Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites

dc.citation.epage125
dc.citation.issue1
dc.citation.spage118
dc.contributor.affiliationUniversity Oran 1
dc.contributor.affiliationL.P.P.M.C.A. Université des Sciences et de la Technologie
dc.contributor.affiliationLaboratoire de Chimie des matériaux
dc.contributor.authorOuis, Nora
dc.contributor.authorBelarbi, Assia
dc.contributor.authorMesli, Salima
dc.contributor.authorBenharrats, Nassira
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T10:29:31Z
dc.date.available2024-02-09T10:29:31Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractОдержано новий нанокомпозит на основі електропровідного поліаніліну (PANI) й алжирської монтморилонітової глини під назвою Maghnite, який поєднує електропровідні та теплові властивості (Mag). Зразки нанокомпозитів PANI-Mag синтезовано за допомогою in situ полімеризації в присутності ЦТАБ (цетилтриметиламоній броміду) як органомодифікатора галерей глини. Досліджено електричні та теплові властивості отриманих нанокомпозитів залежно від співвідношення PANI-Mag. Зі збільшенням кількості Ma-ghnite в нанокомпозиті його термічна стабільність помітно покращується, як показано термогравіметричним аналізом. Електропровідність нанокомпозитів нижча, ніж у вільного PANI. За додавання 5 % глини провідність починає падати і зменшується на багато порядків. Одержані результати показують, що провідність нанокомпозитів не залежить істотно від вмісту та дисперсності глини.
dc.description.abstractA new nanocomposite based on conducting polyaniline (PANI) and Algerian montmorillonite clay dubbed Maghnite is proposed to combine conducting and thermal properties (Mag). The PANI-Mag nanocompo-sites samples were made by in situ polymerization with CTABr (cetyl trimethyl ammonium bromide) as the clay galleries' organomodifier. In terms of the PANI-Mag ratio, the electrical and thermal properties of the obtained nanocomposites are investigated. As the amount of Maghnite in the nanocomposite increases, thermal stability improves noticeably, as measured by thermal gravimetric analysis. The electric conductivity of nanocomposites is lower than that of free PANI. As the device is loaded with 5 % clay, the conductivity begins to percolate and decreases by many orders of magnitude. The findings show that the conductivity of nanocomposites is largely independent of clay loading and dispersion.
dc.format.extent118-125
dc.format.pages8
dc.identifier.citationImprovement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites / Nora Ouis, Assia Belarbi, Salima Mesli, Nassira Benharrats // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 118–125.
dc.identifier.citationenImprovement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites / Nora Ouis, Assia Belarbi, Salima Mesli, Nassira Benharrats // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 118–125.
dc.identifier.doidoi.org/10.23939/chcht17.01.118
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61211
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (17), 2023
dc.relation.references[1] Gonzalez, L.; Lafleur, P.; Lozano, T.; Morales, A.B.; Garcia, R.; Angeles, M.; Rodriguez, F.; Sanchez, S. Mechanical and Thermal Properties of Polypropylene/Montmorillonite Nanocomposites Using Stearic Acid as Both an Interface and a Clay Surface Modifi-er. Polym. Compos. 2014, 35, 1-9. https://doi.org/10.1002/pc.22627
dc.relation.references[2] Valandro, S.R.; Lombardo, P.C.; Poli, A.L.; Horn Jr., M.A.; Neumann, M.G.; Cavalheiro, C.C.S. Thermal Properties of Poly (Methyl Methacrylate)/Organomodified Montmorillonite Nanocomposites Obtained by in situ Photopolymerization. Mater. Res. 2014, 17, 265-270. https://doi.org/10.1590/S1516-14392013005000173
dc.relation.references[3] Dhatarwal, P.; Sengwa, R.J.; Choudhary S. Effect of Intercalated and Exfoliated Montmorillonite Clay on the Structural, Dielectric and Electrical Properties of Plasticized Nanocomposite Solid Polymer Electrolytes. Compos. Commun. 2017, 5, 1-7. https://doi.org/10.1016/j.coco.2017.05.001
dc.relation.references[4] Cui, Y.; Kumar, S.; Kona, B.R.; van Houcke, D. Gas Barrier Properties of Polymer/Clay Nanocomposites. RSC Adv. 2015, 5, 63669-63690. https://dx.doi.org/10.1039/c5ra10333a
dc.relation.references[5] MacDiarmid, A.G. Nobel Lecture: “Synthetic Metals”: A Novel Role for Organic Polymers. Rev. Mod. Phys. 2001, 73, 701-712. https://doi.org/10.1103/RevModPhys.73.701
dc.relation.references[6] Belbachir, M.; Bensaoula, A. Composition and Method for Catalysis Using Bentonite. US 7, 094, 823 B2, January 1, 2006.
dc.relation.references[7] Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. A New Green Catalyst for Synthesis of bis-Macromonomers of Polyethylene Glycol (PEG). Chem. Chem. Technol. 2020, 14, 468-473. https://doi.org/10.23939/chcht14.04.468
dc.relation.references[8] Zhu, J.; He, H.; Zhu, L.; Wen, X.; Deng, F. Characterization of Organic Phases in the Interlayer of Montmorillonite Using FTIR and 13C NMR. J. Colloid Interface Sci. 2005, 286, 239-244. https://doi.org/10.1016/j.jcis.2004.12.048
dc.relation.references[9] Zhu, L.; Zhu, R.; Xu, L.; Ruan, X. Influence of Clay Charge Densities and Surfactant Loading Amount on the Microstructure of CTMA–Montmorillonite Hybrids. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 304, 41-48. https://doi.org/10.1016/j.colsurfa.2007.04.019
dc.relation.references[10] Caillere, S.; Henin, S.; Rautureau, M. Minéralogie des argiles; Masson: Paris, 1982.
dc.relation.references[11] Tang, J.; Jing, X.; Wang, B.; Wang, F. Infrared Spectra of Soluble Polyaniline. Synth. Met. 1988, 24, 231-238. https://doi.org/10.1016/0379-6779(88)90261-5
dc.relation.references[12] Ghosh, M.; Meikap, A.K.; Chattopadhyay, S.K.; Chatterjee, S. Low Temperature Transport Properties of Cl-Doped Conducting Polyaniline. J. Phys. Chem. Solids 2001, 62, 475-484. https://doi.org/10.1016/S0022-3697(00)00189-X
dc.relation.references[13] Yan, H.; Toshima, N. Chemical Preparation of Polyaniline and its Derivatives by Using Cerium(IV) Sulfate. Synth. Met. 1995, 69, 151-152. https://doi.org/10.1016/0379-6779(94)02398-I
dc.relation.references[14] Rout, T.K.; Jha, G.; Singh, A.K.; Bandyopadhyay, N.; Mohanty, O.N. Development of Conducting Polyaniline Coating: A Novel Approach to Superior Corrosion Resistance. Surf. Coat. Technol. 2003, 167, 16-24. https://doi.org/10.1016/S0257-8972(02)00862-9
dc.relation.references[15] Ruckenstein, E.; Yang, S. An Emulsion Pathway to Electrically Conductive Polyaniline-Polystyrene Composites. Synth. Met. 1993, 53, 283-292. https://doi.org/10.1016/0379-6779(93)91097-L
dc.relation.references[16] Khiew, P.S.; Huang, N.M.; Radiman, S.; Ahmad, Md.S. Synthesis and Characterization of Conducting Polyaniline-Coated Cadmium Sulphide Nanocomposites in Reverse Microemulsion. Mater. Lett. 2004, 58, 516-521. https://doi.org/10.1016/S0167-577X(03)00537-8
dc.relation.references[17] Li, Q.; Cruz, L.; Philips, P. Granular-Rod Model for Electronic Conduction in Polyaniline. Phys. Rev. B 1993, 47, 1840-1845. https://doi.org/10.1103/PhysRevB.47.1840
dc.relation.references[18] Pouget, J.P.; Hsu, C.-H.; MacDiarmid, A.G.; Epstein, A.J. Structural Investigation of Metallic PAN-CSA and Some of its Derivatives. Synth. Met. 1995, 69, 119-120. https://doi.org/10.1016/0379-6779(94)02382-9
dc.relation.references[19] Pouget, J.P.; Jozefowicz, M.E.; Epstein, A.J.; Tang, X.; Mac-Diarmid, A.G. X-Ray Structure of Polyaniline. Macromolecules 1991, 24, 779-789. https://doi.org/10.1021/ma00003a022
dc.relation.references[20] Chan, H.S.O.; Ng, S.C.; Sim, W.S.; Seow, S.H.; Tan, K.L.; Tan, B.T.G. Synthesis and Characterization of Conducting poly(o-Aminobenzyl Alcohol) and its Copolymers with Aniline. Macromolecules 1993, 26, 144-150. https://doi.org/10.1021/ma00053a022
dc.relation.references[21] Tsocheva, D.; ZIatkov, T.; Terlemezyan, L. Thermoanalytical Studies of Polyaniline ‘Emeraldine base’. J. Therm. Anal. Calorim. 1998, 53, 895-904. https://doi.org/10.1023/A:1010146619792
dc.relation.references[22] Ghosh, P.; Chakrabarti, A.; Siddhanta, S.K. Studies on Stable Aqueous Polyaniline Prepared with the Use of Polyacrylamide as the Water Soluble Support Polymer. Eur. Polym. J. 1999, 35, 803-813. https://doi.org/10.1016/S0014-3057(98)00065-2
dc.relation.references[23] Schemid, A.L.; Córdoba de Torresi, S.I.; Bassetto, A.N.; Carlos, I.A. Structural, Morphological and Spectroelectrochemical Characterization of poly (2-Ethyl Aniline). J. Braz. Chem. Soc. 2000, 11, 317-323. https://doi.org/10.1590/S0103-50532000000300020
dc.relation.references[24] Yoshimoto, S.; Ohashi, F.; Ohnishi, Y.; Nonami, T. Synthesis of Polyaniline–Montmorillonite Nanocomposites by the Mechano-chemical Intercalation Method. Synth. Met. 2004, 145, 265-270. https://doi.org/10.1016/j.synthmet.2004.05.011
dc.relation.references[25] Chan, H.S.O.; Teo, M.Y.B.; Khor, E., Lim, C.N. Thermal Analysis of Conducting Polymers Part I. Journal of Thermal Analysis 1989, 35, 765-774. https://doi.org/10.1007/BF02057231
dc.relation.references[26] Neoh, K.G.; Kang, E.T.; Tan, K.L. Thermal Degradation of Leucoemeraldine, Emeraldine Base and their Complexes. Thermo-chim. Acta 1990, 171, 279-291. https://doi.org/10.1016/0040-6031(90)87027-A
dc.relation.references[27] Oh, S.Y.; Koh, H.C.; Choi, J.W.; Rhee, H.-W.; Kim, H.S. Preparation and Properties of Electrically Conductive Polyaniline-Polystyrene Composites by in-situ Polymerization and Blending. Polym. J. 1997, 29, 404-409. https://doi.org/10.1295/polymj.29.404
dc.relation.references[28] Wei, Y.; Jang, G.-W.; Hsueh, K.F.; Scheer, E.M.; MacDiarmid, A.G.; Epstein, A.J. Thermal Transitions and Mechanical Properties of Films of Chemically Prepared Polyaniline. Polymer 1992, 33, 314-322. https://doi.org/10.1016/0032-3861(92)90988-9
dc.relation.references[29] Lee, D.; Char, K. Thermal Degradation Behavior of Polyaniline in Polyaniline/Na+-Montmorillonite Nanocomposites. Polym. Degrad. Stab. 2002, 75, 555-560. https://doi.org/10.1016/S0141-3910(01)00259-2
dc.relation.references[30] Huang, W.-S.; Humphrey, B.D.; MacDiamid, A.G. Polyaniline, a Novel Conducting Polymer. Morphology and Chemistry of its Oxidation and Reduction in Aqueous Electrolytes. J. Chem. Soc., Faraday trans. I 1986, 82, 2385-2400. https://doi.org/10.1039/F19868202385
dc.relation.references[31] Desilvestro, J.; Scheifele, W.; Hass, O. In Situ Determination of Gravimetric and Volumetric Charge Densities of Battery Electrodes: Polyaniline in Aqueous and Nonaqueous Electrolytes. J. Electrochem. Soc. 1992, 139, 2727. https://doi.org/10.1149/1.2068971
dc.relation.references[32] Kobayashi, T.; Yoneyama, H.; Tamura, H. Oxidative Degrada-tion Pathway of Polyaniline Film Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 293-297. https://doi.org/10.1016/0022-0728(84)80230-2
dc.relation.referencesen[1] Gonzalez, L.; Lafleur, P.; Lozano, T.; Morales, A.B.; Garcia, R.; Angeles, M.; Rodriguez, F.; Sanchez, S. Mechanical and Thermal Properties of Polypropylene/Montmorillonite Nanocomposites Using Stearic Acid as Both an Interface and a Clay Surface Modifi-er. Polym. Compos. 2014, 35, 1-9. https://doi.org/10.1002/pc.22627
dc.relation.referencesen[2] Valandro, S.R.; Lombardo, P.C.; Poli, A.L.; Horn Jr., M.A.; Neumann, M.G.; Cavalheiro, C.C.S. Thermal Properties of Poly (Methyl Methacrylate)/Organomodified Montmorillonite Nanocomposites Obtained by in situ Photopolymerization. Mater. Res. 2014, 17, 265-270. https://doi.org/10.1590/S1516-14392013005000173
dc.relation.referencesen[3] Dhatarwal, P.; Sengwa, R.J.; Choudhary S. Effect of Intercalated and Exfoliated Montmorillonite Clay on the Structural, Dielectric and Electrical Properties of Plasticized Nanocomposite Solid Polymer Electrolytes. Compos. Commun. 2017, 5, 1-7. https://doi.org/10.1016/j.coco.2017.05.001
dc.relation.referencesen[4] Cui, Y.; Kumar, S.; Kona, B.R.; van Houcke, D. Gas Barrier Properties of Polymer/Clay Nanocomposites. RSC Adv. 2015, 5, 63669-63690. https://dx.doi.org/10.1039/P.5ra10333a
dc.relation.referencesen[5] MacDiarmid, A.G. Nobel Lecture: "Synthetic Metals": A Novel Role for Organic Polymers. Rev. Mod. Phys. 2001, 73, 701-712. https://doi.org/10.1103/RevModPhys.73.701
dc.relation.referencesen[6] Belbachir, M.; Bensaoula, A. Composition and Method for Catalysis Using Bentonite. US 7, 094, 823 B2, January 1, 2006.
dc.relation.referencesen[7] Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. A New Green Catalyst for Synthesis of bis-Macromonomers of Polyethylene Glycol (PEG). Chem. Chem. Technol. 2020, 14, 468-473. https://doi.org/10.23939/chcht14.04.468
dc.relation.referencesen[8] Zhu, J.; He, H.; Zhu, L.; Wen, X.; Deng, F. Characterization of Organic Phases in the Interlayer of Montmorillonite Using FTIR and 13C NMR. J. Colloid Interface Sci. 2005, 286, 239-244. https://doi.org/10.1016/j.jcis.2004.12.048
dc.relation.referencesen[9] Zhu, L.; Zhu, R.; Xu, L.; Ruan, X. Influence of Clay Charge Densities and Surfactant Loading Amount on the Microstructure of CTMA–Montmorillonite Hybrids. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 304, 41-48. https://doi.org/10.1016/j.colsurfa.2007.04.019
dc.relation.referencesen[10] Caillere, S.; Henin, S.; Rautureau, M. Minéralogie des argiles; Masson: Paris, 1982.
dc.relation.referencesen[11] Tang, J.; Jing, X.; Wang, B.; Wang, F. Infrared Spectra of Soluble Polyaniline. Synth. Met. 1988, 24, 231-238. https://doi.org/10.1016/0379-6779(88)90261-5
dc.relation.referencesen[12] Ghosh, M.; Meikap, A.K.; Chattopadhyay, S.K.; Chatterjee, S. Low Temperature Transport Properties of Cl-Doped Conducting Polyaniline. J. Phys. Chem. Solids 2001, 62, 475-484. https://doi.org/10.1016/S0022-3697(00)00189-X
dc.relation.referencesen[13] Yan, H.; Toshima, N. Chemical Preparation of Polyaniline and its Derivatives by Using Cerium(IV) Sulfate. Synth. Met. 1995, 69, 151-152. https://doi.org/10.1016/0379-6779(94)02398-I
dc.relation.referencesen[14] Rout, T.K.; Jha, G.; Singh, A.K.; Bandyopadhyay, N.; Mohanty, O.N. Development of Conducting Polyaniline Coating: A Novel Approach to Superior Corrosion Resistance. Surf. Coat. Technol. 2003, 167, 16-24. https://doi.org/10.1016/S0257-8972(02)00862-9
dc.relation.referencesen[15] Ruckenstein, E.; Yang, S. An Emulsion Pathway to Electrically Conductive Polyaniline-Polystyrene Composites. Synth. Met. 1993, 53, 283-292. https://doi.org/10.1016/0379-6779(93)91097-L
dc.relation.referencesen[16] Khiew, P.S.; Huang, N.M.; Radiman, S.; Ahmad, Md.S. Synthesis and Characterization of Conducting Polyaniline-Coated Cadmium Sulphide Nanocomposites in Reverse Microemulsion. Mater. Lett. 2004, 58, 516-521. https://doi.org/10.1016/S0167-577X(03)00537-8
dc.relation.referencesen[17] Li, Q.; Cruz, L.; Philips, P. Granular-Rod Model for Electronic Conduction in Polyaniline. Phys. Rev. B 1993, 47, 1840-1845. https://doi.org/10.1103/PhysRevB.47.1840
dc.relation.referencesen[18] Pouget, J.P.; Hsu, C.-H.; MacDiarmid, A.G.; Epstein, A.J. Structural Investigation of Metallic PAN-CSA and Some of its Derivatives. Synth. Met. 1995, 69, 119-120. https://doi.org/10.1016/0379-6779(94)02382-9
dc.relation.referencesen[19] Pouget, J.P.; Jozefowicz, M.E.; Epstein, A.J.; Tang, X.; Mac-Diarmid, A.G. X-Ray Structure of Polyaniline. Macromolecules 1991, 24, 779-789. https://doi.org/10.1021/ma00003a022
dc.relation.referencesen[20] Chan, H.S.O.; Ng, S.C.; Sim, W.S.; Seow, S.H.; Tan, K.L.; Tan, B.T.G. Synthesis and Characterization of Conducting poly(o-Aminobenzyl Alcohol) and its Copolymers with Aniline. Macromolecules 1993, 26, 144-150. https://doi.org/10.1021/ma00053a022
dc.relation.referencesen[21] Tsocheva, D.; ZIatkov, T.; Terlemezyan, L. Thermoanalytical Studies of Polyaniline ‘Emeraldine base’. J. Therm. Anal. Calorim. 1998, 53, 895-904. https://doi.org/10.1023/A:1010146619792
dc.relation.referencesen[22] Ghosh, P.; Chakrabarti, A.; Siddhanta, S.K. Studies on Stable Aqueous Polyaniline Prepared with the Use of Polyacrylamide as the Water Soluble Support Polymer. Eur. Polym. J. 1999, 35, 803-813. https://doi.org/10.1016/S0014-3057(98)00065-2
dc.relation.referencesen[23] Schemid, A.L.; Córdoba de Torresi, S.I.; Bassetto, A.N.; Carlos, I.A. Structural, Morphological and Spectroelectrochemical Characterization of poly (2-Ethyl Aniline). J. Braz. Chem. Soc. 2000, 11, 317-323. https://doi.org/10.1590/S0103-50532000000300020
dc.relation.referencesen[24] Yoshimoto, S.; Ohashi, F.; Ohnishi, Y.; Nonami, T. Synthesis of Polyaniline–Montmorillonite Nanocomposites by the Mechano-chemical Intercalation Method. Synth. Met. 2004, 145, 265-270. https://doi.org/10.1016/j.synthmet.2004.05.011
dc.relation.referencesen[25] Chan, H.S.O.; Teo, M.Y.B.; Khor, E., Lim, C.N. Thermal Analysis of Conducting Polymers Part I. Journal of Thermal Analysis 1989, 35, 765-774. https://doi.org/10.1007/BF02057231
dc.relation.referencesen[26] Neoh, K.G.; Kang, E.T.; Tan, K.L. Thermal Degradation of Leucoemeraldine, Emeraldine Base and their Complexes. Thermo-chim. Acta 1990, 171, 279-291. https://doi.org/10.1016/0040-6031(90)87027-A
dc.relation.referencesen[27] Oh, S.Y.; Koh, H.C.; Choi, J.W.; Rhee, H.-W.; Kim, H.S. Preparation and Properties of Electrically Conductive Polyaniline-Polystyrene Composites by in-situ Polymerization and Blending. Polym. J. 1997, 29, 404-409. https://doi.org/10.1295/polymj.29.404
dc.relation.referencesen[28] Wei, Y.; Jang, G.-W.; Hsueh, K.F.; Scheer, E.M.; MacDiarmid, A.G.; Epstein, A.J. Thermal Transitions and Mechanical Properties of Films of Chemically Prepared Polyaniline. Polymer 1992, 33, 314-322. https://doi.org/10.1016/0032-3861(92)90988-9
dc.relation.referencesen[29] Lee, D.; Char, K. Thermal Degradation Behavior of Polyaniline in Polyaniline/Na+-Montmorillonite Nanocomposites. Polym. Degrad. Stab. 2002, 75, 555-560. https://doi.org/10.1016/S0141-3910(01)00259-2
dc.relation.referencesen[30] Huang, W.-S.; Humphrey, B.D.; MacDiamid, A.G. Polyaniline, a Novel Conducting Polymer. Morphology and Chemistry of its Oxidation and Reduction in Aqueous Electrolytes. J. Chem. Soc., Faraday trans. I 1986, 82, 2385-2400. https://doi.org/10.1039/F19868202385
dc.relation.referencesen[31] Desilvestro, J.; Scheifele, W.; Hass, O. In Situ Determination of Gravimetric and Volumetric Charge Densities of Battery Electrodes: Polyaniline in Aqueous and Nonaqueous Electrolytes. J. Electrochem. Soc. 1992, 139, 2727. https://doi.org/10.1149/1.2068971
dc.relation.referencesen[32] Kobayashi, T.; Yoneyama, H.; Tamura, H. Oxidative Degrada-tion Pathway of Polyaniline Film Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 293-297. https://doi.org/10.1016/0022-0728(84)80230-2
dc.relation.urihttps://doi.org/10.1002/pc.22627
dc.relation.urihttps://doi.org/10.1590/S1516-14392013005000173
dc.relation.urihttps://doi.org/10.1016/j.coco.2017.05.001
dc.relation.urihttps://dx.doi.org/10.1039/c5ra10333a
dc.relation.urihttps://doi.org/10.1103/RevModPhys.73.701
dc.relation.urihttps://doi.org/10.23939/chcht14.04.468
dc.relation.urihttps://doi.org/10.1016/j.jcis.2004.12.048
dc.relation.urihttps://doi.org/10.1016/j.colsurfa.2007.04.019
dc.relation.urihttps://doi.org/10.1016/0379-6779(88)90261-5
dc.relation.urihttps://doi.org/10.1016/S0022-3697(00)00189-X
dc.relation.urihttps://doi.org/10.1016/0379-6779(94)02398-I
dc.relation.urihttps://doi.org/10.1016/S0257-8972(02)00862-9
dc.relation.urihttps://doi.org/10.1016/0379-6779(93)91097-L
dc.relation.urihttps://doi.org/10.1016/S0167-577X(03)00537-8
dc.relation.urihttps://doi.org/10.1103/PhysRevB.47.1840
dc.relation.urihttps://doi.org/10.1016/0379-6779(94)02382-9
dc.relation.urihttps://doi.org/10.1021/ma00003a022
dc.relation.urihttps://doi.org/10.1021/ma00053a022
dc.relation.urihttps://doi.org/10.1023/A:1010146619792
dc.relation.urihttps://doi.org/10.1016/S0014-3057(98)00065-2
dc.relation.urihttps://doi.org/10.1590/S0103-50532000000300020
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2004.05.011
dc.relation.urihttps://doi.org/10.1007/BF02057231
dc.relation.urihttps://doi.org/10.1016/0040-6031(90)87027-A
dc.relation.urihttps://doi.org/10.1295/polymj.29.404
dc.relation.urihttps://doi.org/10.1016/0032-3861(92)90988-9
dc.relation.urihttps://doi.org/10.1016/S0141-3910(01)00259-2
dc.relation.urihttps://doi.org/10.1039/F19868202385
dc.relation.urihttps://doi.org/10.1149/1.2068971
dc.relation.urihttps://doi.org/10.1016/0022-0728(84)80230-2
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Ouis N., Belarbi A., Mesli S., Benharrats N., 2023
dc.subjectінтеркальована
dc.subjectрозшарована структура
dc.subjectглина
dc.subjectелектропровідний полімер
dc.subjectтеплові властивості
dc.subjectintercalated
dc.subjectexfoliated structure
dc.subjectclay
dc.subjectconductor polymer
dc.subjectthermal properties
dc.titleImprovement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites
dc.title.alternativeПокращення електропровідності та термостійкості нанокомпозитів поліанілін-maghnite
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n1_Ouis_N-Improvement_of_Electrical_118-125.pdf
Size:
651.84 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n1_Ouis_N-Improvement_of_Electrical_118-125__COVER.png
Size:
1.32 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: