Mathematical modeling and analysis of Phytoplankton–Zooplankton–Nanoparticle dynamics

dc.citation.epage341
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage333
dc.contributor.affiliationІнститут науки і технологій SRM, Каттанкулатур, Тамілнаду, Індія
dc.contributor.affiliationCollege of Engineering and Technology, SRM Institute of Science and Technology
dc.contributor.authorСуганя, Г.
dc.contributor.authorСентхамарай, Р.
dc.contributor.authorSuganya, G.
dc.contributor.authorSenthamarai, R.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:14:22Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractУ цій роботі досліджуємо популяційну динаміку моделі фітопланктон–зоопланктон–наночастинка із дифузійною залежністю швидкості загибелі хижака. Функціональна реакція хижака в цій моделі розглядається як реакція Беддінгтона–ДеАнджеліса. Аналіз стійкості точок рівноваги проводиться за допомогою критерію Рауса–Гурвіца. Для ілюстрації теоретичних результатів наведено чисельне моделювання.
dc.description.abstractIn this paper, we investigate the population dynamics of phytoplankton–zooplankton–nanoparticle model with diffusion and density dependent death rate of predator. The functional response of predator in this model is considered as Beddington–DeAngelis type. The stability analysis of the equilibrium points is observed by applying the Routh–Hurwitz criterion. Numerical simulations are given to illustrate the theoretical results.
dc.format.extent333-341
dc.format.pages9
dc.identifier.citationSuganya G. Mathematical modeling and analysis of Phytoplankton–Zooplankton–Nanoparticle dynamics / G. Suganya, R. Senthamarai // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 333–341.
dc.identifier.citationenSuganya G. Mathematical modeling and analysis of Phytoplankton–Zooplankton–Nanoparticle dynamics / G. Suganya, R. Senthamarai // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 333–341.
dc.identifier.doidoi.org/10.23939/mmc2022.02.333
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63434
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 2 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 2 (9), 2022
dc.relation.references[1] Rana S., Samanta S., Bhattacharya S., Al-Khaled K., Goswami A., Chattopadhyay J. The effect of nanoparticles on plankton dynamics: A mathematical model. Biosystems. 127, 28–41 (2015).
dc.relation.references[2] Handy R. D., Owen R., Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology. 17 (5), 315–325 (2008).
dc.relation.references[3] Beretta E., Kuang Y. Modeling and analysis of a marine bacteriophage infection. Mathematical Biosciences. 149 (1), 57–76 (1998).
dc.relation.references[4] Navarro E., Piccapietra F., Wagner B., Marconi F., Kaegi R., Odzak N., Sigg L., Behra R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental science & technology. 42 (23), 8959–8964 (2008).
dc.relation.references[5] Miao A. J., Schwehr K. A., Xu C., Zhang S. J., Luo Z., Quigg A., Santschi P. H. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental pollution. 157 (11), 3034–3041 (2009).
dc.relation.references[6] Miller R. J., Bennett S., Keller A. A., Pease S., Lenihan H. S. TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton. PLoS ONE. 7 (1), e30321 (2012).
dc.relation.references[7] Beretta E., Kuang Y. Modeling and analysis of a marine bacteriophage infection with latency period. Nonlinear Analysis: Real World Applications. 2 (1), 35–74 (2001).
dc.relation.references[8] Chattopadhyay J., Pal S. Viral infection on phytoplankton–zooplankton system — a mathematical model. Ecological Modelling. 151 (1), 15–28 (2002).
dc.relation.references[9] Garain K., Kumar U., Mandal P. S. Global Dynamics in a Beddington-DeAngelis Prey–Predator Model with Density Dependent Death Rate of Predator. Differential Equations and Dynamical Systems. 29, 265–283 (2021).
dc.relation.references[10] Zhang X., Huang Y., Weng P. Permanence and stability of a diffusive predator–prey model with disease in the prey. Computers & Mathematics with Applications. 68 (10), 1431–1445 (2014).
dc.relation.references[11] Kinoshita S. 1 – Introduction to Nonequilibrium Phenomena. Pattern Formations and Oscillatory Phenomena. 1–59 (2013).
dc.relation.references[12] Cantrell R. S., Cosner C. On the dynamics of predator–prey models with the Beddington–DeAngelis functional response. Journal of Mathematical Analysis and Applications. 257 (1), 206–222 (2001).
dc.relation.references[13] Li H., Takeuchi Y. Dynamics of the density dependent predator–prey system with Beddington–DeAngelis functional response. Journal of Mathematical Analysis and Applications. 374 (2), 644–654 (2011).
dc.relation.references[14] Tripathi J. P., Abbas S., Thakur M. Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge. Nonlinear Dynamics. 80, 177–196 (2015).
dc.relation.references[15] Mandal A., Tiwari P. K., Samanta S., Venturino E., Pal S. A nonautonomous model for the effect of environmental toxins on plankton dynamics. Nonlinear Dynamics. 99 (4), 3373–3405 (2020).
dc.relation.references[16] Mandal A., Tiwari P. K., Pal S. Impact of awareness on environmental toxins affecting plankton dynamics: a mathematical implication. Journal of Applied Mathematics and Computing. 66, 369–395 (2020).
dc.relation.references[17] Friedman A. Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, New York (1964).
dc.relation.references[18] Pao C. V. Nonlinear Parabolic and Elliptic Equations. Plenum, New York (1992).
dc.relation.references[19] Murray J. D. Mathematical biology: I. An introduction. Springer Science & Business Media (2007).
dc.relation.references[20] Gupta R. P., Chandra P., Banerjee M. Dynamical complexity of a prey–predator model with nonlinear predator harvesting. Discrete & Continuous Dynamical Systems – B. 20 (2), 423–443 (2015).
dc.relation.references[21] Xiao D., Ruan S. Global dynamics of a ratio-dependent predator-prey system. Journal of Mathematical Biology. 43, 268–290 (2001).
dc.relation.references[22] Liao M., Tang X., Xu C. Stability and instability analysis for a ratio-dependent predator–prey system with diffusion effect. Nonlinear Analysis: Real World Applications. 12 (3), 1616–1626 (2011).
dc.relation.references[23] Xiang T. Global dynamics for a diffusive predator–prey model with prey-taxis and classical Lotka–Volterra kinetics. Nonlinear Analysis: Real World Applications. 39, 278–299 (2018).
dc.relation.references[24] Yao S. W., Ma Z. P., Cheng Z. B. Pattern formation of a diffusive predator–prey model with strong Allee effect and nonconstant death rate. Physica A: Statistical Mechanics and its Applications. 527, 121350 (2019).
dc.relation.references[25] Chakraborty B., Ghorai S., Bairagi N. Reaction–diffusion predator–prey–parasite system and spatiotemporal complexity. Applied Mathematics and Computation. 386, 125518 (2020).
dc.relation.references[26] Liu G., Chang Z., Meng X., Liu S. Optimality for a diffusive predator–prey system in a spatially heterogeneous environment incorporating a prey refuge. Applied Mathematics and Computation. 384, 125385 (2020).
dc.relation.references[27] Nivethitha M., Senthamarai R. Analytical approach to a steady-state predator–prey system of Lotka–Volterra model. AIP Conference Proceedings. 2277, 210005 (2020).
dc.relation.references[28] Vijayalakshmi T., Senthamarai R. Analytical approach to a three species food chain model by applying Homotopy perturbation method. International Journal of Advanced Science and Technology. 29 (6), 2853–2867 (2020).
dc.relation.references[29] Senthamarai R., Vijayalakshmi T. An analytical approach to top predator interference on the dynamics of a food chain model. Journal of Physics: Conference Series. 1000, 012139 (2018).
dc.relation.references[30] Vijayalakshmi T., Senthamarai R. An analytical approach to the density dependent prey–predator system with Beddington–Deangelies functional response. AIP Conference Proceedings. 2112, 020077 (2019).
dc.relation.referencesen[1] Rana S., Samanta S., Bhattacharya S., Al-Khaled K., Goswami A., Chattopadhyay J. The effect of nanoparticles on plankton dynamics: A mathematical model. Biosystems. 127, 28–41 (2015).
dc.relation.referencesen[2] Handy R. D., Owen R., Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology. 17 (5), 315–325 (2008).
dc.relation.referencesen[3] Beretta E., Kuang Y. Modeling and analysis of a marine bacteriophage infection. Mathematical Biosciences. 149 (1), 57–76 (1998).
dc.relation.referencesen[4] Navarro E., Piccapietra F., Wagner B., Marconi F., Kaegi R., Odzak N., Sigg L., Behra R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental science & technology. 42 (23), 8959–8964 (2008).
dc.relation.referencesen[5] Miao A. J., Schwehr K. A., Xu C., Zhang S. J., Luo Z., Quigg A., Santschi P. H. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental pollution. 157 (11), 3034–3041 (2009).
dc.relation.referencesen[6] Miller R. J., Bennett S., Keller A. A., Pease S., Lenihan H. S. TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton. PLoS ONE. 7 (1), e30321 (2012).
dc.relation.referencesen[7] Beretta E., Kuang Y. Modeling and analysis of a marine bacteriophage infection with latency period. Nonlinear Analysis: Real World Applications. 2 (1), 35–74 (2001).
dc.relation.referencesen[8] Chattopadhyay J., Pal S. Viral infection on phytoplankton–zooplankton system - a mathematical model. Ecological Modelling. 151 (1), 15–28 (2002).
dc.relation.referencesen[9] Garain K., Kumar U., Mandal P. S. Global Dynamics in a Beddington-DeAngelis Prey–Predator Model with Density Dependent Death Rate of Predator. Differential Equations and Dynamical Systems. 29, 265–283 (2021).
dc.relation.referencesen[10] Zhang X., Huang Y., Weng P. Permanence and stability of a diffusive predator–prey model with disease in the prey. Computers & Mathematics with Applications. 68 (10), 1431–1445 (2014).
dc.relation.referencesen[11] Kinoshita S. 1 – Introduction to Nonequilibrium Phenomena. Pattern Formations and Oscillatory Phenomena. 1–59 (2013).
dc.relation.referencesen[12] Cantrell R. S., Cosner C. On the dynamics of predator–prey models with the Beddington–DeAngelis functional response. Journal of Mathematical Analysis and Applications. 257 (1), 206–222 (2001).
dc.relation.referencesen[13] Li H., Takeuchi Y. Dynamics of the density dependent predator–prey system with Beddington–DeAngelis functional response. Journal of Mathematical Analysis and Applications. 374 (2), 644–654 (2011).
dc.relation.referencesen[14] Tripathi J. P., Abbas S., Thakur M. Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge. Nonlinear Dynamics. 80, 177–196 (2015).
dc.relation.referencesen[15] Mandal A., Tiwari P. K., Samanta S., Venturino E., Pal S. A nonautonomous model for the effect of environmental toxins on plankton dynamics. Nonlinear Dynamics. 99 (4), 3373–3405 (2020).
dc.relation.referencesen[16] Mandal A., Tiwari P. K., Pal S. Impact of awareness on environmental toxins affecting plankton dynamics: a mathematical implication. Journal of Applied Mathematics and Computing. 66, 369–395 (2020).
dc.relation.referencesen[17] Friedman A. Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, New York (1964).
dc.relation.referencesen[18] Pao C. V. Nonlinear Parabolic and Elliptic Equations. Plenum, New York (1992).
dc.relation.referencesen[19] Murray J. D. Mathematical biology: I. An introduction. Springer Science & Business Media (2007).
dc.relation.referencesen[20] Gupta R. P., Chandra P., Banerjee M. Dynamical complexity of a prey–predator model with nonlinear predator harvesting. Discrete & Continuous Dynamical Systems – B. 20 (2), 423–443 (2015).
dc.relation.referencesen[21] Xiao D., Ruan S. Global dynamics of a ratio-dependent predator-prey system. Journal of Mathematical Biology. 43, 268–290 (2001).
dc.relation.referencesen[22] Liao M., Tang X., Xu C. Stability and instability analysis for a ratio-dependent predator–prey system with diffusion effect. Nonlinear Analysis: Real World Applications. 12 (3), 1616–1626 (2011).
dc.relation.referencesen[23] Xiang T. Global dynamics for a diffusive predator–prey model with prey-taxis and classical Lotka–Volterra kinetics. Nonlinear Analysis: Real World Applications. 39, 278–299 (2018).
dc.relation.referencesen[24] Yao S. W., Ma Z. P., Cheng Z. B. Pattern formation of a diffusive predator–prey model with strong Allee effect and nonconstant death rate. Physica A: Statistical Mechanics and its Applications. 527, 121350 (2019).
dc.relation.referencesen[25] Chakraborty B., Ghorai S., Bairagi N. Reaction–diffusion predator–prey–parasite system and spatiotemporal complexity. Applied Mathematics and Computation. 386, 125518 (2020).
dc.relation.referencesen[26] Liu G., Chang Z., Meng X., Liu S. Optimality for a diffusive predator–prey system in a spatially heterogeneous environment incorporating a prey refuge. Applied Mathematics and Computation. 384, 125385 (2020).
dc.relation.referencesen[27] Nivethitha M., Senthamarai R. Analytical approach to a steady-state predator–prey system of Lotka–Volterra model. AIP Conference Proceedings. 2277, 210005 (2020).
dc.relation.referencesen[28] Vijayalakshmi T., Senthamarai R. Analytical approach to a three species food chain model by applying Homotopy perturbation method. International Journal of Advanced Science and Technology. 29 (6), 2853–2867 (2020).
dc.relation.referencesen[29] Senthamarai R., Vijayalakshmi T. An analytical approach to top predator interference on the dynamics of a food chain model. Journal of Physics: Conference Series. 1000, 012139 (2018).
dc.relation.referencesen[30] Vijayalakshmi T., Senthamarai R. An analytical approach to the density dependent prey–predator system with Beddington–Deangelies functional response. AIP Conference Proceedings. 2112, 020077 (2019).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectмодель “жертва–хижак”
dc.subjectнаночастинки
dc.subjectдифузія
dc.subjectфункціональна реакція Беддінгтон–ДеАнджеліса
dc.subjectстійкість
dc.subjectчисельне моделювання
dc.subjectprey–predator model
dc.subjectnanoparticles
dc.subjectdiffusion
dc.subjectBeddington–DeAngelis functional response
dc.subjectstability
dc.subjectnumerical simulation
dc.titleMathematical modeling and analysis of Phytoplankton–Zooplankton–Nanoparticle dynamics
dc.title.alternativeМатематичне моделювання та аналіз динаміка фітопланктон–зоопланктон–наночастинка
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n2_Suganya_G-Mathematical_modeling_and_333-341.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n2_Suganya_G-Mathematical_modeling_and_333-341__COVER.png
Size:
463.48 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: