Bio-Sorbent Derived from Annona Squamosa for the Removal of Methyl Red Dye in Polluted Waters: A Study on Adsorption Potential

dc.citation.epage283
dc.citation.issue2
dc.citation.spage274
dc.contributor.affiliationAcharya Nagarjuna University
dc.contributor.affiliationKL University
dc.contributor.authorKokkiligadda, Venkata Ramana
dc.contributor.authorKurmarayuni, Chandra Mohan
dc.contributor.authorRavindhranath, Kunta
dc.contributor.authorBollikolla, Hari Babu
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T11:12:59Z
dc.date.available2024-01-22T11:12:59Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractПроведені дослідження сорбційної здатності до метилового червоного (МЧ) сорбенту, отриманого з листя та кори Annona squamosa, з використанням штучно створених стоків. Визначено різні чинники, що впливають на адсорбцію, а саме: початкова концентрація, час контакту, дозування адсорбенту, а також встановлено вплив температури. Рівновага адсорбції проаналізована за допомогою ізотерм Фройндліха, Лангмюра, Темкіна та Дубініна-Радушкевича. Для визначення швидкості та кінетики адсорбції застосовували рівняння псевдопершого і псевдодругого порядку, дифузії Вебера та Морріша, дисперсії пор Бангема та рівняння Еловіча. Досліджено інтерференцію п’ятикратної кількості регулярних аніонів і катіонів, присутніх у звичайних водах. Встановлено, що такі катіони, як Ca2+, Mg2+ та Cu2+, демонструють певний опір, однак найбільшу екстракцію МЧсинергетично демонструютьFe2+ та Zn2+. Показано, що розроблені методи ефективно застосовані до деяких стоків. Результати експериментальних даних визнані відповідними кінетичній моделі псевдо-першого порядку. Значення коефіцієнта кореляції (R2) та коефіцієнта поділу (RL) підтверджують, що адсорбція підпорядковується адсорбції Ленгмюра.
dc.description.abstractSorbent got from leaves and barks of Annona squamosa has been investigated for its sorption capacity towards Methyl Red (MR) utilizing artificially arranged recreated squander waters. Different components influencing adsorption, viz., initial color concentration, contact time, adsorbent dosage, along with the impact of temperature were assessed. The equilibrium of adsorption was demonstrated by Freundlich; Langmuir, Temkin, and Dubinin-Radushkevich isotherms. Pseudo-first order, pseudo-second order, Weber and Morrish intraparticle diffusion, Bangham's pore dispersion and Elovich equations were applied in order to distinguish the rate and kinetics of adsorption progression. Interference of a five-fold abundance of regular anions and cations present in common waters, have been examined. Cation like Ca2+, Mg2+ and Cu2+ have showed some impedance, however, Fe2+ and Zn2+ have synergistically maintained the greatest extraction of the MR. The methods developed were effectively applied to some effluent. The results of experimental data were found appropriate to the pseudo-first order kinetic model. Correlation coefficient (R2) and dimensionless division or separation factor (RL) values have affirmed that adsorption obeys Langmuir adsorption showing monolayer development.
dc.format.extent274-283
dc.format.pages10
dc.identifier.citationBio-Sorbent Derived from Annona Squamosa for the Removal of Methyl Red Dye in Polluted Waters: A Study on Adsorption Potential / Venkata Ramana Kokkiligadda, Chandra Mohan Kurmarayuni, Kunta Ravindhranath, Hari Babu Bollikolla // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 274–283.
dc.identifier.citationenBio-Sorbent Derived from Annona Squamosa for the Removal of Methyl Red Dye in Polluted Waters: A Study on Adsorption Potential / Venkata Ramana Kokkiligadda, Chandra Mohan Kurmarayuni, Kunta Ravindhranath, Hari Babu Bollikolla // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 274–283.
dc.identifier.doidoi.org/10.23939/chcht16.02.274
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60968
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (16), 2022
dc.relation.references[1] Cationic Dyes from Water. J. Colloid Interf. Sci.2005, 281, 49-55. https://doi.org/10.1016/j.jcis.2004.08.076
dc.relation.references[2] Bhattacharyya, K.; Sharma A. Kinetics and Thermodynamics of Methylene Blue Adsorption on Neem Leaf Powder. Dyes Pigm.2005, 65, 51-59. https://doi.org/10.1016/j.dyepig.2004.06.016
dc.relation.references[3] Robinson, T.; Chandran, B.; Nigam, P. Studies on the Production of Enzymes by White-Rot Fungi for the Decolorization of Textile Dyes. Enzyme Microb. Technol.2001, 29, 575-579. https://doi.org/10.1016/S0141-0229(01)00430-6
dc.relation.references[4] Shah, V.; Nerud, F. Lignin Degrading System of White-Rot Fungi and its Exploitation for Dye Decolorization, Can. J. Microbiol.2002, 48, 857-870. https://doi.org/10.1139/w02-090
dc.relation.references[5] Josefa, S.Y.M.; De Oliveria, E. Heavy Metals Removal in Industrial Effluents by Sequential Adsorption Treatment. Adv. Environ. Research.2003, 7, 263-272. https://doi.org/10.1016/S1093-0191(01)00128-9
dc.relation.references[6] Malik, D.J.; Strelko, V.J.; Streat, M.; Puziy, A.M. Characterization of Novel Modified Active Carbons and Marinealgal Biomass for the Selective Adsorption of Lead. Water Research.2002, 369, 1527-1538. https://doi.org/10.1016/S0043-1354(01)00348-7
dc.relation.references[7] Arslanoglue, F.N.; Kar, F.; Arslan, N. Adsorption of Dark Colored Compounds from Peach Pulp by Using Powdered Activated Carbon. J. Food. Eng.2005, 71, 156-163. https://doi.org/10.1016/j.jfoodeng.2004.10.029
dc.relation.references[8] Senthilkumaar, S.; Varadarajab, P.R.; Porkodi K.; Subbhuraam, C.V. Adsorption of Methylene Blue onto Jute Fiber Carbon: Kinetics and Equilibrium Studies. J. Colloid. Inter. Sci.2005, 284, 78-82. https://doi.org/10.1016/j.jcis.2004.09.027
dc.relation.references[9] Laszlo, J.A. Preparing an Ion Exchange Resin from Sugarcane Bagasse to Remove Reactive Dye from Wastewater. Text. Chem. Color.1996, 28, 13-17.
dc.relation.references[10] Gemea, A.H.; Mansour, I.A.; El-Sharkawy, R.G.; Zaki, A.B. Kinetics and Mechanism of the Heterogeneous Catalyzed Oxidative Degradation of Indigo Carmine. J. Mol. Catal. Chem.2003, 193,109-120. https://doi.org/10.1016/S1381-1169(02)00477-6
dc.relation.references[11] Grimau, V.L.; Gutierrez, M.C. Decolorization of Simulated Reactive Dyebath Effluents by Electrochemical Oxidation Assisted by UV Light. Chemosphere. 2006, 62, 106-112. https://doi.org/10.1016/j.chemosphere.2005.03.076
dc.relation.references[12] Hachem, C.; Bocquillon F.; Zahraa, O.; Bouchy, M. Decolorization of Textil Industry Wastewater by the Photocatalytic Degradation Process. Dyes. Pigm.2001, 49, 117-125. https://doi.org/10.1016/S0143-7208(01)00014-6
dc.relation.references[13] Cisneros, R.L.; Espinoza, A.G.; Litter, M.I. Photodegradation of an Azo Dye of the Textile Industry. Chemosphere. 2002, 48, 393-399. https://doi.org/10.1016/S0045-6535(02)00117-0
dc.relation.references[14] Gupta V. K.; Suhas. Application of Low-Cost Adsorbents for Dye Removal – A Review. J. Environ. Manage. 2009, 90, 2313-2342. https://doi.org/10.1016/j.jenvman.2008.11.017
dc.relation.references[15] Srivastava, V.; Mall, I.D.; Mishra, I.M. Equilibrium Modelling of Single and Binary Adsorption of Cadmium and Nickel onto Bagasse Fly Ash. Chem. Eng. J.2006, 117, 79-91. https://doi.org/10.1016/j.cej.2005.11.021
dc.relation.references[16] Trivedy, R.K. Pollution Management in Industries,2nd ed.; Karad (India): Environmental Publications, 1995.
dc.relation.references[17] Kiely, G. Environmental Engineering; McGraw-hall International Editions, 1998.
dc.relation.references[18] Tchobanoglous, G.; Burton, F.L.; Stensel, D.H. Wastewater Engineering: Treatment and Reuse, 4th ed; McGraw Hill, 2003.
dc.relation.references[19] APHA, Standard methods for the Examination of Water and Waste water. American Public Health Association, Washington DC, 1985.
dc.relation.references[20] Ramana, K.V.; Latha, K.S.; Ravindranath, K.; Babu, B.H. Methyl Red Dye Removal Using New Bio-Sorbents Derived from Hycinth and Tinosporacardifolia Plants from Waste Waters, Rasayan J. Chem. 2017, 10, 349-362.
dc.relation.references[21] Srinivasa Reddy, B.; Venkata Ramana, K.; Ravindranath, K. Extraction of Methylene Blue Dye from Polluted Waters Using Some Bio-sorbents. Int. J. Appl. Biol.Pharm.2012, 3 (4), 215-224.
dc.relation.references[22] Freundlich, H.M.F. Über die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57, 385-470. https://doi.org/10.1515/zpch-1907-5723
dc.relation.references[23] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 1918, 40, 1361-1403. https://doi.org/10.1021/ja02242a004
dc.relation.references[24] Temkin, M.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physicochimica URSS.1940, 12, 217-222.
dc.relation.references[25] Dubinin, M.M.; Radushkevich, L.V. The Equation of the Characteristic Curve of Activated Charcoal. Proc. Natl. Acad. Sci., Phys. Chem. Section. 1947, 55, 331.
dc.relation.references[26] Hall, K. R.; Eagleton, L. C.; Acrivos A.; Vermeulen, T. Pore and Solid Diffusion Kinetics in Fixed Bed Adsorption under Constant Pattern Conditions. Ind. Eng. Chem. Fundam.1966, 5, 212-223. https://doi.org/10.1021/i160018a011
dc.relation.references[27] Sari. I.P.; Simarani, K. Comparative Static and Shaking Culture of Metabolite Derived from Methyl Red Degradation by Lysinibacillusfusiformis Strain W1B6. R. Soc. Open Sci. 2019, 6, 190152. https://doi.org/10.1098/rsos.190152
dc.relation.references[28] Ajaz, M.; Rehman, A.; Khan, Z.; Nisar M.A.; Hussain S. Degradation of Azo Dyes by Alcaligenesaquatilis 3c and its Potential Use in the Wastewater Treatment. AMB Expr.2019, 9, 64. https://doi.org/10.1186/s13568-019-0788-3
dc.relation.references[29] Kpilraj, N.; Keerthanan, S.; Sithambaresan, M. Natural Plant Extracts as Acid-Base Indicator and Determination of Their Pka Value. J. Chem. 2019, 2019, Article ID 2031342. https://doi.org/10.1155/2019/2031342
dc.relation.references[30] Hameed, B.H. Evaluation of Papaya Seeds as a Novel Non-Conventional Low-Cost Adsorbent for Removal of Methylene Blue. J. Hazard. Mater., 2009, 162, 939-944. https://doi.org/10.1016/j.jhazmat.2008.05.120
dc.relation.references[31] Nunes, A.; Franca, S.A.; Olievera, L.S. Activated Carbon from Waste Biomass: An alternative Use for Biodiesel Production Solid Residues. Biores. Technol.2009, 100, 1786-1792. https://doi.org/10.1016/j.biortech.2008.09.032
dc.relation.references[32] Onyango, M.S.; Kojima, Y. Aoyi, O. Bernardo, E.C.; Matsuda, H.J. Adsorption Equilibrium Modeling and Solution Chemistry Dependence of Fluoride Removal from Water by Trivalent-Cation-Exchanged Zeolite F-9. Colloid Interface Sci.2004, 279, 341-350. https://doi.org/10.1016/j.jcis.2004.06.038
dc.relation.references[33] Jain, M.; Garg, V.K.; Kadirvelu, K. Chromium(VI) Removal from Aqueous Solution, Using Sunflower Stem Waste. J. Hazard. Mater.2008, 162, 365-372. https://doi.org/10.1016/j.jhazmat.2008.05.048
dc.relation.references[34] Atkins, P.; de Paulo J. Physical Chemistry, 8th ed.; Oxford University Press, 2006.
dc.relation.references[35] Yuh-Shan, H. Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions. Scientometrics. 2004, 59, 171-177. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf
dc.relation.references[36] Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem.1999, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
dc.relation.references[37] Ho, Y.S.; Ng, J.C.Y.; McKay, G. Kinetics of Pollutant Sorption by Biosorbents: Review. Sep.Purif. Methods. 2000, 29,189-232. https://doi.org/10.1081/SPM-100100009
dc.relation.references[38] Weber Jr., W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution, J. Sanit. Eng. Div.1963, 89, 31-59. https://doi.org/10.1061/JSEDAI.0000430
dc.relation.references[39] Aharoni, C.; Ungarish, M. Kinetics of Activated Chemisorption. Part 2. – Theoretical Models, J.Chem. Soc., Faraday Trans. 1. 1977,73, 456-464. https://doi.org/10.1039/f19777300456
dc.relation.references[40] Ozacar, M.; Sengil, V. A Kinetic Study of Metal Complex Dye Sorption onto Pine Sawdust. Process Biochem. 2005, 40, 565-572. https://doi.org/10.1016/j.procbio.2004.01.032
dc.relation.references[41] Gerente C., Lee, V.K.C.; Le Cloirec, P.; McKay, G. Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption – Mechanisms and Models Review. Crit. Rev. Environ. Sci. Technol.2007, 37, 41-127. https://doi.org/10.1080/10643380600729089
dc.relation.references[42] Alagumuthu, G.; Rajan, M. Monitoring of Fluoride Concentration in Ground Water of Kadayam Block of Tirunelveli District, India. Rasayan J. Chem.2008, 4, 757-765.
dc.relation.references[43] Karthikeyan, G.; Siva Ilango S. Fluoride Sorption Using Morringa Indica-Based Activated Carbon. Iran J. Environ. Health. Sci. Eng.2007, 4, 21-28.
dc.relation.references[44] Sakthi S.M.; Rengaraj, V. Kinetics and Equilibrium Adsorption Study of Lead(II) onto Activated Carbon Prepared from Coconut Shell. J. Colloid. Interface Sci.2004, 279, 307-313. https://doi.org/10.1016/j.jcis.2004.06.042
dc.relation.references[45] Venkata Ramana, K.;Swarna Latha, K.; Ravindranath, K.; Hari Babu, B. Methyl Red Dye Removal Using New Bio-Sorbents Derived from Hyacinth and Tinospora Cordifolia Plants from Waste Waters. Rasayan J. Chem.2017, 10, 349-362. https://doi.org/10.7324/RJC.2017.1021537
dc.relation.references[46] Viswanathan, N.; Meenakshi, S. Enriched Fluoride Sorption Using Alumina/Chitosan Composite. J. Hazard. Mater.2010, 178, 226-232. https://doi.org/10.1016/j.jhazmat.2010.01.067
dc.relation.references[47] Bouberka, Z.; Kacha, S.; Kameche M.; Elmaleh, S.; Derriche, Z. J. Hazard. Mater.2005, 119, 117-124. https://doi.org/10.1016/j.jhazmat.2004.11.026
dc.relation.references[48] Sairam Sundaram, C.; Viswanathan, N.; Meenakshi S. J. Hazard. Mater. 2009, 163, 618-624. https://doi.org/10.1016/j.jhazmat.2008.07.009
dc.relation.references[49] Chaturvedi, A.K.; Pathak, K.C.; Singh, V.N. Appl. Clay Sci. 1988, 3, 337-346. https://doi.org/10.1016/0169-1317(88)90024-5
dc.relation.referencesen[1] Cationic Dyes from Water. J. Colloid Interf. Sci.2005, 281, 49-55. https://doi.org/10.1016/j.jcis.2004.08.076
dc.relation.referencesen[2] Bhattacharyya, K.; Sharma A. Kinetics and Thermodynamics of Methylene Blue Adsorption on Neem Leaf Powder. Dyes Pigm.2005, 65, 51-59. https://doi.org/10.1016/j.dyepig.2004.06.016
dc.relation.referencesen[3] Robinson, T.; Chandran, B.; Nigam, P. Studies on the Production of Enzymes by White-Rot Fungi for the Decolorization of Textile Dyes. Enzyme Microb. Technol.2001, 29, 575-579. https://doi.org/10.1016/S0141-0229(01)00430-6
dc.relation.referencesen[4] Shah, V.; Nerud, F. Lignin Degrading System of White-Rot Fungi and its Exploitation for Dye Decolorization, Can. J. Microbiol.2002, 48, 857-870. https://doi.org/10.1139/w02-090
dc.relation.referencesen[5] Josefa, S.Y.M.; De Oliveria, E. Heavy Metals Removal in Industrial Effluents by Sequential Adsorption Treatment. Adv. Environ. Research.2003, 7, 263-272. https://doi.org/10.1016/S1093-0191(01)00128-9
dc.relation.referencesen[6] Malik, D.J.; Strelko, V.J.; Streat, M.; Puziy, A.M. Characterization of Novel Modified Active Carbons and Marinealgal Biomass for the Selective Adsorption of Lead. Water Research.2002, 369, 1527-1538. https://doi.org/10.1016/S0043-1354(01)00348-7
dc.relation.referencesen[7] Arslanoglue, F.N.; Kar, F.; Arslan, N. Adsorption of Dark Colored Compounds from Peach Pulp by Using Powdered Activated Carbon. J. Food. Eng.2005, 71, 156-163. https://doi.org/10.1016/j.jfoodeng.2004.10.029
dc.relation.referencesen[8] Senthilkumaar, S.; Varadarajab, P.R.; Porkodi K.; Subbhuraam, C.V. Adsorption of Methylene Blue onto Jute Fiber Carbon: Kinetics and Equilibrium Studies. J. Colloid. Inter. Sci.2005, 284, 78-82. https://doi.org/10.1016/j.jcis.2004.09.027
dc.relation.referencesen[9] Laszlo, J.A. Preparing an Ion Exchange Resin from Sugarcane Bagasse to Remove Reactive Dye from Wastewater. Text. Chem. Color.1996, 28, 13-17.
dc.relation.referencesen[10] Gemea, A.H.; Mansour, I.A.; El-Sharkawy, R.G.; Zaki, A.B. Kinetics and Mechanism of the Heterogeneous Catalyzed Oxidative Degradation of Indigo Carmine. J. Mol. Catal. Chem.2003, 193,109-120. https://doi.org/10.1016/S1381-1169(02)00477-6
dc.relation.referencesen[11] Grimau, V.L.; Gutierrez, M.C. Decolorization of Simulated Reactive Dyebath Effluents by Electrochemical Oxidation Assisted by UV Light. Chemosphere. 2006, 62, 106-112. https://doi.org/10.1016/j.chemosphere.2005.03.076
dc.relation.referencesen[12] Hachem, C.; Bocquillon F.; Zahraa, O.; Bouchy, M. Decolorization of Textil Industry Wastewater by the Photocatalytic Degradation Process. Dyes. Pigm.2001, 49, 117-125. https://doi.org/10.1016/S0143-7208(01)00014-6
dc.relation.referencesen[13] Cisneros, R.L.; Espinoza, A.G.; Litter, M.I. Photodegradation of an Azo Dye of the Textile Industry. Chemosphere. 2002, 48, 393-399. https://doi.org/10.1016/S0045-6535(02)00117-0
dc.relation.referencesen[14] Gupta V. K.; Suhas. Application of Low-Cost Adsorbents for Dye Removal – A Review. J. Environ. Manage. 2009, 90, 2313-2342. https://doi.org/10.1016/j.jenvman.2008.11.017
dc.relation.referencesen[15] Srivastava, V.; Mall, I.D.; Mishra, I.M. Equilibrium Modelling of Single and Binary Adsorption of Cadmium and Nickel onto Bagasse Fly Ash. Chem. Eng. J.2006, 117, 79-91. https://doi.org/10.1016/j.cej.2005.11.021
dc.relation.referencesen[16] Trivedy, R.K. Pollution Management in Industries,2nd ed.; Karad (India): Environmental Publications, 1995.
dc.relation.referencesen[17] Kiely, G. Environmental Engineering; McGraw-hall International Editions, 1998.
dc.relation.referencesen[18] Tchobanoglous, G.; Burton, F.L.; Stensel, D.H. Wastewater Engineering: Treatment and Reuse, 4th ed; McGraw Hill, 2003.
dc.relation.referencesen[19] APHA, Standard methods for the Examination of Water and Waste water. American Public Health Association, Washington DC, 1985.
dc.relation.referencesen[20] Ramana, K.V.; Latha, K.S.; Ravindranath, K.; Babu, B.H. Methyl Red Dye Removal Using New Bio-Sorbents Derived from Hycinth and Tinosporacardifolia Plants from Waste Waters, Rasayan J. Chem. 2017, 10, 349-362.
dc.relation.referencesen[21] Srinivasa Reddy, B.; Venkata Ramana, K.; Ravindranath, K. Extraction of Methylene Blue Dye from Polluted Waters Using Some Bio-sorbents. Int. J. Appl. Biol.Pharm.2012, 3 (4), 215-224.
dc.relation.referencesen[22] Freundlich, H.M.F. Über die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57, 385-470. https://doi.org/10.1515/zpch-1907-5723
dc.relation.referencesen[23] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 1918, 40, 1361-1403. https://doi.org/10.1021/ja02242a004
dc.relation.referencesen[24] Temkin, M.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physicochimica URSS.1940, 12, 217-222.
dc.relation.referencesen[25] Dubinin, M.M.; Radushkevich, L.V. The Equation of the Characteristic Curve of Activated Charcoal. Proc. Natl. Acad. Sci., Phys. Chem. Section. 1947, 55, 331.
dc.relation.referencesen[26] Hall, K. R.; Eagleton, L. C.; Acrivos A.; Vermeulen, T. Pore and Solid Diffusion Kinetics in Fixed Bed Adsorption under Constant Pattern Conditions. Ind. Eng. Chem. Fundam.1966, 5, 212-223. https://doi.org/10.1021/i160018a011
dc.relation.referencesen[27] Sari. I.P.; Simarani, K. Comparative Static and Shaking Culture of Metabolite Derived from Methyl Red Degradation by Lysinibacillusfusiformis Strain W1B6. R. Soc. Open Sci. 2019, 6, 190152. https://doi.org/10.1098/rsos.190152
dc.relation.referencesen[28] Ajaz, M.; Rehman, A.; Khan, Z.; Nisar M.A.; Hussain S. Degradation of Azo Dyes by Alcaligenesaquatilis 3c and its Potential Use in the Wastewater Treatment. AMB Expr.2019, 9, 64. https://doi.org/10.1186/s13568-019-0788-3
dc.relation.referencesen[29] Kpilraj, N.; Keerthanan, S.; Sithambaresan, M. Natural Plant Extracts as Acid-Base Indicator and Determination of Their Pka Value. J. Chem. 2019, 2019, Article ID 2031342. https://doi.org/10.1155/2019/2031342
dc.relation.referencesen[30] Hameed, B.H. Evaluation of Papaya Seeds as a Novel Non-Conventional Low-Cost Adsorbent for Removal of Methylene Blue. J. Hazard. Mater., 2009, 162, 939-944. https://doi.org/10.1016/j.jhazmat.2008.05.120
dc.relation.referencesen[31] Nunes, A.; Franca, S.A.; Olievera, L.S. Activated Carbon from Waste Biomass: An alternative Use for Biodiesel Production Solid Residues. Biores. Technol.2009, 100, 1786-1792. https://doi.org/10.1016/j.biortech.2008.09.032
dc.relation.referencesen[32] Onyango, M.S.; Kojima, Y. Aoyi, O. Bernardo, E.C.; Matsuda, H.J. Adsorption Equilibrium Modeling and Solution Chemistry Dependence of Fluoride Removal from Water by Trivalent-Cation-Exchanged Zeolite F-9. Colloid Interface Sci.2004, 279, 341-350. https://doi.org/10.1016/j.jcis.2004.06.038
dc.relation.referencesen[33] Jain, M.; Garg, V.K.; Kadirvelu, K. Chromium(VI) Removal from Aqueous Solution, Using Sunflower Stem Waste. J. Hazard. Mater.2008, 162, 365-372. https://doi.org/10.1016/j.jhazmat.2008.05.048
dc.relation.referencesen[34] Atkins, P.; de Paulo J. Physical Chemistry, 8th ed.; Oxford University Press, 2006.
dc.relation.referencesen[35] Yuh-Shan, H. Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions. Scientometrics. 2004, 59, 171-177. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf
dc.relation.referencesen[36] Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem.1999, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
dc.relation.referencesen[37] Ho, Y.S.; Ng, J.C.Y.; McKay, G. Kinetics of Pollutant Sorption by Biosorbents: Review. Sep.Purif. Methods. 2000, 29,189-232. https://doi.org/10.1081/SPM-100100009
dc.relation.referencesen[38] Weber Jr., W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution, J. Sanit. Eng. Div.1963, 89, 31-59. https://doi.org/10.1061/JSEDAI.0000430
dc.relation.referencesen[39] Aharoni, C.; Ungarish, M. Kinetics of Activated Chemisorption. Part 2, Theoretical Models, J.Chem. Soc., Faraday Trans. 1. 1977,73, 456-464. https://doi.org/10.1039/f19777300456
dc.relation.referencesen[40] Ozacar, M.; Sengil, V. A Kinetic Study of Metal Complex Dye Sorption onto Pine Sawdust. Process Biochem. 2005, 40, 565-572. https://doi.org/10.1016/j.procbio.2004.01.032
dc.relation.referencesen[41] Gerente C., Lee, V.K.C.; Le Cloirec, P.; McKay, G. Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption – Mechanisms and Models Review. Crit. Rev. Environ. Sci. Technol.2007, 37, 41-127. https://doi.org/10.1080/10643380600729089
dc.relation.referencesen[42] Alagumuthu, G.; Rajan, M. Monitoring of Fluoride Concentration in Ground Water of Kadayam Block of Tirunelveli District, India. Rasayan J. Chem.2008, 4, 757-765.
dc.relation.referencesen[43] Karthikeyan, G.; Siva Ilango S. Fluoride Sorption Using Morringa Indica-Based Activated Carbon. Iran J. Environ. Health. Sci. Eng.2007, 4, 21-28.
dc.relation.referencesen[44] Sakthi S.M.; Rengaraj, V. Kinetics and Equilibrium Adsorption Study of Lead(II) onto Activated Carbon Prepared from Coconut Shell. J. Colloid. Interface Sci.2004, 279, 307-313. https://doi.org/10.1016/j.jcis.2004.06.042
dc.relation.referencesen[45] Venkata Ramana, K.;Swarna Latha, K.; Ravindranath, K.; Hari Babu, B. Methyl Red Dye Removal Using New Bio-Sorbents Derived from Hyacinth and Tinospora Cordifolia Plants from Waste Waters. Rasayan J. Chem.2017, 10, 349-362. https://doi.org/10.7324/RJC.2017.1021537
dc.relation.referencesen[46] Viswanathan, N.; Meenakshi, S. Enriched Fluoride Sorption Using Alumina/Chitosan Composite. J. Hazard. Mater.2010, 178, 226-232. https://doi.org/10.1016/j.jhazmat.2010.01.067
dc.relation.referencesen[47] Bouberka, Z.; Kacha, S.; Kameche M.; Elmaleh, S.; Derriche, Z. J. Hazard. Mater.2005, 119, 117-124. https://doi.org/10.1016/j.jhazmat.2004.11.026
dc.relation.referencesen[48] Sairam Sundaram, C.; Viswanathan, N.; Meenakshi S. J. Hazard. Mater. 2009, 163, 618-624. https://doi.org/10.1016/j.jhazmat.2008.07.009
dc.relation.referencesen[49] Chaturvedi, A.K.; Pathak, K.C.; Singh, V.N. Appl. Clay Sci. 1988, 3, 337-346. https://doi.org/10.1016/0169-1317(88)90024-5
dc.relation.urihttps://doi.org/10.1016/j.jcis.2004.08.076
dc.relation.urihttps://doi.org/10.1016/j.dyepig.2004.06.016
dc.relation.urihttps://doi.org/10.1016/S0141-0229(01)00430-6
dc.relation.urihttps://doi.org/10.1139/w02-090
dc.relation.urihttps://doi.org/10.1016/S1093-0191(01)00128-9
dc.relation.urihttps://doi.org/10.1016/S0043-1354(01)00348-7
dc.relation.urihttps://doi.org/10.1016/j.jfoodeng.2004.10.029
dc.relation.urihttps://doi.org/10.1016/j.jcis.2004.09.027
dc.relation.urihttps://doi.org/10.1016/S1381-1169(02)00477-6
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2005.03.076
dc.relation.urihttps://doi.org/10.1016/S0143-7208(01)00014-6
dc.relation.urihttps://doi.org/10.1016/S0045-6535(02)00117-0
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2008.11.017
dc.relation.urihttps://doi.org/10.1016/j.cej.2005.11.021
dc.relation.urihttps://doi.org/10.1515/zpch-1907-5723
dc.relation.urihttps://doi.org/10.1021/ja02242a004
dc.relation.urihttps://doi.org/10.1021/i160018a011
dc.relation.urihttps://doi.org/10.1098/rsos.190152
dc.relation.urihttps://doi.org/10.1186/s13568-019-0788-3
dc.relation.urihttps://doi.org/10.1155/2019/2031342
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.05.120
dc.relation.urihttps://doi.org/10.1016/j.biortech.2008.09.032
dc.relation.urihttps://doi.org/10.1016/j.jcis.2004.06.038
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.05.048
dc.relation.urihttps://doi.org/10.1023/B:SCIE.0000013305.99473.cf
dc.relation.urihttps://doi.org/10.1016/S0032-9592(98)00112-5
dc.relation.urihttps://doi.org/10.1081/SPM-100100009
dc.relation.urihttps://doi.org/10.1061/JSEDAI.0000430
dc.relation.urihttps://doi.org/10.1039/f19777300456
dc.relation.urihttps://doi.org/10.1016/j.procbio.2004.01.032
dc.relation.urihttps://doi.org/10.1080/10643380600729089
dc.relation.urihttps://doi.org/10.1016/j.jcis.2004.06.042
dc.relation.urihttps://doi.org/10.7324/RJC.2017.1021537
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2010.01.067
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2004.11.026
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.07.009
dc.relation.urihttps://doi.org/10.1016/0169-1317(88)90024-5
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Venkata Ramana K., Chandra Mohan K., Ravindhranath K., Hari Babu B., 2022
dc.subjectметиловий червоний
dc.subjectконтроль забруднення
dc.subjectбіоадсорбент
dc.subjectізотерма адсорбції
dc.subjectкінетика
dc.subjectмоделі рівноваги
dc.subjectMethyl Red (MR)
dc.subjectpollution control
dc.subjectbioadsorbent
dc.subjectadsorption isotherm
dc.subjectkinetics
dc.subjectequilibrium m
dc.titleBio-Sorbent Derived from Annona Squamosa for the Removal of Methyl Red Dye in Polluted Waters: A Study on Adsorption Potential
dc.title.alternativeБіо-сорбент, одержаний з annona squamosa, для видалення барвника метилового червоного з води: дослідження адсорбційного потенціалу
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n2_Kokkiligadda_V_R-Bio_Sorbent_Derived_274-283.pdf
Size:
591.49 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n2_Kokkiligadda_V_R-Bio_Sorbent_Derived_274-283__COVER.png
Size:
482.63 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: