Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose

dc.citation.epage364
dc.citation.issue2
dc.citation.spage357
dc.contributor.affiliationNational Technical University "Kharkiv Polytechnic Institute"
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorLebedev, Volodymyr
dc.contributor.authorMiroshnichenko, Denis
dc.contributor.authorPyshyev, Serhiy
dc.contributor.authorKohut, Ananiy
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:33Z
dc.date.available2024-02-12T08:30:33Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractРозглянуто можливість підвищення комплексу міцнісних та експлуатаційних властивостей екологічно безпечних біодеградабельних полімерних матеріалів на основі гідроксипропілметилцелюлози через модифікацію різними типами гумінових кислот (ГК) з бурого вугілля. Уперше одержано гібридні екологічно безпечні високоміцні плівки з антибактеріальними властивостями. Фізико-хімічними дослідженнями та ІЧ-спектроскопією встановлено формування гібридних структур гідроксипропілметилцелюлози, модифікованої різними типами ГК. Виявлено закономірності зміни водопоглинання, міцності на розрив, відносного подовження під час розриву та часу появи цвілі екологічно безпечних біодеградабельних полімерних матеріалів на основі гідроксипропілметилцелюлози залежно від вмісту різних типів гумінових кислот. Також встановлено, що гібридна модифікація гідроксипропілметилцелюлози різними типами гумінових кислот із наданням їм антибактеріальних властивостей дає змогу зберегти в них властивості до біодеградації. Одержані екологічно безпечні біодеградабельні плівки з бактерицидними властивостями на основі гідроксипропілметилцелюлози та ГК за експлуатаційними характеристиками перевершують відомі аналогічні біодеградабельні плівки на основі природних біополімерів.
dc.description.abstractThe possibility of increasing the strength and operational properties of ecologically safe biodegradable polymeric materials based on hydroxypropyl methyl cellulose by using its modification with the different types of humic acids (HAs) from lignite is considered. Hybrid ecologically safe high-strength films with antibacterial properties were obtained for the first time. Physicochemical studies and IR spectroscopy confirmed the development of hybrid structures of hydroxypropyl methyl cellulose, modified with the different types of HAs. Changes in water absorption, tensile strength, relative elongation at break, and time of mold appearance for the environmentally safe biodegradable polymeric materials based on hydroxypropyl methyl cellulose were revealed depending on the content of the different types of humic acids. It was also shown that the hybrid modification of hydroxypropyl methyl cellulose with the different types of HAs allows preserving the biodegradability of the films along with imparting the antibacterial properties. The developed ecologically safe biodegradable films with antibacterial properties based on hydroxypropyl methyl cellulose and HAs, in terms of their operational characteristics, are superior to the known similar biodegradable films based on natural biopolymers.
dc.format.extent357-364
dc.format.pages8
dc.identifier.citationStudy of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose / Volodymyr Lebedev, Denis Miroshnichenko, Serhiy Pyshyev, Ananiy Kohut // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 357–364.
dc.identifier.citationenStudy of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose / Volodymyr Lebedev, Denis Miroshnichenko, Serhiy Pyshyev, Ananiy Kohut // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 357–364.
dc.identifier.doidoi.org/10.23939/chcht17.02.357
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61239
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Cabrera, F.C. Eco-Friendly Polymer Composites: A Review of Suitable Methods for Waste Management. Polym. Compos. 2021, 42, 2653– 2677. https://doi.org/10.1002/pc.26033
dc.relation.references[2] Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental fate and impacts of microplastics in Soil Ecosystems: Progress and Perspective. Sci. Total Environ. 2020, 708, 134841. https://doi.org/10.1016/j.scitotenv.2019.134841
dc.relation.references[3] Karamanlioglu, M.; Preziosi, R.; Robson, G.D. Abiotic and biotic environmental degradation on the Bioplastic Polymer Poly(Lactic Acid): A Review. Polym. Degrad. Stab. 2017, 137, 122-130. https://doi.org/10.1016/j.polymdegradstab.2017.01.009
dc.relation.references[4] Abbasi, S.; Haeri, S.A. Biodegradable Materials and Their Applications in Sample Preparation Techniques – A Review. Microchem. J. 2021, 171, 106831. https://doi.org/10.1016/j.microc.2021.106831
dc.relation.references[5] Cai, Q.; Li, X.; Zhu, W. High Molecular Weight Biodegradable Poly(ethylene glycol) via Carboxyl-Ester Transesterification. Ma-cromolecules 2020, 53, 2177-218. https://doi.org/10.1021/acs.macromol.9b02177
dc.relation.references[6] Voronov, A.; Vasylyev, S.; Kohut, A.; Peukert, W. Surface Activity of New Invertible Amphiphilic Polyesters Based on Poly(ethylene glycol) and Aliphatic Dicarboxylic Acids. J. Colloid Interface Sci. 2008, 323, 379–385. https://doi.org/10.1016/j.jcis.2008.04.053
dc.relation.references[7] Kohut, A.; Voronov, A.; Voronov, S. Micellization and Adsolubilization of Amphiphilic Invertible Polyesters. Chem. Chem. Technol. 2014, 8, 67-80. https://doi.org/10.23939/chcht08.01
dc.relation.references[8] Anukiruthika, T.; Sethupathy, P.; Wilson, A.; Kashampur, K.; Moses, J.A.; Anandharamakrishnan, C. Multilayer Packaging: Advances in Preparation Techniques and Emerging Food Applica-tions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1156-1186. https://doi.org/10.1111/1541-4337.12556
dc.relation.references[9] Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz A. Edible films and Coatings: Structures, Active Function and trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292–303. https://doi.org/10.1016/j.tifs.2011.02.004
dc.relation.references[10] Lebedev, V.; Tykhomyrova, T.; Litvinenko, I.; Avina, S.; Saimbetova, Z. Design and Research of Eco-Friendly Polymer Composites. Mater. Sci. Forum 2020, 1006, 259-266. https://doi.org/10.4028/www.scientific.net/MSF.1006.259
dc.relation.references[11] Lebedev, V.; Tykhomyrova, T.; Filenko, O.; Cherkashina, A.; Lytvynenko, O. Sorption Resistance Studying of Environmentally Friendly Polymeric Materials in Different Liquid Mediums. Mater. Sci. Forum 2021, 1038, 168-174. https://doi.org/10.4028/www.scientific.net/MSF.1038.168
dc.relation.references[12] Lebedev, V.; Miroshnichenko, D.; Bilets, D.; Mysiak, V. Investigation of Hybrid Modification of Eco-Friendly Polymers by Humic Substances. Solid State Phenom. 2022, 334, 154-161. https://doi.org/10.4028/p-gv30w7
dc.relation.references[13] Cecchini, C. The Rapid Plastic Revolution: Superstrong Poly-mers and Biomaterials. In Plastic Days. Materials & Design; Cecchini, C.; Petroni, M., Eds.; Silvana Editoriale, 2015; рр 36-61.
dc.relation.references[14] Gómez-Aldapa, C.A.; Velazquez, G.; Gutierrez, M.C.; Rangel-Vargas, E.; Castro-Rosas, J.; Aguierre-Loredo, R.Y. Effect of Polyvinyl Alcohol on the Physicochemical Properties of Biodegradable Starch Films. Mater. Chem. Phys. 2020, 239, 122027. https://doi.org/10.1016/j.matchemphys.2019.122027
dc.relation.references[15] Marcos, B.; Aymerich, T.; Monfort, J.M.; Garriga, M. Use of Antimicrobial Biodegradable Packaging to Control Listeria monocytogenes During Storage of Cooked Ham. Int. J. Food Microbiol. 2007, 120, 152–158. https://doi.org/10.1016/j.ijfoodmicro.2007.06.003
dc.relation.references[16] Abral, H.; Atmajaya, A.; Mahardika, M.; Hafizulhaq, F.; Kadriadi; Handayani, D.; Sapuan, S.M.; Ilyas, R.A. J. Mater. Res. Technol. 2020, 9, 2477-2486. https://doi.org/10.1016/j.jmrt.2019.12.078
dc.relation.references[17] Brandelero, R.P.H.; Brandelero. E.M.; de Almeida, F.M. Biodegradable Films of Starch/PVOH/Alginate in Packaging Systems for Minimally Processed Lettuce (Lactuca sativa L.). Cienc. e Agrotecnologia 2016, 40, 510–521. https://doi.org/10.1590/1413-70542016405010516
dc.relation.references[18] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D. Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Pet. Coal 2021, 63, 646-654. https://www.vurup.sk/wp-content/uploads/2021/08/PC-X_Miroshnichenko_31_r...
dc.relation.references[19] Miroshnichenko, D.V.; Pyshyev, S.V.; Lebedev, V.V.; Bilets, D.Y. Deposits and Quality Indicators of Brown Coal in Ukraine. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2022, (3), 5-10. https://doi.org/10.33271/nvngu/2022-3/005
dc.relation.references[20] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of Humic Acids from Low-Grade Metamorphism Coal for the Modification of Biofilms Based on Polyvinyl Alcohol. Pet. Coal 2021, 63, 953-962. https://www.vurup.sk/petroleum/2021/volume-63/#volume-63-2021-issue-4
dc.relation.references[21] Lebedev, V.; Sizhuo, D.; Xiaobin, Z.; Miroshnichenko, D.; Pyshyev, S.; Savchenko, D. Hybrid Modification of Eco-Friendly Biodegradable Polymeric Films by Humic Substances from Low-Grade Metamorphism Coal. Pet. Coal 2022, 64, 539-546. https://www.vurup.sk/wp-content/uploads/2022/09/PC-X_Miroshnichenko-178.pdf
dc.relation.references[22] EMEA. Committee for veterinary medicinal products—humic acids and their sodium salts, Summary report. EMEA, Amsterdam, Netherlands: European Agency for the Evaluation of Medicinal Products; 1999.
dc.relation.references[23] Gandy, J.; Meeding, J. P.; Snyman, J. R.;Van Rensburg C. E. Phase 1 clinical study of the acute and subacute safety and proof-of-concept efficacy of carbohydrate-derived fulvic acid. Clinical Phar-macology: Advances and Applications 2012, 4, 7–11. https://doi: 10.2147/cpaa.s25784.
dc.relation.references[24] Plastics. Evaluation of the ability to biochemical decomposi-tion. Test procedure and technical conditions, 2018. http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=80595#:~:t...) (accessed 2022-11-29).
dc.relation.references[25] Wang, L.F.; Chen, W.B.; Chen, T.Y.; Lu, S.C. Effects of the preparation methods of hydroxypropyl methylcellulose/polyacrylic acid blended films on drug release. Journal of Biomaterials Science 2003, 14(1), 27-44. https://doi: 10.1163/15685620360511128.
dc.relation.referencesen[1] Cabrera, F.C. Eco-Friendly Polymer Composites: A Review of Suitable Methods for Waste Management. Polym. Compos. 2021, 42, 2653– 2677. https://doi.org/10.1002/pc.26033
dc.relation.referencesen[2] Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental fate and impacts of microplastics in Soil Ecosystems: Progress and Perspective. Sci. Total Environ. 2020, 708, 134841. https://doi.org/10.1016/j.scitotenv.2019.134841
dc.relation.referencesen[3] Karamanlioglu, M.; Preziosi, R.; Robson, G.D. Abiotic and biotic environmental degradation on the Bioplastic Polymer Poly(Lactic Acid): A Review. Polym. Degrad. Stab. 2017, 137, 122-130. https://doi.org/10.1016/j.polymdegradstab.2017.01.009
dc.relation.referencesen[4] Abbasi, S.; Haeri, S.A. Biodegradable Materials and Their Applications in Sample Preparation Techniques – A Review. Microchem. J. 2021, 171, 106831. https://doi.org/10.1016/j.microc.2021.106831
dc.relation.referencesen[5] Cai, Q.; Li, X.; Zhu, W. High Molecular Weight Biodegradable Poly(ethylene glycol) via Carboxyl-Ester Transesterification. Ma-cromolecules 2020, 53, 2177-218. https://doi.org/10.1021/acs.macromol.9b02177
dc.relation.referencesen[6] Voronov, A.; Vasylyev, S.; Kohut, A.; Peukert, W. Surface Activity of New Invertible Amphiphilic Polyesters Based on Poly(ethylene glycol) and Aliphatic Dicarboxylic Acids. J. Colloid Interface Sci. 2008, 323, 379–385. https://doi.org/10.1016/j.jcis.2008.04.053
dc.relation.referencesen[7] Kohut, A.; Voronov, A.; Voronov, S. Micellization and Adsolubilization of Amphiphilic Invertible Polyesters. Chem. Chem. Technol. 2014, 8, 67-80. https://doi.org/10.23939/chcht08.01
dc.relation.referencesen[8] Anukiruthika, T.; Sethupathy, P.; Wilson, A.; Kashampur, K.; Moses, J.A.; Anandharamakrishnan, C. Multilayer Packaging: Advances in Preparation Techniques and Emerging Food Applica-tions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1156-1186. https://doi.org/10.1111/1541-4337.12556
dc.relation.referencesen[9] Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz A. Edible films and Coatings: Structures, Active Function and trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292–303. https://doi.org/10.1016/j.tifs.2011.02.004
dc.relation.referencesen[10] Lebedev, V.; Tykhomyrova, T.; Litvinenko, I.; Avina, S.; Saimbetova, Z. Design and Research of Eco-Friendly Polymer Composites. Mater. Sci. Forum 2020, 1006, 259-266. https://doi.org/10.4028/www.scientific.net/MSF.1006.259
dc.relation.referencesen[11] Lebedev, V.; Tykhomyrova, T.; Filenko, O.; Cherkashina, A.; Lytvynenko, O. Sorption Resistance Studying of Environmentally Friendly Polymeric Materials in Different Liquid Mediums. Mater. Sci. Forum 2021, 1038, 168-174. https://doi.org/10.4028/www.scientific.net/MSF.1038.168
dc.relation.referencesen[12] Lebedev, V.; Miroshnichenko, D.; Bilets, D.; Mysiak, V. Investigation of Hybrid Modification of Eco-Friendly Polymers by Humic Substances. Solid State Phenom. 2022, 334, 154-161. https://doi.org/10.4028/p-gv30w7
dc.relation.referencesen[13] Cecchini, C. The Rapid Plastic Revolution: Superstrong Poly-mers and Biomaterials. In Plastic Days. Materials & Design; Cecchini, C.; Petroni, M., Eds.; Silvana Editoriale, 2015; rr 36-61.
dc.relation.referencesen[14] Gómez-Aldapa, C.A.; Velazquez, G.; Gutierrez, M.C.; Rangel-Vargas, E.; Castro-Rosas, J.; Aguierre-Loredo, R.Y. Effect of Polyvinyl Alcohol on the Physicochemical Properties of Biodegradable Starch Films. Mater. Chem. Phys. 2020, 239, 122027. https://doi.org/10.1016/j.matchemphys.2019.122027
dc.relation.referencesen[15] Marcos, B.; Aymerich, T.; Monfort, J.M.; Garriga, M. Use of Antimicrobial Biodegradable Packaging to Control Listeria monocytogenes During Storage of Cooked Ham. Int. J. Food Microbiol. 2007, 120, 152–158. https://doi.org/10.1016/j.ijfoodmicro.2007.06.003
dc.relation.referencesen[16] Abral, H.; Atmajaya, A.; Mahardika, M.; Hafizulhaq, F.; Kadriadi; Handayani, D.; Sapuan, S.M.; Ilyas, R.A. J. Mater. Res. Technol. 2020, 9, 2477-2486. https://doi.org/10.1016/j.jmrt.2019.12.078
dc.relation.referencesen[17] Brandelero, R.P.H.; Brandelero. E.M.; de Almeida, F.M. Biodegradable Films of Starch/PVOH/Alginate in Packaging Systems for Minimally Processed Lettuce (Lactuca sativa L.). Cienc. e Agrotecnologia 2016, 40, 510–521. https://doi.org/10.1590/1413-70542016405010516
dc.relation.referencesen[18] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D. Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Pet. Coal 2021, 63, 646-654. https://www.vurup.sk/wp-content/uploads/2021/08/PC-X_Miroshnichenko_31_r...
dc.relation.referencesen[19] Miroshnichenko, D.V.; Pyshyev, S.V.; Lebedev, V.V.; Bilets, D.Y. Deposits and Quality Indicators of Brown Coal in Ukraine. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2022, (3), 5-10. https://doi.org/10.33271/nvngu/2022-3/005
dc.relation.referencesen[20] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of Humic Acids from Low-Grade Metamorphism Coal for the Modification of Biofilms Based on Polyvinyl Alcohol. Pet. Coal 2021, 63, 953-962. https://www.vurup.sk/petroleum/2021/volume-63/#volume-63-2021-issue-4
dc.relation.referencesen[21] Lebedev, V.; Sizhuo, D.; Xiaobin, Z.; Miroshnichenko, D.; Pyshyev, S.; Savchenko, D. Hybrid Modification of Eco-Friendly Biodegradable Polymeric Films by Humic Substances from Low-Grade Metamorphism Coal. Pet. Coal 2022, 64, 539-546. https://www.vurup.sk/wp-content/uploads/2022/09/PC-X_Miroshnichenko-178.pdf
dc.relation.referencesen[22] EMEA. Committee for veterinary medicinal products-humic acids and their sodium salts, Summary report. EMEA, Amsterdam, Netherlands: European Agency for the Evaluation of Medicinal Products; 1999.
dc.relation.referencesen[23] Gandy, J.; Meeding, J. P.; Snyman, J. R.;Van Rensburg C. E. Phase 1 clinical study of the acute and subacute safety and proof-of-concept efficacy of carbohydrate-derived fulvic acid. Clinical Phar-macology: Advances and Applications 2012, 4, 7–11. https://doi: 10.2147/cpaa.s25784.
dc.relation.referencesen[24] Plastics. Evaluation of the ability to biochemical decomposi-tion. Test procedure and technical conditions, 2018. http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=80595#:~:t...) (accessed 2022-11-29).
dc.relation.referencesen[25] Wang, L.F.; Chen, W.B.; Chen, T.Y.; Lu, S.C. Effects of the preparation methods of hydroxypropyl methylcellulose/polyacrylic acid blended films on drug release. Journal of Biomaterials Science 2003, 14(1), 27-44. https://doi: 10.1163/15685620360511128.
dc.relation.urihttps://doi.org/10.1002/pc.26033
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2019.134841
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2017.01.009
dc.relation.urihttps://doi.org/10.1016/j.microc.2021.106831
dc.relation.urihttps://doi.org/10.1021/acs.macromol.9b02177
dc.relation.urihttps://doi.org/10.1016/j.jcis.2008.04.053
dc.relation.urihttps://doi.org/10.23939/chcht08.01
dc.relation.urihttps://doi.org/10.1111/1541-4337.12556
dc.relation.urihttps://doi.org/10.1016/j.tifs.2011.02.004
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/MSF.1006.259
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/MSF.1038.168
dc.relation.urihttps://doi.org/10.4028/p-gv30w7
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2019.122027
dc.relation.urihttps://doi.org/10.1016/j.ijfoodmicro.2007.06.003
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2019.12.078
dc.relation.urihttps://doi.org/10.1590/1413-70542016405010516
dc.relation.urihttps://www.vurup.sk/wp-content/uploads/2021/08/PC-X_Miroshnichenko_31_r..
dc.relation.urihttps://doi.org/10.33271/nvngu/2022-3/005
dc.relation.urihttps://www.vurup.sk/petroleum/2021/volume-63/#volume-63-2021-issue-4
dc.relation.urihttps://www.vurup.sk/wp-content/uploads/2022/09/PC-X_Miroshnichenko-178.pdf
dc.relation.urihttps://doi:
dc.relation.urihttp://online.budstandart.com/ua/catalog/doc-page.html?id_doc=80595#:~:t...
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Lebedev V., Miroshnichenko D., Pyshyev S., Kohut A., 2023
dc.subjectекологічно безпечні
dc.subjectбіодеградабельні плівки
dc.subjectгідроксипропілметилцелюлоза
dc.subjectбактерицидні властивості
dc.subjectгумінові кислоти
dc.subjectenvironmentally safe
dc.subjectbiodegradable films
dc.subjecthydroxypropyl methyl cellulose
dc.subjectantibacterial properties
dc.subjecthumic acids
dc.titleStudy of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose
dc.title.alternativeДослідження гібридної модифікації гуміновими кислотами екологічно безпечних біодеградабельних плівок на основі гідроксипропілметилцелюлози
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Lebedev_V-Study_of_Hybrid_Humic_Acids_357-364.pdf
Size:
520.52 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Lebedev_V-Study_of_Hybrid_Humic_Acids_357-364__COVER.png
Size:
559.86 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: