Application of Parallel Computing Technology for Modelling Complex Dynamic Objects

dc.citation.epage35
dc.citation.issue1
dc.citation.journalTitleОбчислювальні проблеми електротехніки
dc.citation.spage30
dc.citation.volume14
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationЛьвівський національний університет імені Івана Франка
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.authorСтахів, Петро
dc.contributor.authorМельник, Богдан
dc.contributor.authorГоголюк, Оксана
dc.contributor.authorТроханяк, Степан
dc.contributor.authorStakhiv, Petro
dc.contributor.authorMelnyk, Bohdan
dc.contributor.authorHoholyuk, Oksana
dc.contributor.authorTrokhanyak, Stepan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-04T10:18:09Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThe paper is devoted to the development of approaches to the application of parallel algorithms in modelling complex dynamic objects. An overview of the existing principles of computer modelling based on parallel computing procedures is given. It is proposed to describe complex dynamic objects in the form of macromodels. An algorithm for parallelising computations when constructing a nonlinear macromodel of a dynamic object with a separate linear part is described. An iterative algorithm for constructing a macromodel that describes heterogeneous dynamic characteristics of an object is formulated.
dc.format.extent30-35
dc.format.pages6
dc.identifier.citationApplication of Parallel Computing Technology for Modelling Complex Dynamic Objects / Petro Stakhiv, Bohdan Melnyk, Oksana Hoholyuk, Stepan Trokhanyak // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 14. — No 1. — P. 30–35.
dc.identifier.citationenApplication of Parallel Computing Technology for Modelling Complex Dynamic Objects / Petro Stakhiv, Bohdan Melnyk, Oksana Hoholyuk, Stepan Trokhanyak // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 14. — No 1. — P. 30–35.
dc.identifier.doidoi.org/10.23939/jcpee2024.01.030
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/117211
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofОбчислювальні проблеми електротехніки, 1 (14), 2024
dc.relation.ispartofComputational Problems of Electrical Engineering, 1 (14), 2024
dc.relation.references[1] H. A. Johnson, “Using Advanced Continuous Simulation Language (ACSL) to Simulate, Solve, and Fit Mathematical Models in Nutrition”, in: Novotny, J. A., Green, M. H., Boston, R. C. (eds) Mathematical Modeling in Nutrition and the Health Sciences. Advances in Experimental Medicine and Biology, vol. 537. Springer, Boston, MA, 2003. https://doi.org/10.1007/978-1-4419-9019-8_24
dc.relation.references[2] D. K. Chaturvedi, Modeling and simulation of system using Matlab and Simulink. CRS Pres Taylor & Francis Group, 2010.
dc.relation.references[3] D. M. Harris, S.L. Harris, Digital Design and Computer Architecture (Second Edition), Morgan Kaufmann, 2013.
dc.relation.references[4] S. K. Meesala, P. M. Khilar, and A. K. Shrivastava, “Multiple Instruction Multiple Data (MIMD) Implementation on Clusters of Terminals”, International Journal of Science and Research (IJSR), Vol. 5, Issue 1, 2016. DOI: 10.13140/RG.2.1.4826.9846
dc.relation.references[5] W. E. Nagel, D. H. Kroner, and M. M. Resch. High Performance Computing in Science and Engineering 12. Springer - Verlag Berlin Heidelberg, 2013.
dc.relation.references[6] C. Hughe and, T. Hughes, Parallel and distributed programming using C++, NJ: Prentice Hall, 2004.
dc.relation.references[7] G. D’Angelo and M. Marzolla, “New trends in parallel and distributed simulation: From manycores to Cloud Computing”, Simulation Modelling Practice and Theory, vol. 49, pp. 320–335, 2014. https://doi.org/10.1016/j.simpat.2014.06.007.
dc.relation.references[8] P. G. Stakhiv and D. I. Krupskiy, “Modeling of complex electronic systems with adaptive parallel algorithms”, Actual problems of theoretical electrical engineering: science and didactics, Lviv, Krym-Aluszta, pp. 131–136, 1999 (in Ukrainian).
dc.relation.references[9] V. A. Sviatnyy, “Parallel modeling of complex dynamic systems,” Modeling-2006, Kyiv, pp. 83-90, 2006 (in Ukrainian).
dc.relation.references[10] P. G. Stakhiv, Yu. Ya. Kozak, and O. P. Hoholyuk, Discrete modeling in electrical engineering and related fields. Lviv: Lviv Polytechnik, 2014 (in Ukrainian).
dc.relation.references[11] B. Mel’nyk and S. Trokhahiak, “Constrction of Shematitic Models of Multipoles for CAD System,” CPEE’02, Zakopane, pp. 63–66, 2002.
dc.relation.references[12] P. Stakhiv, B. Melnik, and V. Dzhala, “Design of Discrete Makromodels for Nonlinear Dynamic Object with Multiple Input,” Engineering Simulation, Amsterdam. vol. 14, pp. 493–498, 1997.
dc.relation.references[13] P. Stachiw, Yu. Kozak, and B. Melnyk, “Application of parallel algorithms in the synthesis of dynamic multipole macromodels”, IC-SPETO. GliwiceNiedica. Vol. II, pp. 263–266, 2003.
dc.relation.references[14] P. Stakhiv, O. Hoholyuk, O. Hamola, B. Melnyk, V. Maday and N. Melnyk, “Application of the Rastrygin’s Method in Modeling of Complex Electrical Systems”, 2023 24th International Conference on Computational Problems of Electrical Engineering (CPEE), Grybów, Poland, 2023, pp. 1-5. DOI: 10.1109/CPEE59623.2023.10285315.
dc.relation.referencesen[1] H. A. Johnson, "Using Advanced Continuous Simulation Language (ACSL) to Simulate, Solve, and Fit Mathematical Models in Nutrition", in: Novotny, J. A., Green, M. H., Boston, R. C. (eds) Mathematical Modeling in Nutrition and the Health Sciences. Advances in Experimental Medicine and Biology, vol. 537. Springer, Boston, MA, 2003. https://doi.org/10.1007/978-1-4419-9019-8_24
dc.relation.referencesen[2] D. K. Chaturvedi, Modeling and simulation of system using Matlab and Simulink. CRS Pres Taylor & Francis Group, 2010.
dc.relation.referencesen[3] D. M. Harris, S.L. Harris, Digital Design and Computer Architecture (Second Edition), Morgan Kaufmann, 2013.
dc.relation.referencesen[4] S. K. Meesala, P. M. Khilar, and A. K. Shrivastava, "Multiple Instruction Multiple Data (MIMD) Implementation on Clusters of Terminals", International Journal of Science and Research (IJSR), Vol. 5, Issue 1, 2016. DOI: 10.13140/RG.2.1.4826.9846
dc.relation.referencesen[5] W. E. Nagel, D. H. Kroner, and M. M. Resch. High Performance Computing in Science and Engineering 12. Springer - Verlag Berlin Heidelberg, 2013.
dc.relation.referencesen[6] C. Hughe and, T. Hughes, Parallel and distributed programming using C++, NJ: Prentice Hall, 2004.
dc.relation.referencesen[7] G. D’Angelo and M. Marzolla, "New trends in parallel and distributed simulation: From manycores to Cloud Computing", Simulation Modelling Practice and Theory, vol. 49, pp. 320–335, 2014. https://doi.org/10.1016/j.simpat.2014.06.007.
dc.relation.referencesen[8] P. G. Stakhiv and D. I. Krupskiy, "Modeling of complex electronic systems with adaptive parallel algorithms", Actual problems of theoretical electrical engineering: science and didactics, Lviv, Krym-Aluszta, pp. 131–136, 1999 (in Ukrainian).
dc.relation.referencesen[9] V. A. Sviatnyy, "Parallel modeling of complex dynamic systems," Modeling-2006, Kyiv, pp. 83-90, 2006 (in Ukrainian).
dc.relation.referencesen[10] P. G. Stakhiv, Yu. Ya. Kozak, and O. P. Hoholyuk, Discrete modeling in electrical engineering and related fields. Lviv: Lviv Polytechnik, 2014 (in Ukrainian).
dc.relation.referencesen[11] B. Mel’nyk and S. Trokhahiak, "Constrction of Shematitic Models of Multipoles for CAD System," CPEE’02, Zakopane, pp. 63–66, 2002.
dc.relation.referencesen[12] P. Stakhiv, B. Melnik, and V. Dzhala, "Design of Discrete Makromodels for Nonlinear Dynamic Object with Multiple Input," Engineering Simulation, Amsterdam. vol. 14, pp. 493–498, 1997.
dc.relation.referencesen[13] P. Stachiw, Yu. Kozak, and B. Melnyk, "Application of parallel algorithms in the synthesis of dynamic multipole macromodels", IC-SPETO. GliwiceNiedica. Vol. II, pp. 263–266, 2003.
dc.relation.referencesen[14] P. Stakhiv, O. Hoholyuk, O. Hamola, B. Melnyk, V. Maday and N. Melnyk, "Application of the Rastrygin’s Method in Modeling of Complex Electrical Systems", 2023 24th International Conference on Computational Problems of Electrical Engineering (CPEE), Grybów, Poland, 2023, pp. 1-5. DOI: 10.1109/CPEE59623.2023.10285315.
dc.relation.urihttps://doi.org/10.1007/978-1-4419-9019-8_24
dc.relation.urihttps://doi.org/10.1016/j.simpat.2014.06.007
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectdynamic object
dc.subjectparallel algorithms
dc.subjectcomputer modelling
dc.subjectmacromodel
dc.subjectdiacoptic approach
dc.titleApplication of Parallel Computing Technology for Modelling Complex Dynamic Objects
dc.title.alternativeЗастосування технології паралельних обчислень для моделювання складних динамічних об’єктів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v14n1_Stakhiv_P-Application_of_Parallel_Computing_30-35.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v14n1_Stakhiv_P-Application_of_Parallel_Computing_30-35__COVER.png
Size:
537.63 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: