Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites
dc.citation.epage | 125 | |
dc.citation.issue | 1 | |
dc.citation.spage | 118 | |
dc.contributor.affiliation | University Oran 1 | |
dc.contributor.affiliation | L.P.P.M.C.A. Université des Sciences et de la Technologie | |
dc.contributor.affiliation | Laboratoire de Chimie des matériaux | |
dc.contributor.author | Ouis, Nora | |
dc.contributor.author | Belarbi, Assia | |
dc.contributor.author | Mesli, Salima | |
dc.contributor.author | Benharrats, Nassira | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T10:29:31Z | |
dc.date.available | 2024-02-09T10:29:31Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Одержано новий нанокомпозит на основі електропровідного поліаніліну (PANI) й алжирської монтморилонітової глини під назвою Maghnite, який поєднує електропровідні та теплові властивості (Mag). Зразки нанокомпозитів PANI-Mag синтезовано за допомогою in situ полімеризації в присутності ЦТАБ (цетилтриметиламоній броміду) як органомодифікатора галерей глини. Досліджено електричні та теплові властивості отриманих нанокомпозитів залежно від співвідношення PANI-Mag. Зі збільшенням кількості Ma-ghnite в нанокомпозиті його термічна стабільність помітно покращується, як показано термогравіметричним аналізом. Електропровідність нанокомпозитів нижча, ніж у вільного PANI. За додавання 5 % глини провідність починає падати і зменшується на багато порядків. Одержані результати показують, що провідність нанокомпозитів не залежить істотно від вмісту та дисперсності глини. | |
dc.description.abstract | A new nanocomposite based on conducting polyaniline (PANI) and Algerian montmorillonite clay dubbed Maghnite is proposed to combine conducting and thermal properties (Mag). The PANI-Mag nanocompo-sites samples were made by in situ polymerization with CTABr (cetyl trimethyl ammonium bromide) as the clay galleries' organomodifier. In terms of the PANI-Mag ratio, the electrical and thermal properties of the obtained nanocomposites are investigated. As the amount of Maghnite in the nanocomposite increases, thermal stability improves noticeably, as measured by thermal gravimetric analysis. The electric conductivity of nanocomposites is lower than that of free PANI. As the device is loaded with 5 % clay, the conductivity begins to percolate and decreases by many orders of magnitude. The findings show that the conductivity of nanocomposites is largely independent of clay loading and dispersion. | |
dc.format.extent | 118-125 | |
dc.format.pages | 8 | |
dc.identifier.citation | Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites / Nora Ouis, Assia Belarbi, Salima Mesli, Nassira Benharrats // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 118–125. | |
dc.identifier.citationen | Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites / Nora Ouis, Assia Belarbi, Salima Mesli, Nassira Benharrats // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 118–125. | |
dc.identifier.doi | doi.org/10.23939/chcht17.01.118 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61211 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (17), 2023 | |
dc.relation.references | [1] Gonzalez, L.; Lafleur, P.; Lozano, T.; Morales, A.B.; Garcia, R.; Angeles, M.; Rodriguez, F.; Sanchez, S. Mechanical and Thermal Properties of Polypropylene/Montmorillonite Nanocomposites Using Stearic Acid as Both an Interface and a Clay Surface Modifi-er. Polym. Compos. 2014, 35, 1-9. https://doi.org/10.1002/pc.22627 | |
dc.relation.references | [2] Valandro, S.R.; Lombardo, P.C.; Poli, A.L.; Horn Jr., M.A.; Neumann, M.G.; Cavalheiro, C.C.S. Thermal Properties of Poly (Methyl Methacrylate)/Organomodified Montmorillonite Nanocomposites Obtained by in situ Photopolymerization. Mater. Res. 2014, 17, 265-270. https://doi.org/10.1590/S1516-14392013005000173 | |
dc.relation.references | [3] Dhatarwal, P.; Sengwa, R.J.; Choudhary S. Effect of Intercalated and Exfoliated Montmorillonite Clay on the Structural, Dielectric and Electrical Properties of Plasticized Nanocomposite Solid Polymer Electrolytes. Compos. Commun. 2017, 5, 1-7. https://doi.org/10.1016/j.coco.2017.05.001 | |
dc.relation.references | [4] Cui, Y.; Kumar, S.; Kona, B.R.; van Houcke, D. Gas Barrier Properties of Polymer/Clay Nanocomposites. RSC Adv. 2015, 5, 63669-63690. https://dx.doi.org/10.1039/c5ra10333a | |
dc.relation.references | [5] MacDiarmid, A.G. Nobel Lecture: “Synthetic Metals”: A Novel Role for Organic Polymers. Rev. Mod. Phys. 2001, 73, 701-712. https://doi.org/10.1103/RevModPhys.73.701 | |
dc.relation.references | [6] Belbachir, M.; Bensaoula, A. Composition and Method for Catalysis Using Bentonite. US 7, 094, 823 B2, January 1, 2006. | |
dc.relation.references | [7] Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. A New Green Catalyst for Synthesis of bis-Macromonomers of Polyethylene Glycol (PEG). Chem. Chem. Technol. 2020, 14, 468-473. https://doi.org/10.23939/chcht14.04.468 | |
dc.relation.references | [8] Zhu, J.; He, H.; Zhu, L.; Wen, X.; Deng, F. Characterization of Organic Phases in the Interlayer of Montmorillonite Using FTIR and 13C NMR. J. Colloid Interface Sci. 2005, 286, 239-244. https://doi.org/10.1016/j.jcis.2004.12.048 | |
dc.relation.references | [9] Zhu, L.; Zhu, R.; Xu, L.; Ruan, X. Influence of Clay Charge Densities and Surfactant Loading Amount on the Microstructure of CTMA–Montmorillonite Hybrids. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 304, 41-48. https://doi.org/10.1016/j.colsurfa.2007.04.019 | |
dc.relation.references | [10] Caillere, S.; Henin, S.; Rautureau, M. Minéralogie des argiles; Masson: Paris, 1982. | |
dc.relation.references | [11] Tang, J.; Jing, X.; Wang, B.; Wang, F. Infrared Spectra of Soluble Polyaniline. Synth. Met. 1988, 24, 231-238. https://doi.org/10.1016/0379-6779(88)90261-5 | |
dc.relation.references | [12] Ghosh, M.; Meikap, A.K.; Chattopadhyay, S.K.; Chatterjee, S. Low Temperature Transport Properties of Cl-Doped Conducting Polyaniline. J. Phys. Chem. Solids 2001, 62, 475-484. https://doi.org/10.1016/S0022-3697(00)00189-X | |
dc.relation.references | [13] Yan, H.; Toshima, N. Chemical Preparation of Polyaniline and its Derivatives by Using Cerium(IV) Sulfate. Synth. Met. 1995, 69, 151-152. https://doi.org/10.1016/0379-6779(94)02398-I | |
dc.relation.references | [14] Rout, T.K.; Jha, G.; Singh, A.K.; Bandyopadhyay, N.; Mohanty, O.N. Development of Conducting Polyaniline Coating: A Novel Approach to Superior Corrosion Resistance. Surf. Coat. Technol. 2003, 167, 16-24. https://doi.org/10.1016/S0257-8972(02)00862-9 | |
dc.relation.references | [15] Ruckenstein, E.; Yang, S. An Emulsion Pathway to Electrically Conductive Polyaniline-Polystyrene Composites. Synth. Met. 1993, 53, 283-292. https://doi.org/10.1016/0379-6779(93)91097-L | |
dc.relation.references | [16] Khiew, P.S.; Huang, N.M.; Radiman, S.; Ahmad, Md.S. Synthesis and Characterization of Conducting Polyaniline-Coated Cadmium Sulphide Nanocomposites in Reverse Microemulsion. Mater. Lett. 2004, 58, 516-521. https://doi.org/10.1016/S0167-577X(03)00537-8 | |
dc.relation.references | [17] Li, Q.; Cruz, L.; Philips, P. Granular-Rod Model for Electronic Conduction in Polyaniline. Phys. Rev. B 1993, 47, 1840-1845. https://doi.org/10.1103/PhysRevB.47.1840 | |
dc.relation.references | [18] Pouget, J.P.; Hsu, C.-H.; MacDiarmid, A.G.; Epstein, A.J. Structural Investigation of Metallic PAN-CSA and Some of its Derivatives. Synth. Met. 1995, 69, 119-120. https://doi.org/10.1016/0379-6779(94)02382-9 | |
dc.relation.references | [19] Pouget, J.P.; Jozefowicz, M.E.; Epstein, A.J.; Tang, X.; Mac-Diarmid, A.G. X-Ray Structure of Polyaniline. Macromolecules 1991, 24, 779-789. https://doi.org/10.1021/ma00003a022 | |
dc.relation.references | [20] Chan, H.S.O.; Ng, S.C.; Sim, W.S.; Seow, S.H.; Tan, K.L.; Tan, B.T.G. Synthesis and Characterization of Conducting poly(o-Aminobenzyl Alcohol) and its Copolymers with Aniline. Macromolecules 1993, 26, 144-150. https://doi.org/10.1021/ma00053a022 | |
dc.relation.references | [21] Tsocheva, D.; ZIatkov, T.; Terlemezyan, L. Thermoanalytical Studies of Polyaniline ‘Emeraldine base’. J. Therm. Anal. Calorim. 1998, 53, 895-904. https://doi.org/10.1023/A:1010146619792 | |
dc.relation.references | [22] Ghosh, P.; Chakrabarti, A.; Siddhanta, S.K. Studies on Stable Aqueous Polyaniline Prepared with the Use of Polyacrylamide as the Water Soluble Support Polymer. Eur. Polym. J. 1999, 35, 803-813. https://doi.org/10.1016/S0014-3057(98)00065-2 | |
dc.relation.references | [23] Schemid, A.L.; Córdoba de Torresi, S.I.; Bassetto, A.N.; Carlos, I.A. Structural, Morphological and Spectroelectrochemical Characterization of poly (2-Ethyl Aniline). J. Braz. Chem. Soc. 2000, 11, 317-323. https://doi.org/10.1590/S0103-50532000000300020 | |
dc.relation.references | [24] Yoshimoto, S.; Ohashi, F.; Ohnishi, Y.; Nonami, T. Synthesis of Polyaniline–Montmorillonite Nanocomposites by the Mechano-chemical Intercalation Method. Synth. Met. 2004, 145, 265-270. https://doi.org/10.1016/j.synthmet.2004.05.011 | |
dc.relation.references | [25] Chan, H.S.O.; Teo, M.Y.B.; Khor, E., Lim, C.N. Thermal Analysis of Conducting Polymers Part I. Journal of Thermal Analysis 1989, 35, 765-774. https://doi.org/10.1007/BF02057231 | |
dc.relation.references | [26] Neoh, K.G.; Kang, E.T.; Tan, K.L. Thermal Degradation of Leucoemeraldine, Emeraldine Base and their Complexes. Thermo-chim. Acta 1990, 171, 279-291. https://doi.org/10.1016/0040-6031(90)87027-A | |
dc.relation.references | [27] Oh, S.Y.; Koh, H.C.; Choi, J.W.; Rhee, H.-W.; Kim, H.S. Preparation and Properties of Electrically Conductive Polyaniline-Polystyrene Composites by in-situ Polymerization and Blending. Polym. J. 1997, 29, 404-409. https://doi.org/10.1295/polymj.29.404 | |
dc.relation.references | [28] Wei, Y.; Jang, G.-W.; Hsueh, K.F.; Scheer, E.M.; MacDiarmid, A.G.; Epstein, A.J. Thermal Transitions and Mechanical Properties of Films of Chemically Prepared Polyaniline. Polymer 1992, 33, 314-322. https://doi.org/10.1016/0032-3861(92)90988-9 | |
dc.relation.references | [29] Lee, D.; Char, K. Thermal Degradation Behavior of Polyaniline in Polyaniline/Na+-Montmorillonite Nanocomposites. Polym. Degrad. Stab. 2002, 75, 555-560. https://doi.org/10.1016/S0141-3910(01)00259-2 | |
dc.relation.references | [30] Huang, W.-S.; Humphrey, B.D.; MacDiamid, A.G. Polyaniline, a Novel Conducting Polymer. Morphology and Chemistry of its Oxidation and Reduction in Aqueous Electrolytes. J. Chem. Soc., Faraday trans. I 1986, 82, 2385-2400. https://doi.org/10.1039/F19868202385 | |
dc.relation.references | [31] Desilvestro, J.; Scheifele, W.; Hass, O. In Situ Determination of Gravimetric and Volumetric Charge Densities of Battery Electrodes: Polyaniline in Aqueous and Nonaqueous Electrolytes. J. Electrochem. Soc. 1992, 139, 2727. https://doi.org/10.1149/1.2068971 | |
dc.relation.references | [32] Kobayashi, T.; Yoneyama, H.; Tamura, H. Oxidative Degrada-tion Pathway of Polyaniline Film Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 293-297. https://doi.org/10.1016/0022-0728(84)80230-2 | |
dc.relation.referencesen | [1] Gonzalez, L.; Lafleur, P.; Lozano, T.; Morales, A.B.; Garcia, R.; Angeles, M.; Rodriguez, F.; Sanchez, S. Mechanical and Thermal Properties of Polypropylene/Montmorillonite Nanocomposites Using Stearic Acid as Both an Interface and a Clay Surface Modifi-er. Polym. Compos. 2014, 35, 1-9. https://doi.org/10.1002/pc.22627 | |
dc.relation.referencesen | [2] Valandro, S.R.; Lombardo, P.C.; Poli, A.L.; Horn Jr., M.A.; Neumann, M.G.; Cavalheiro, C.C.S. Thermal Properties of Poly (Methyl Methacrylate)/Organomodified Montmorillonite Nanocomposites Obtained by in situ Photopolymerization. Mater. Res. 2014, 17, 265-270. https://doi.org/10.1590/S1516-14392013005000173 | |
dc.relation.referencesen | [3] Dhatarwal, P.; Sengwa, R.J.; Choudhary S. Effect of Intercalated and Exfoliated Montmorillonite Clay on the Structural, Dielectric and Electrical Properties of Plasticized Nanocomposite Solid Polymer Electrolytes. Compos. Commun. 2017, 5, 1-7. https://doi.org/10.1016/j.coco.2017.05.001 | |
dc.relation.referencesen | [4] Cui, Y.; Kumar, S.; Kona, B.R.; van Houcke, D. Gas Barrier Properties of Polymer/Clay Nanocomposites. RSC Adv. 2015, 5, 63669-63690. https://dx.doi.org/10.1039/P.5ra10333a | |
dc.relation.referencesen | [5] MacDiarmid, A.G. Nobel Lecture: "Synthetic Metals": A Novel Role for Organic Polymers. Rev. Mod. Phys. 2001, 73, 701-712. https://doi.org/10.1103/RevModPhys.73.701 | |
dc.relation.referencesen | [6] Belbachir, M.; Bensaoula, A. Composition and Method for Catalysis Using Bentonite. US 7, 094, 823 B2, January 1, 2006. | |
dc.relation.referencesen | [7] Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. A New Green Catalyst for Synthesis of bis-Macromonomers of Polyethylene Glycol (PEG). Chem. Chem. Technol. 2020, 14, 468-473. https://doi.org/10.23939/chcht14.04.468 | |
dc.relation.referencesen | [8] Zhu, J.; He, H.; Zhu, L.; Wen, X.; Deng, F. Characterization of Organic Phases in the Interlayer of Montmorillonite Using FTIR and 13C NMR. J. Colloid Interface Sci. 2005, 286, 239-244. https://doi.org/10.1016/j.jcis.2004.12.048 | |
dc.relation.referencesen | [9] Zhu, L.; Zhu, R.; Xu, L.; Ruan, X. Influence of Clay Charge Densities and Surfactant Loading Amount on the Microstructure of CTMA–Montmorillonite Hybrids. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 304, 41-48. https://doi.org/10.1016/j.colsurfa.2007.04.019 | |
dc.relation.referencesen | [10] Caillere, S.; Henin, S.; Rautureau, M. Minéralogie des argiles; Masson: Paris, 1982. | |
dc.relation.referencesen | [11] Tang, J.; Jing, X.; Wang, B.; Wang, F. Infrared Spectra of Soluble Polyaniline. Synth. Met. 1988, 24, 231-238. https://doi.org/10.1016/0379-6779(88)90261-5 | |
dc.relation.referencesen | [12] Ghosh, M.; Meikap, A.K.; Chattopadhyay, S.K.; Chatterjee, S. Low Temperature Transport Properties of Cl-Doped Conducting Polyaniline. J. Phys. Chem. Solids 2001, 62, 475-484. https://doi.org/10.1016/S0022-3697(00)00189-X | |
dc.relation.referencesen | [13] Yan, H.; Toshima, N. Chemical Preparation of Polyaniline and its Derivatives by Using Cerium(IV) Sulfate. Synth. Met. 1995, 69, 151-152. https://doi.org/10.1016/0379-6779(94)02398-I | |
dc.relation.referencesen | [14] Rout, T.K.; Jha, G.; Singh, A.K.; Bandyopadhyay, N.; Mohanty, O.N. Development of Conducting Polyaniline Coating: A Novel Approach to Superior Corrosion Resistance. Surf. Coat. Technol. 2003, 167, 16-24. https://doi.org/10.1016/S0257-8972(02)00862-9 | |
dc.relation.referencesen | [15] Ruckenstein, E.; Yang, S. An Emulsion Pathway to Electrically Conductive Polyaniline-Polystyrene Composites. Synth. Met. 1993, 53, 283-292. https://doi.org/10.1016/0379-6779(93)91097-L | |
dc.relation.referencesen | [16] Khiew, P.S.; Huang, N.M.; Radiman, S.; Ahmad, Md.S. Synthesis and Characterization of Conducting Polyaniline-Coated Cadmium Sulphide Nanocomposites in Reverse Microemulsion. Mater. Lett. 2004, 58, 516-521. https://doi.org/10.1016/S0167-577X(03)00537-8 | |
dc.relation.referencesen | [17] Li, Q.; Cruz, L.; Philips, P. Granular-Rod Model for Electronic Conduction in Polyaniline. Phys. Rev. B 1993, 47, 1840-1845. https://doi.org/10.1103/PhysRevB.47.1840 | |
dc.relation.referencesen | [18] Pouget, J.P.; Hsu, C.-H.; MacDiarmid, A.G.; Epstein, A.J. Structural Investigation of Metallic PAN-CSA and Some of its Derivatives. Synth. Met. 1995, 69, 119-120. https://doi.org/10.1016/0379-6779(94)02382-9 | |
dc.relation.referencesen | [19] Pouget, J.P.; Jozefowicz, M.E.; Epstein, A.J.; Tang, X.; Mac-Diarmid, A.G. X-Ray Structure of Polyaniline. Macromolecules 1991, 24, 779-789. https://doi.org/10.1021/ma00003a022 | |
dc.relation.referencesen | [20] Chan, H.S.O.; Ng, S.C.; Sim, W.S.; Seow, S.H.; Tan, K.L.; Tan, B.T.G. Synthesis and Characterization of Conducting poly(o-Aminobenzyl Alcohol) and its Copolymers with Aniline. Macromolecules 1993, 26, 144-150. https://doi.org/10.1021/ma00053a022 | |
dc.relation.referencesen | [21] Tsocheva, D.; ZIatkov, T.; Terlemezyan, L. Thermoanalytical Studies of Polyaniline ‘Emeraldine base’. J. Therm. Anal. Calorim. 1998, 53, 895-904. https://doi.org/10.1023/A:1010146619792 | |
dc.relation.referencesen | [22] Ghosh, P.; Chakrabarti, A.; Siddhanta, S.K. Studies on Stable Aqueous Polyaniline Prepared with the Use of Polyacrylamide as the Water Soluble Support Polymer. Eur. Polym. J. 1999, 35, 803-813. https://doi.org/10.1016/S0014-3057(98)00065-2 | |
dc.relation.referencesen | [23] Schemid, A.L.; Córdoba de Torresi, S.I.; Bassetto, A.N.; Carlos, I.A. Structural, Morphological and Spectroelectrochemical Characterization of poly (2-Ethyl Aniline). J. Braz. Chem. Soc. 2000, 11, 317-323. https://doi.org/10.1590/S0103-50532000000300020 | |
dc.relation.referencesen | [24] Yoshimoto, S.; Ohashi, F.; Ohnishi, Y.; Nonami, T. Synthesis of Polyaniline–Montmorillonite Nanocomposites by the Mechano-chemical Intercalation Method. Synth. Met. 2004, 145, 265-270. https://doi.org/10.1016/j.synthmet.2004.05.011 | |
dc.relation.referencesen | [25] Chan, H.S.O.; Teo, M.Y.B.; Khor, E., Lim, C.N. Thermal Analysis of Conducting Polymers Part I. Journal of Thermal Analysis 1989, 35, 765-774. https://doi.org/10.1007/BF02057231 | |
dc.relation.referencesen | [26] Neoh, K.G.; Kang, E.T.; Tan, K.L. Thermal Degradation of Leucoemeraldine, Emeraldine Base and their Complexes. Thermo-chim. Acta 1990, 171, 279-291. https://doi.org/10.1016/0040-6031(90)87027-A | |
dc.relation.referencesen | [27] Oh, S.Y.; Koh, H.C.; Choi, J.W.; Rhee, H.-W.; Kim, H.S. Preparation and Properties of Electrically Conductive Polyaniline-Polystyrene Composites by in-situ Polymerization and Blending. Polym. J. 1997, 29, 404-409. https://doi.org/10.1295/polymj.29.404 | |
dc.relation.referencesen | [28] Wei, Y.; Jang, G.-W.; Hsueh, K.F.; Scheer, E.M.; MacDiarmid, A.G.; Epstein, A.J. Thermal Transitions and Mechanical Properties of Films of Chemically Prepared Polyaniline. Polymer 1992, 33, 314-322. https://doi.org/10.1016/0032-3861(92)90988-9 | |
dc.relation.referencesen | [29] Lee, D.; Char, K. Thermal Degradation Behavior of Polyaniline in Polyaniline/Na+-Montmorillonite Nanocomposites. Polym. Degrad. Stab. 2002, 75, 555-560. https://doi.org/10.1016/S0141-3910(01)00259-2 | |
dc.relation.referencesen | [30] Huang, W.-S.; Humphrey, B.D.; MacDiamid, A.G. Polyaniline, a Novel Conducting Polymer. Morphology and Chemistry of its Oxidation and Reduction in Aqueous Electrolytes. J. Chem. Soc., Faraday trans. I 1986, 82, 2385-2400. https://doi.org/10.1039/F19868202385 | |
dc.relation.referencesen | [31] Desilvestro, J.; Scheifele, W.; Hass, O. In Situ Determination of Gravimetric and Volumetric Charge Densities of Battery Electrodes: Polyaniline in Aqueous and Nonaqueous Electrolytes. J. Electrochem. Soc. 1992, 139, 2727. https://doi.org/10.1149/1.2068971 | |
dc.relation.referencesen | [32] Kobayashi, T.; Yoneyama, H.; Tamura, H. Oxidative Degrada-tion Pathway of Polyaniline Film Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 293-297. https://doi.org/10.1016/0022-0728(84)80230-2 | |
dc.relation.uri | https://doi.org/10.1002/pc.22627 | |
dc.relation.uri | https://doi.org/10.1590/S1516-14392013005000173 | |
dc.relation.uri | https://doi.org/10.1016/j.coco.2017.05.001 | |
dc.relation.uri | https://dx.doi.org/10.1039/c5ra10333a | |
dc.relation.uri | https://doi.org/10.1103/RevModPhys.73.701 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.04.468 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2004.12.048 | |
dc.relation.uri | https://doi.org/10.1016/j.colsurfa.2007.04.019 | |
dc.relation.uri | https://doi.org/10.1016/0379-6779(88)90261-5 | |
dc.relation.uri | https://doi.org/10.1016/S0022-3697(00)00189-X | |
dc.relation.uri | https://doi.org/10.1016/0379-6779(94)02398-I | |
dc.relation.uri | https://doi.org/10.1016/S0257-8972(02)00862-9 | |
dc.relation.uri | https://doi.org/10.1016/0379-6779(93)91097-L | |
dc.relation.uri | https://doi.org/10.1016/S0167-577X(03)00537-8 | |
dc.relation.uri | https://doi.org/10.1103/PhysRevB.47.1840 | |
dc.relation.uri | https://doi.org/10.1016/0379-6779(94)02382-9 | |
dc.relation.uri | https://doi.org/10.1021/ma00003a022 | |
dc.relation.uri | https://doi.org/10.1021/ma00053a022 | |
dc.relation.uri | https://doi.org/10.1023/A:1010146619792 | |
dc.relation.uri | https://doi.org/10.1016/S0014-3057(98)00065-2 | |
dc.relation.uri | https://doi.org/10.1590/S0103-50532000000300020 | |
dc.relation.uri | https://doi.org/10.1016/j.synthmet.2004.05.011 | |
dc.relation.uri | https://doi.org/10.1007/BF02057231 | |
dc.relation.uri | https://doi.org/10.1016/0040-6031(90)87027-A | |
dc.relation.uri | https://doi.org/10.1295/polymj.29.404 | |
dc.relation.uri | https://doi.org/10.1016/0032-3861(92)90988-9 | |
dc.relation.uri | https://doi.org/10.1016/S0141-3910(01)00259-2 | |
dc.relation.uri | https://doi.org/10.1039/F19868202385 | |
dc.relation.uri | https://doi.org/10.1149/1.2068971 | |
dc.relation.uri | https://doi.org/10.1016/0022-0728(84)80230-2 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Ouis N., Belarbi A., Mesli S., Benharrats N., 2023 | |
dc.subject | інтеркальована | |
dc.subject | розшарована структура | |
dc.subject | глина | |
dc.subject | електропровідний полімер | |
dc.subject | теплові властивості | |
dc.subject | intercalated | |
dc.subject | exfoliated structure | |
dc.subject | clay | |
dc.subject | conductor polymer | |
dc.subject | thermal properties | |
dc.title | Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites | |
dc.title.alternative | Покращення електропровідності та термостійкості нанокомпозитів поліанілін-maghnite | |
dc.type | Article |
Files
License bundle
1 - 1 of 1