Проста модифікація алгоритму швидкого обчислення зворотного квадратного кореня для чисел з рухомою комою одинарної точності

dc.citation.epage45
dc.citation.issue1
dc.citation.journalTitleАвтоматика, вимірювання та керування
dc.citation.spage39
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.authorМороз, Л. В.
dc.contributor.authorГринчишин, А.
dc.contributor.authorГорячий, О. Я.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-03-07T08:15:50Z
dc.date.available2023-03-07T08:15:50Z
dc.date.created2019-12-30
dc.date.issued2019-12-30
dc.description.abstractОпис прості алгоритма швидкого добування зворотного квадратного кореня з використанням магічної константи зі зменшеними відносними похибками обчислень для чисел типу float.
dc.description.abstractSimple algorithms of the fast inverse square root with the use of magic constant with reduced relative errors for numbers of type float are described in the paper.
dc.format.extent39-45
dc.format.pages7
dc.identifier.citationМороз Л. В. Проста модифікація алгоритму швидкого обчислення зворотного квадратного кореня для чисел з рухомою комою одинарної точності / Л. В. Мороз, А. Гринчишин, О. Я. Горячий // Автоматика, вимірювання та керування. — Львів : Видавництво Львівської політехніки, 2019. — Том 1. — № 1. — С. 39–45.
dc.identifier.citationenMoroz L. V., Hrinchishin A., Horiachii O. Ia. (2019) Prosta modyfikatsiia alhorytmu shvydkoho obchyslennia zvorotnoho kvadratnoho korenia dlia chysel z rukhomoiu komoiu odynarnoi tochnosti [A simple modification of the fast inverse square root calculation algorithm for single-precision floating-point numbers]. Automation, Measuring and Management (Lviv), vol. 1, no 1, pp. 39-45 [in Ukrainian].
dc.identifier.issn2707-2916
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57534
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofАвтоматика, вимірювання та керування, 1 (1), 2019
dc.relation.ispartofAutomation, Measuring and Management, 1 (1), 2019
dc.relation.references1. Multiplier-free divide, square root, and log algorithms / F. Auger, Z. Lou, B. Feuvrie, F. Li // IEEE Signal Process. Mag. 2011. Vol. 28. No. 4. P. 122–126.
dc.relation.references2. Allie M. A. Root of Less Evil / M. Allie, R. Lyons // IEEE Signal Process. Mag.: DSP Tips and Tricks. 2005. Vol. 22. P. 93–96.
dc.relation.references3. Parhami B. Computer Arithmetic: Algorithms and Hardware Designs / B. Parhami. 2nd ed. New York : Oxford Univ. Press, 2010.
dc.relation.references4. Lemaitre Florian. Cholesky Factorization on SIMD multi-core architectures / Florian Lemaitre, Benjamin Couturier, Lionel Lacassagne // Journal of Systems Architecture. Elsevier, 2017. Vol. 79. P. 1–15.
dc.relation.references5. A Fast FPGA Based Architecture for Computation of Square Root and Inverse Square Root / A. Hasnat, T. Bhattacharyya, A. Dey, S. Halder, D. Bhattacharjee // Devices for Integrated Circuit (DevIC): int. conf., 23–24 Mar., 2017. Kalyani, 2017. P. 383–387.
dc.relation.references6. Beebe N. H. F. The Mathematical-Function Computation Handbook: Programming Using the MathCW Portable Software Library / N. H. F. Beebe. Springer, 2017.
dc.relation.references7. Optimizations of Two Compute-bound Scientific Kernels on the SW26010 Many-core Processor / J. Lin, Z. G. Xu, A. Nukada, N. Maruyama, S. Matsuoka // 46th International Conference on Parallel Processing, 14–17 Aug. 2017. Bristol : IEEE, 2017. P. 432–441.
dc.relation.references8. Improving Deep Learning By Inverse Square Root Linear Units (ISRLUS) / Brad Carlile, Guy Delamarter, Paul Kinney, Akiko Marti, Brian Whitney. 2018.
dc.relation.references9. Andriy Hrynchyshyn. An efficient algorithm for fast inverse square root / Hrynchyshyn Andriy, Horyachyy Oleh, Tymoshenko Oleksandr // Przetwarzanie, transmisja i bezpieczeństwo informacji. Bielsko-Biała : Wydawnictwo Naukowe ATH w Bielsku-Białej, 2018. T. 2. P. 105–113.
dc.relation.references10. Hanninen T. Novel detector implementations for 3G LTE downlink and uplink / T. Hanninen, J. Janhunen, M. Juntti // Analog. Integr. Circ. Sig. Process. 2014. Vol. 78. No. 3. P. 645–655.
dc.relation.references11. Floating point unit demonstration on STM32 microcontrollers: Application note AN4044. STMicroelectronics N.V., 2016.
dc.relation.references12. ARM® NEON™ Intrinsics Reference: IHI 0073B. ARM Limited, 2016.
dc.relation.references13. Hsu C. J. An Efficient Hardware Implementation of HON4D Feature Extraction for Real-time Action Recognition / C. J. Hsu, J. L. Chen, L. G. Chen // IEEE International Symposium on Consumer Electronics (ISCE).2015.
dc.relation.references14. A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model / C. H. Hsieh, Y. F. Chiu, Y. H. Shen, T. S. Chu, Y. H. Huang // IEEE Trans. Biomed. Circ. Syst. 2016. Vol. 10. No. 1. P. 219–230.
dc.relation.references15. Ziqiang Li. OFDM Synchronization implementation based on Chisel platform for 5G research / Li Ziqiang, Chen Yun, Zeng Xiaoyang // IEEE 11th International Conference on ASIC (ASICON). Chengdu : IEEE, 2015. P. 1–4.
dc.relation.references16. Sangeetha D. Efficient Scale Invariant Human Detection using Histogram of Oriented Gradients for IoT Services / D. Sangeetha, P. Deepa // IEEE 30th International Conference on VLSI Design and 16th International Conference on EmbeddedSystems. Hyderabad : IEEE, 2017. P. 61–66.
dc.relation.references17. Fog A. Software optimization resources, Instruction tables: Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs [Electronic resource] / A. Fog. Regime of access: http://www.agner.org/optimize/.
dc.relation.references18. x86 and amd64 instruction reference [Electronic resource]. Regime of access: http://www.felixcloutier.com/x86/index.html.
dc.relation.references19. Lomont C. Fast inverse square root [Electronic resource] / C. Lomont // Purdue University : Tech. Rep.,2003. Regime of access: http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf.
dc.relation.references20. Blinn J. Floating-point tricks / J. Blinn // IEEE Comput. Graphics Appl. IEEE, 1997. Vol. 17. No. 4. P. 80–84.
dc.relation.references21. Zafar S. Hardware architecture design and mapping of “Fast Inverse Square Root’s algorithm” / S. Zafar, R. Adapa // International Conference on Advances in Electrical Engineering (ICAEE). 2014. P. 1–4.
dc.relation.references22. Martin P. Eight Rooty Pieces / P. Martin // Overload Journal. No. 135. 2016. P. 8–12.
dc.relation.references23. Fast calculation of inverse square root with the use of magic constant – analytical approach / L. Moroz, C. J. Walczyk, A. Hrynchyshyn, V. Holimath, J.L. Cieslinski // Appl. Math. Computation. Elsevier, 2018. Vol. 316. P. 245–255.
dc.relation.references24. Eberly D. H. GPGPU Programming for Games and Science / D. H. Eberly. Florida : CRC Press, 2015.
dc.relation.references25. Walczyk C. J. Improving the accuracy of the fast inverse square root algorithm [Electronic resource] / C. J. Walczyk, L. V. Moroz, J. L. Cieslinski. – arXiv preprint arXiv: 1802.06302. 2018 Regime of access: https://arxiv.org/pdf/1802.06302.pdf.
dc.relation.referencesen1. Multiplier-free divide, square root, and log algorithms, F. Auger, Z. Lou, B. Feuvrie, F. Li, IEEE Signal Process. Mag. 2011. Vol. 28. No. 4. P. 122–126.
dc.relation.referencesen2. Allie M. A. Root of Less Evil, M. Allie, R. Lyons, IEEE Signal Process. Mag., DSP Tips and Tricks. 2005. Vol. 22. P. 93–96.
dc.relation.referencesen3. Parhami B. Computer Arithmetic: Algorithms and Hardware Designs, B. Parhami. 2nd ed. New York : Oxford Univ. Press, 2010.
dc.relation.referencesen4. Lemaitre Florian. Cholesky Factorization on SIMD multi-core architectures, Florian Lemaitre, Benjamin Couturier, Lionel Lacassagne, Journal of Systems Architecture. Elsevier, 2017. Vol. 79. P. 1–15.
dc.relation.referencesen5. A Fast FPGA Based Architecture for Computation of Square Root and Inverse Square Root, A. Hasnat, T. Bhattacharyya, A. Dey, S. Halder, D. Bhattacharjee, Devices for Integrated Circuit (DevIC): int. conf., 23–24 Mar., 2017. Kalyani, 2017. P. 383–387.
dc.relation.referencesen6. Beebe N. H. F. The Mathematical-Function Computation Handbook: Programming Using the MathCW Portable Software Library, N. H. F. Beebe. Springer, 2017.
dc.relation.referencesen7. Optimizations of Two Compute-bound Scientific Kernels on the SW26010 Many-core Processor, J. Lin, Z. G. Xu, A. Nukada, N. Maruyama, S. Matsuoka, 46th International Conference on Parallel Processing, 14–17 Aug. 2017. Bristol : IEEE, 2017. P. 432–441.
dc.relation.referencesen8. Improving Deep Learning By Inverse Square Root Linear Units (ISRLUS), Brad Carlile, Guy Delamarter, Paul Kinney, Akiko Marti, Brian Whitney. 2018.
dc.relation.referencesen9. Andriy Hrynchyshyn. An efficient algorithm for fast inverse square root, Hrynchyshyn Andriy, Horyachyy Oleh, Tymoshenko Oleksandr, Przetwarzanie, transmisja i bezpieczeństwo informacji. Bielsko-Biała : Wydawnictwo Naukowe ATH w Bielsku-Białej, 2018. T. 2. P. 105–113.
dc.relation.referencesen10. Hanninen T. Novel detector implementations for 3G LTE downlink and uplink, T. Hanninen, J. Janhunen, M. Juntti, Analog. Integr. Circ. Sig. Process. 2014. Vol. 78. No. 3. P. 645–655.
dc.relation.referencesen11. Floating point unit demonstration on STM32 microcontrollers: Application note AN4044. STMicroelectronics N.V., 2016.
dc.relation.referencesen12. ARM® NEON™ Intrinsics Reference: IHI 0073B. ARM Limited, 2016.
dc.relation.referencesen13. Hsu C. J. An Efficient Hardware Implementation of HON4D Feature Extraction for Real-time Action Recognition, C. J. Hsu, J. L. Chen, L. G. Chen, IEEE International Symposium on Consumer Electronics (ISCE).2015.
dc.relation.referencesen14. A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model, C. H. Hsieh, Y. F. Chiu, Y. H. Shen, T. S. Chu, Y. H. Huang, IEEE Trans. Biomed. Circ. Syst. 2016. Vol. 10. No. 1. P. 219–230.
dc.relation.referencesen15. Ziqiang Li. OFDM Synchronization implementation based on Chisel platform for 5G research, Li Ziqiang, Chen Yun, Zeng Xiaoyang, IEEE 11th International Conference on ASIC (ASICON). Chengdu : IEEE, 2015. P. 1–4.
dc.relation.referencesen16. Sangeetha D. Efficient Scale Invariant Human Detection using Histogram of Oriented Gradients for IoT Services, D. Sangeetha, P. Deepa, IEEE 30th International Conference on VLSI Design and 16th International Conference on EmbeddedSystems. Hyderabad : IEEE, 2017. P. 61–66.
dc.relation.referencesen17. Fog A. Software optimization resources, Instruction tables: Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs [Electronic resource], A. Fog. Regime of access: http://www.agner.org/optimize/.
dc.relation.referencesen18. x86 and amd64 instruction reference [Electronic resource]. Regime of access: http://www.felixcloutier.com/x86/index.html.
dc.relation.referencesen19. Lomont C. Fast inverse square root [Electronic resource], C. Lomont, Purdue University : Tech. Rep.,2003. Regime of access: http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf.
dc.relation.referencesen20. Blinn J. Floating-point tricks, J. Blinn, IEEE Comput. Graphics Appl. IEEE, 1997. Vol. 17. No. 4. P. 80–84.
dc.relation.referencesen21. Zafar S. Hardware architecture design and mapping of "Fast Inverse Square Root’s algorithm", S. Zafar, R. Adapa, International Conference on Advances in Electrical Engineering (ICAEE). 2014. P. 1–4.
dc.relation.referencesen22. Martin P. Eight Rooty Pieces, P. Martin, Overload Journal. No. 135. 2016. P. 8–12.
dc.relation.referencesen23. Fast calculation of inverse square root with the use of magic constant – analytical approach, L. Moroz, C. J. Walczyk, A. Hrynchyshyn, V. Holimath, J.L. Cieslinski, Appl. Math. Computation. Elsevier, 2018. Vol. 316. P. 245–255.
dc.relation.referencesen24. Eberly D. H. GPGPU Programming for Games and Science, D. H. Eberly. Florida : CRC Press, 2015.
dc.relation.referencesen25. Walczyk C. J. Improving the accuracy of the fast inverse square root algorithm [Electronic resource], C. J. Walczyk, L. V. Moroz, J. L. Cieslinski, arXiv preprint arXiv: 1802.06302. 2018 Regime of access: https://arxiv.org/pdf/1802.06302.pdf.
dc.relation.urihttp://www.agner.org/optimize/
dc.relation.urihttp://www.felixcloutier.com/x86/index.html
dc.relation.urihttp://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
dc.relation.urihttps://arxiv.org/pdf/1802.06302.pdf
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Мороз Л. В., Гринчишин А., Горячий О. Я., 2019
dc.subjectмагічна константа
dc.subjectчисла типу float
dc.subjectстандарт IEEE-754
dc.subjectвідносна похибка обчислень
dc.subjectзворотний квадратний корінь з рухомою комою
dc.subjectmagic constant
dc.subjectfloating-point numbers
dc.subjectIEEE-754 standard
dc.subjectrelative error
dc.subjectfast inverse square root
dc.subject.udc519.7
dc.titleПроста модифікація алгоритму швидкого обчислення зворотного квадратного кореня для чисел з рухомою комою одинарної точності
dc.title.alternativeA simple modification of the fast inverse square root calculation algorithm for single-precision floating-point numbers
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2019v1n1_Moroz_L_V-A_simple_modification_of_39-45.pdf
Size:
584.47 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: