referencesen[2] Lunde, P., Froysa, K.-E. and Vestrheim, M. (2000). GERG Project on ultrasonic gas flow meters, Phase II: technical monograph TM 11, Brussels.
dc.relation.referencesen[3] Roman, V. I. and Matiko, F. D. (2017) Investigation of ultrasonic flowmeter error in conditions of distortion of flow structure using one peak functions Salami. Metrology and devices, 3, 36–43 (in Ukrainian).
dc.relation.referencesen[4] Salami, L. A. (1984) Application of a computer to asymmetric flow measurement in circular pipes. Trans. Inst. Meas. Control, 6, 197–206. https://doi.org/10.1177/014233128400600403.
dc.relation.referencesen[5] Moore, P. L., Brown, G. J. and Stimpson, B. P. (2000) Ultrasonic transit-time flowmeters modelled with theoretical velocity profiles: Methodology. Meas. Sci. Technol., 11, 1802–1811. https://doi.org/10.1088/0957-0233/11/12/321.
dc.relation.referencesen[6] Dorozhovets, M. M., Semenystyi, A. V. and Stadnyk, B. I. (2004). Theoretical analysis of the spatial distribution of the fluid velocity using functions Salami for multi-path ultrasonic flowmeter. Bulletin of LPNU: Automation, measurement and control, 500, 131–134 (in Ukrainian).
dc.relation.referencesen[7] Korobko, I. V. and Volynska, Ya. V. (2013). Assessment of fluid flow asymmetry in the measurement of flow rate and volume. Bulletin of NTUU "KPI": Instrument engineering, 45, 91–98 (in Ukrainian).
dc.relation.referencesen[8] Masloboev, Ju. P., Ruchkin, S. V., Rychagov, M. N. and Tereshhenko, S. A. (2002). Characterization of perturbed streams based on ultrasonic measurements using a set of basic Salami functions. Proceedings of the Nizhny Novgorod acoustic scientific session, 1, 388–390 (in Russian).
dc.relation.referencesen[9] Zanker, K. J. (1999). The effects of Reynolds number, wall roughness, and profile asymmetry on single- and multi-path ultrasonic meters. Proceedings of XVII International North Sea Flow Measurement Workshop, Oslo, 25–28 October 1999, 117–129.
dc.relation.referencesen[10] Dandan Zheng, Dan Zhao and Jianqiang Mei (2015). Improved numerical integration method for flowrate of ultrasonic flowmeter based on Gauss quadrature for non-ideal flow fields. Flow Measurement and Instrumentation, 41, 28–35. https://doi.org/10.1016/j.flowmeasinst.2014.10.005.
dc.relation.referencesen[11] Tresch, T., Gruber, P. and Staubli, T. (2006). Comparison of integration methods for multipath acoustic discharge measurements. Proceedings of VI International Conference on "IGHEM", Portland Oregon, 30 July – 1 August 2006.
dc.relation.referencesen[12] Duffell, C. J., Brown, G. J., Barton, N. A. and Stimpson, B. P. (2003). Using optimization algorithms and CFD to improve performance of ultrasonic flowmeters. Proceedings of II International South East Asia Hydrocarbon Flow Measurement Workshop, Kuala Lumpur, 25–28 March 2003.
dc.relation.referencesen[13] Roman, V. I. and Matiko, F. D. (2014). Definition of weighting coefficients of acoustic channels for ultrasonic flowmeters. Metrology and devices, 3, 11–20 (in Ukrainian).
dc.relation.urihttps://doi.org/10.1177/014233128400600403
dc.relation.urihttps://doi.org/10.1088/0957-0233/11/12/321
dc.relation.urihttps://doi.org/10.1016/j.flowmeasinst.2014.10.005
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectультразвуковий витратомір
dc.subjectдодаткова похибка
dc.subjectспотворений потік
dc.subjectпрофіль швидкостей
dc.subjectфункція Саламі
dc.subjectultrasonic flowmeter
dc.subjectadditional error
dc.subjectdistorted flow
dc.subjectvelocity profile
dc.subjectSalami function
dc.titleInvestigation of ultrasonic flowmeter error in distorted flow using two-peaks Salami functions
dc.title.alternativeДослідження похибки ультразвукового витратоміра за умов спотвореної структури потоку із застосуванням двоядерних функцій Саламі
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v7n2_Matiko_F-Investigation_of_ultrasonic_144-151.pdf
Size:
498.64 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v7n2_Matiko_F-Investigation_of_ultrasonic_144-151__COVER.png
Size:
399.5 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: