Investigation of ultrasonic flowmeter error in distorted flow using two-peaks Salami functions
dc.citation.epage | 151 | |
dc.citation.issue | 2 | |
dc.citation.spage | 144 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Матіко, Федір | |
dc.contributor.author | Роман, Віталій | |
dc.contributor.author | Матіко, Галина | |
dc.contributor.author | Ялінський, Дмитро | |
dc.contributor.author | Matiko, Fedir | |
dc.contributor.author | Roman, Vitalii | |
dc.contributor.author | Matiko, Halyna | |
dc.contributor.author | Yalinskyi, Dmytro | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-09-19T07:59:57Z | |
dc.date.available | 2023-09-19T07:59:57Z | |
dc.date.created | 2021-06-01 | |
dc.date.issued | 2021-06-01 | |
dc.description.abstract | Наведено результати досліджень додаткової похибки ультразвукових витратомірів (УЗВ), спричиненої спотворенням профілю швидкості потоку. Координати розташування хордових акустичних каналів (АК) обчислено для 1–6 АК за допомогою різних числових методів інтегрування: Гаусса (Гаусса – Лежандра, Гаусса – Якобі), Чебишева (рівновіддалене розміщення АК), методу Westinghouse, методу OWICS (Optimal Weighted Integration for Circular Sections). Це дало можливість реалізувати рівняння витрати багатоканального УЗВ та оцінити додаткову похибку УЗВ за різного розміщення АК. Значення середньої швидкості потоку вздовж кожного АК визначено розрахунково на основі профілю швидкості потоку в поперечному перерізі ВТ. Для обчислення профілю швидкості спотвореного потоку, сформованого типовими місцевими опорами, використано чотири двоядерні функції швидкості Саламі. За результатами дослідження додаткової похибки УЗВ в умовах спотвореного потоку розроблено рекомендації щодо вибору кількості акустичних каналів УЗВ та застосування методів визначення координат розташування акустичних каналів. | |
dc.description.abstract | Results of investigating the additional error of ultrasonic flowmeters caused by the distortion of the flow are presented in the article. The location coordinates of acoustic paths were calculated for their number from 1 to 6 according to the different numerical integrating methods: Gauss (Gauss-Legendre, Gauss-Jacobi), Chebyshev (equidistant location of acoustic paths), Westinghouse method, method of OWICS (Optimal Weighted Integration for Circular Sections). This made it possible to realize the flowrate equation for multi-path ultrasonic flowmeters and to determine their additional error for different location of the acoustic paths. The average flow velocity along each path is calculated based on the flow velocity profile in the pipe cross section. Four two-peak Salami functions of velocity are used to calculate the velocity profile of the distorted flow caused by typical local resistances. According to the research results the recommendations were developed for choosing the number of the acoustic paths of the ultrasonic flowmeters and for using the methods for determining the location coordinates of the acoustic paths. | |
dc.format.extent | 144-151 | |
dc.format.pages | 8 | |
dc.identifier.citation | Investigation of ultrasonic flowmeter error in distorted flow using two-peaks Salami functions / Fedir Matiko, Vitalii Roman, Halyna Matiko, Dmytro Yalinskyi // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 7. — No 2. — P. 144–151. | |
dc.identifier.citationen | Investigation of ultrasonic flowmeter error in distorted flow using two-peaks Salami functions / Fedir Matiko, Vitalii Roman, Halyna Matiko, Dmytro Yalinskyi // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 7. — No 2. — P. 144–151. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60146 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Energy Engineering and Control Systems, 2 (7), 2021 | |
dc.relation.references | [1] ISO 17089-1: Measurement of fluid flow in closed conduits – Ultrasonic meters for gas. Part 1: Meters for custody transfer and allocation measurement, Geneva, 2010. | |
dc.relation.references | [2] Lunde, P., Froysa, K.-E. and Vestrheim, M. (2000). GERG Project on ultrasonic gas flow meters, Phase II: technical monograph TM 11, Brussels. | |
dc.relation.references | [3] Roman, V. I. and Matiko, F. D. (2017) Investigation of ultrasonic flowmeter error in conditions of distortion of flow structure using one peak functions Salami. Metrology and devices, 3, 36–43 (in Ukrainian). | |
dc.relation.references | [4] Salami, L. A. (1984) Application of a computer to asymmetric flow measurement in circular pipes. Trans. Inst. Meas. Control, 6, 197–206. https://doi.org/10.1177/014233128400600403. | |
dc.relation.references | [5] Moore, P. L., Brown, G. J. and Stimpson, B. P. (2000) Ultrasonic transit-time flowmeters modelled with theoretical velocity profiles: Methodology. Meas. Sci. Technol., 11, 1802–1811. https://doi.org/10.1088/0957-0233/11/12/321. | |
dc.relation.references | [6] Dorozhovets, M. M., Semenystyi, A. V. and Stadnyk, B. I. (2004). Theoretical analysis of the spatial distribution of the fluid velocity using functions Salami for multi-path ultrasonic flowmeter. Bulletin of LPNU: Automation, measurement and control, 500, 131–134 (in Ukrainian). | |
dc.relation.references | [7] Korobko, I. V. and Volynska, Ya. V. (2013). Assessment of fluid flow asymmetry in the measurement of flow rate and volume. Bulletin of NTUU “KPI”: Instrument engineering, 45, 91–98 (in Ukrainian). | |
dc.relation.references | [8] Masloboev, Ju. P., Ruchkin, S. V., Rychagov, M. N. and Tereshhenko, S. A. (2002). Characterization of perturbed streams based on ultrasonic measurements using a set of basic Salami functions. Proceedings of the Nizhny Novgorod acoustic scientific session, 1, 388–390 (in Russian). | |
dc.relation.references | [9] Zanker, K. J. (1999). The effects of Reynolds number, wall roughness, and profile asymmetry on single- and multi-path ultrasonic meters. Proceedings of XVII International North Sea Flow Measurement Workshop, Oslo, 25–28 October 1999, 117–129. | |
dc.relation.references | [10] Dandan Zheng, Dan Zhao and Jianqiang Mei (2015). Improved numerical integration method for flowrate of ultrasonic flowmeter based on Gauss quadrature for non-ideal flow fields. Flow Measurement and Instrumentation, 41, 28–35. https://doi.org/10.1016/j.flowmeasinst.2014.10.005. | |
dc.relation.references | [11] Tresch, T., Gruber, P. and Staubli, T. (2006). Comparison of integration methods for multipath acoustic discharge measurements. Proceedings of VI International Conference on “IGHEM”, Portland Oregon, 30 July – 1 August 2006. | |
dc.relation.references | [12] Duffell, C. J., Brown, G. J., Barton, N. A. and Stimpson, B. P. (2003). Using optimization algorithms and CFD to improve performance of ultrasonic flowmeters. Proceedings of II International South East Asia Hydrocarbon Flow Measurement Workshop, Kuala Lumpur, 25–28 March 2003. | |
dc.relation.references | [13] Roman, V. I. and Matiko, F. D. (2014). Definition of weighting coefficients of acoustic channels for ultrasonic flowmeters. Metrology and devices, 3, 11–20 (in Ukrainian). | |
dc.relation.referencesen | [1] ISO 17089-1: Measurement of fluid flow in closed conduits – Ultrasonic meters for gas. Part 1: Meters for custody transfer and allocation measurement, Geneva, 2010. | |
dc.relation.referencesen | [2] Lunde, P., Froysa, K.-E. and Vestrheim, M. (2000). GERG Project on ultrasonic gas flow meters, Phase II: technical monograph TM 11, Brussels. | |
dc.relation.referencesen | [3] Roman, V. I. and Matiko, F. D. (2017) Investigation of ultrasonic flowmeter error in conditions of distortion of flow structure using one peak functions Salami. Metrology and devices, 3, 36–43 (in Ukrainian). | |
dc.relation.referencesen | [4] Salami, L. A. (1984) Application of a computer to asymmetric flow measurement in circular pipes. Trans. Inst. Meas. Control, 6, 197–206. https://doi.org/10.1177/014233128400600403. | |
dc.relation.referencesen | [5] Moore, P. L., Brown, G. J. and Stimpson, B. P. (2000) Ultrasonic transit-time flowmeters modelled with theoretical velocity profiles: Methodology. Meas. Sci. Technol., 11, 1802–1811. https://doi.org/10.1088/0957-0233/11/12/321. | |
dc.relation.referencesen | [6] Dorozhovets, M. M., Semenystyi, A. V. and Stadnyk, B. I. (2004). Theoretical analysis of the spatial distribution of the fluid velocity using functions Salami for multi-path ultrasonic flowmeter. Bulletin of LPNU: Automation, measurement and control, 500, 131–134 (in Ukrainian). | |
dc.relation.referencesen | [7] Korobko, I. V. and Volynska, Ya. V. (2013). Assessment of fluid flow asymmetry in the measurement of flow rate and volume. Bulletin of NTUU "KPI": Instrument engineering, 45, 91–98 (in Ukrainian). | |
dc.relation.referencesen | [8] Masloboev, Ju. P., Ruchkin, S. V., Rychagov, M. N. and Tereshhenko, S. A. (2002). Characterization of perturbed streams based on ultrasonic measurements using a set of basic Salami functions. Proceedings of the Nizhny Novgorod acoustic scientific session, 1, 388–390 (in Russian). | |
dc.relation.referencesen | [9] Zanker, K. J. (1999). The effects of Reynolds number, wall roughness, and profile asymmetry on single- and multi-path ultrasonic meters. Proceedings of XVII International North Sea Flow Measurement Workshop, Oslo, 25–28 October 1999, 117–129. | |
dc.relation.referencesen | [10] Dandan Zheng, Dan Zhao and Jianqiang Mei (2015). Improved numerical integration method for flowrate of ultrasonic flowmeter based on Gauss quadrature for non-ideal flow fields. Flow Measurement and Instrumentation, 41, 28–35. https://doi.org/10.1016/j.flowmeasinst.2014.10.005. | |
dc.relation.referencesen | [11] Tresch, T., Gruber, P. and Staubli, T. (2006). Comparison of integration methods for multipath acoustic discharge measurements. Proceedings of VI International Conference on "IGHEM", Portland Oregon, 30 July – 1 August 2006. | |
dc.relation.referencesen | [12] Duffell, C. J., Brown, G. J., Barton, N. A. and Stimpson, B. P. (2003). Using optimization algorithms and CFD to improve performance of ultrasonic flowmeters. Proceedings of II International South East Asia Hydrocarbon Flow Measurement Workshop, Kuala Lumpur, 25–28 March 2003. | |
dc.relation.referencesen | [13] Roman, V. I. and Matiko, F. D. (2014). Definition of weighting coefficients of acoustic channels for ultrasonic flowmeters. Metrology and devices, 3, 11–20 (in Ukrainian). | |
dc.relation.uri | https://doi.org/10.1177/014233128400600403 | |
dc.relation.uri | https://doi.org/10.1088/0957-0233/11/12/321 | |
dc.relation.uri | https://doi.org/10.1016/j.flowmeasinst.2014.10.005 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | ультразвуковий витратомір | |
dc.subject | додаткова похибка | |
dc.subject | спотворений потік | |
dc.subject | профіль швидкостей | |
dc.subject | функція Саламі | |
dc.subject | ultrasonic flowmeter | |
dc.subject | additional error | |
dc.subject | distorted flow | |
dc.subject | velocity profile | |
dc.subject | Salami function | |
dc.title | Investigation of ultrasonic flowmeter error in distorted flow using two-peaks Salami functions | |
dc.title.alternative | Дослідження похибки ультразвукового витратоміра за умов спотвореної структури потоку із застосуванням двоядерних функцій Саламі | |
dc.type | Article |
Files
License bundle
1 - 1 of 1