Production of Cement Based on Calcium Aluminate by Means of Solid State Reactions

dc.citation.epage498
dc.citation.issue3
dc.citation.spage492
dc.contributor.affiliationUniversidad Politécnica de Victoria
dc.contributor.affiliationUniversidad Autónoma del Estado de México
dc.contributor.authorCórdova-Szymanski, Karla
dc.contributor.authorArmendariz-Mireles, Eddie
dc.contributor.authorRodríguez-García, José
dc.contributor.authorMiranda-Hernández, José
dc.contributor.authorRocha-Rangel, Enrique
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T12:00:11Z
dc.date.available2024-01-22T12:00:11Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractЗа допомогою порошкових методів та реакцій в твердому середовищі in situ виготовлено вогнетривкий цемент на основі CaAl2O4 з використанням CaCO3, одержаного з шкаралупи курячих яєць, та Al як вихідних матеріалів. Для зменшення розміру частинок та досягнення однорідної суміші порошки піддавали високоенергетичному подрібненню на планетарному млині. Отримані порошки ущільнювали, утворюючи циліндричні таблетки і спікали у потоці повітря без тиску. За допомогою гранулометричного аналізу встановлено, що розмір зразків від декількох нанометрів до 2 мкм. За результатами диференціального термічного аналізу встановлено, що розкладання CaCO3 починається за 953 K і закінчується за 1073 K. Цей факт підтверджений дифракційним аналізом який також вказує на те, що формування кристалічної фази CaAl2O4 завершується за 1773 K. Методом скануючої електронної мікроскопії встановлено мікроструктуру у вигляді рівноосних зерен у вигляді пластівців з розмірами від 1 до 2 мкм. Середня щільність та твердість матеріалу становила 3,08 г/см3 та 430 HV відповідно. Проведено випробування на тепловий удар, і показано утворення тріщин матеріалу при охолодженні з градієнтами температури 873 К.
dc.description.abstractThrough powder techniques and in situ solid state reactions, a refractory cement CaAl2O4-based was fabricated, using CaCO3 extracted from chicken eggshells and Al as precursor materials. To reduce the particle size and achieve a homogeneous mixture, the powders were subjected to high-energy milling in a planetary mill. The powders resulting from the grinding were compacted to form cylindrical tablets. These samples were pressureless sintered in air. A particle size distribution analysis indicates that they were obtained from the grinding particles ranging in size from nanometers to 2 microns. Differential thermal analysis indicates that the decomposition of CaCO3 begins at 953 K and ends at 1073 K, a situation confirmed by X-ray diffraction analysis, the latter also indicating that the formation of the CaAl2O4 crystalline phase is completed at 1773 K. The microstructure observed by scanning electron microscope shows equiaxial grains in the form of flakes and sizes from 1 to 2 microns. The average density and hardness of the material was 3.08 g/cm3 and 430 HV, respectively. With regard to thermal shock tests, the material showed cracks from cooling with temperature gradients of 873 K.
dc.format.extent492-498
dc.format.pages7
dc.identifier.citationProduction of Cement Based on Calcium Aluminate by Means of Solid State Reactions / Karla Córdova-Szymanski, Eddie Armendariz-Mireles, José Rodríguez-García, José Miranda-Hernández, Enrique Rocha-Rangel // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 492–498.
dc.identifier.citationenProduction of Cement Based on Calcium Aluminate by Means of Solid State Reactions / Karla Córdova-Szymanski, Eddie Armendariz-Mireles, José Rodríguez-García, José Miranda-Hernández, Enrique Rocha-Rangel // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 492–498.
dc.identifier.doidoi.org/10.23939/chcht16.03.492
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60997
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (16), 2022
dc.relation.references[1] Tomba-Martinez, A.G.; Luz, A.P.; Pandolfelli, V.C. Fluencia en Materiales Refractarios. Bol. Soc. Esp. Ceram. V. 2013, 52, 207-224. https://doi.org/10.3989/cyv.262013
dc.relation.references[2] Thermal Energy Equipment: Furnaces and Refractories. In Energy Efficiency Guide for Industry in Asia, UNEP 2006, 1-36. http://www.moderneq.com/pdf/Refractories.pdf (accessed Oct 04, 2021)
dc.relation.references[3] Kumar, V.; Singh, V.K.; Srivastava, A.; Agrawal, G.N. Low Temperature Synthesis of High Alumina Cements by Gel-Trapped Co-Precipitation Process and Their Implementation as Castables. J. Am. Ceram. Soc. 2012, 95, 3769-3775. https://doi.org/10.1111/j.1551-2916.2012.05453.x
dc.relation.references[4] Fernández-González, D.; Prazuch, J.; Ruiz-Bustinza, I.; González-Gasca, C.; Piñuela-Noval, J.; Verdeja, L.F. Solar Synthesis of Calcium Aluminates. Solar Energy 2018, 171, 658-666. https://doi.org/10.1016/j.solener.2018.07.012
dc.relation.references[5] Xiao, G.; Yang, S.; Ding, D.; Ren, Y.; Lv, L.; Yang, P.; Hou, X.; Gao, J. One-Step Synthesis of in-Situ Carbon-Containing Calcium Aluminate Cement as Binders for Refractory Castables. Ceram. Int. 2018, 44, 15378-15384. https://doi.org/10.1016/j.ceramint.2018.05.189
dc.relation.references[6] Yang, S.; Xiao, G.; Ding, D.; Ren, Y.; Lv, L.; Yang, P.; Gao, J Solid-Phase Combustion Synthesis of Calcium Aluminate with CaAl2O4 Nanofiber Structures. Ceram Int. 2018, 44, 6186-6191. https://doi.org/10.1016/j.ceramint.2018.01.003
dc.relation.references[7] Lee, H.-K. Effect of Al Alloy Content on Processing of Reaction-Bonded Al2O3 Ceramics Using Al Alloy Powder. Korean J. Mater. Res. 2015, 25, 215-220. https://doi.org/10.3740/MRSK.2015.25.5.215
dc.relation.references[8] Guglielmi, P.O.; Garcıa, D.E.; Hablitzel, M.P.; Blaese, D.; Goulart, D.P.; Borchert, A.; Hotza, D.; Janssen, R. Processing of All-Oxide Ceramic Matrix Composites with RBAO Matrices. J.Ceram.Sci. Technol. 2015, 7, 87-96. https://doi.org/10.4416/JCST2015-00038
dc.relation.references[9] Rumyantsev, R.N.; Il’in, A.A.; Lapshin, M.A.; Il’in, A.P.; Volkova, A.V.; Goryanskaya, V.A. Particulars of Calcium Aluminate Formation During Mechanochemical Interaction in the System Ca(OH)2–Al–H2O. Glass Ceram. 2018, 74, 406-410. https://doi.org/10.1007/s10717-018-0005-x
dc.relation.references[10] Gu, W.; Zhu, L.; Shang, X.; Ding, D.; Liu, L.; Chen, L.; Ye, G. Effect of Particle Size of Calcium Aluminate Cement on Volumetric Stability and Thermal Shock Resistance of CAC-Bonded Castables. J. Alloy Compd. 2019, 772, 637-641. https://doi.org/10.1016/j.jallcom.2018.09.128
dc.relation.references[11] Roberson, M.L.; Beck, J.W.; Maples, J.S.; Savariste, A.; Donaldson, D.J.; Stein, D.L.; Kelly, A.C. Bayer Process Production of Alumina. U.S. Patent 4,036,931, July 19, 1977.
dc.relation.references[12] Claussen, N.; Wu, S.; Holz, D. Reaction Bonding of Aluminum Oxide (RBAO) Composites: Processing, Reaction Mechanisms and Properties. J. Eur. Ceram. Soc. 1994, 14, 97-109. https://doi.org/10.1016/0955-2219(94)90097-3
dc.relation.references[13] Lee, H.-K. Milling and Particulate Characteristics of Al Alloy-Al2O3 Powder Mixtures for Reaction-Bonded Al2O3(RBAO) Process. Korean J. Mater. Res. 2013, 23, 574-579. https://doi.org/10.3740/MRSK.2013.23.10.574
dc.relation.references[14] Lee, H.-K. Effect of Al Alloy Content on Processing of Reaction-Bonded Al2O3 Ceramics Using Al Alloy Powder. Korean J. Mater. Res. 2015, 25, 215-220. https://doi.org/10.3740/MRSK.2015.25.5.215
dc.relation.references[15] Hassan, T.A.; Rangari, V.K.; Rana, R.K.; Jeelani, S. Sonochemical Effect on Size Reduction of CaCO3 Nanoparticles Derived from Waste Eggshells. Ultrason. Sonochem. 2013, 20, 1308-1315. https://doi.org/10.1016/j.ultsonch.2013.01.016
dc.relation.references[16] ResearchGate. https://www.researchgate.net/post/What_is_the_formula_to_calculating_the... (accessed May 7, 2020)
dc.relation.references[17] Cullity, B.; Stock, S. Elements of X-Ray Diffraction; Prentice-Hall: New York, 2001.
dc.relation.references[18] NRC Publications Archive. Archives des publications du CNRC. [Online] https://nrc-publications.canada.ca/eng/view/accepted/?id=582208ec-7b7a-4... (accessed May 7, 2020).
dc.relation.referencesen[1] Tomba-Martinez, A.G.; Luz, A.P.; Pandolfelli, V.C. Fluencia en Materiales Refractarios. Bol. Soc. Esp. Ceram. V. 2013, 52, 207-224. https://doi.org/10.3989/cyv.262013
dc.relation.referencesen[2] Thermal Energy Equipment: Furnaces and Refractories. In Energy Efficiency Guide for Industry in Asia, UNEP 2006, 1-36. http://www.moderneq.com/pdf/Refractories.pdf (accessed Oct 04, 2021)
dc.relation.referencesen[3] Kumar, V.; Singh, V.K.; Srivastava, A.; Agrawal, G.N. Low Temperature Synthesis of High Alumina Cements by Gel-Trapped Co-Precipitation Process and Their Implementation as Castables. J. Am. Ceram. Soc. 2012, 95, 3769-3775. https://doi.org/10.1111/j.1551-2916.2012.05453.x
dc.relation.referencesen[4] Fernández-González, D.; Prazuch, J.; Ruiz-Bustinza, I.; González-Gasca, C.; Piñuela-Noval, J.; Verdeja, L.F. Solar Synthesis of Calcium Aluminates. Solar Energy 2018, 171, 658-666. https://doi.org/10.1016/j.solener.2018.07.012
dc.relation.referencesen[5] Xiao, G.; Yang, S.; Ding, D.; Ren, Y.; Lv, L.; Yang, P.; Hou, X.; Gao, J. One-Step Synthesis of in-Situ Carbon-Containing Calcium Aluminate Cement as Binders for Refractory Castables. Ceram. Int. 2018, 44, 15378-15384. https://doi.org/10.1016/j.ceramint.2018.05.189
dc.relation.referencesen[6] Yang, S.; Xiao, G.; Ding, D.; Ren, Y.; Lv, L.; Yang, P.; Gao, J Solid-Phase Combustion Synthesis of Calcium Aluminate with CaAl2O4 Nanofiber Structures. Ceram Int. 2018, 44, 6186-6191. https://doi.org/10.1016/j.ceramint.2018.01.003
dc.relation.referencesen[7] Lee, H.-K. Effect of Al Alloy Content on Processing of Reaction-Bonded Al2O3 Ceramics Using Al Alloy Powder. Korean J. Mater. Res. 2015, 25, 215-220. https://doi.org/10.3740/MRSK.2015.25.5.215
dc.relation.referencesen[8] Guglielmi, P.O.; Garcıa, D.E.; Hablitzel, M.P.; Blaese, D.; Goulart, D.P.; Borchert, A.; Hotza, D.; Janssen, R. Processing of All-Oxide Ceramic Matrix Composites with RBAO Matrices. J.Ceram.Sci. Technol. 2015, 7, 87-96. https://doi.org/10.4416/JCST2015-00038
dc.relation.referencesen[9] Rumyantsev, R.N.; Il’in, A.A.; Lapshin, M.A.; Il’in, A.P.; Volkova, A.V.; Goryanskaya, V.A. Particulars of Calcium Aluminate Formation During Mechanochemical Interaction in the System Ca(OH)2–Al–H2O. Glass Ceram. 2018, 74, 406-410. https://doi.org/10.1007/s10717-018-0005-x
dc.relation.referencesen[10] Gu, W.; Zhu, L.; Shang, X.; Ding, D.; Liu, L.; Chen, L.; Ye, G. Effect of Particle Size of Calcium Aluminate Cement on Volumetric Stability and Thermal Shock Resistance of CAC-Bonded Castables. J. Alloy Compd. 2019, 772, 637-641. https://doi.org/10.1016/j.jallcom.2018.09.128
dc.relation.referencesen[11] Roberson, M.L.; Beck, J.W.; Maples, J.S.; Savariste, A.; Donaldson, D.J.; Stein, D.L.; Kelly, A.C. Bayer Process Production of Alumina. U.S. Patent 4,036,931, July 19, 1977.
dc.relation.referencesen[12] Claussen, N.; Wu, S.; Holz, D. Reaction Bonding of Aluminum Oxide (RBAO) Composites: Processing, Reaction Mechanisms and Properties. J. Eur. Ceram. Soc. 1994, 14, 97-109. https://doi.org/10.1016/0955-2219(94)90097-3
dc.relation.referencesen[13] Lee, H.-K. Milling and Particulate Characteristics of Al Alloy-Al2O3 Powder Mixtures for Reaction-Bonded Al2O3(RBAO) Process. Korean J. Mater. Res. 2013, 23, 574-579. https://doi.org/10.3740/MRSK.2013.23.10.574
dc.relation.referencesen[14] Lee, H.-K. Effect of Al Alloy Content on Processing of Reaction-Bonded Al2O3 Ceramics Using Al Alloy Powder. Korean J. Mater. Res. 2015, 25, 215-220. https://doi.org/10.3740/MRSK.2015.25.5.215
dc.relation.referencesen[15] Hassan, T.A.; Rangari, V.K.; Rana, R.K.; Jeelani, S. Sonochemical Effect on Size Reduction of CaCO3 Nanoparticles Derived from Waste Eggshells. Ultrason. Sonochem. 2013, 20, 1308-1315. https://doi.org/10.1016/j.ultsonch.2013.01.016
dc.relation.referencesen[16] ResearchGate. https://www.researchgate.net/post/What_is_the_formula_to_calculating_the... (accessed May 7, 2020)
dc.relation.referencesen[17] Cullity, B.; Stock, S. Elements of X-Ray Diffraction; Prentice-Hall: New York, 2001.
dc.relation.referencesen[18] NRC Publications Archive. Archives des publications du CNRC. [Online] https://nrc-publications.canada.ca/eng/view/accepted/?id=582208ec-7b7a-4... (accessed May 7, 2020).
dc.relation.urihttps://doi.org/10.3989/cyv.262013
dc.relation.urihttp://www.moderneq.com/pdf/Refractories.pdf
dc.relation.urihttps://doi.org/10.1111/j.1551-2916.2012.05453.x
dc.relation.urihttps://doi.org/10.1016/j.solener.2018.07.012
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2018.05.189
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2018.01.003
dc.relation.urihttps://doi.org/10.3740/MRSK.2015.25.5.215
dc.relation.urihttps://doi.org/10.4416/JCST2015-00038
dc.relation.urihttps://doi.org/10.1007/s10717-018-0005-x
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2018.09.128
dc.relation.urihttps://doi.org/10.1016/0955-2219(94)90097-3
dc.relation.urihttps://doi.org/10.3740/MRSK.2013.23.10.574
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2013.01.016
dc.relation.urihttps://www.researchgate.net/post/What_is_the_formula_to_calculating_the..
dc.relation.urihttps://nrc-publications.canada.ca/eng/view/accepted/?id=582208ec-7b7a-4..
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Córdova-Szymanski K., Armendariz-Mireles E., Rodriguez-Garcia J., Miranda-Hernández J., Rocha-Rangel E., 2022
dc.subjectвогнетривкий цемент
dc.subjectалюмінат кальцію
dc.subjectтвердофазна реакція
dc.subjectвисокоглиноземний цемент
dc.subjectrefractory cement
dc.subjectcalcium aluminate
dc.subjectsolid state reaction
dc.subjecthigh alumina cement
dc.titleProduction of Cement Based on Calcium Aluminate by Means of Solid State Reactions
dc.title.alternativeВиробництво цементу на основі алюмінату кальцію за допомогою реакцій в твердому середовищі
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n3_Cordova-Szymanski_K-Production_of_492-498.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n3_Cordova-Szymanski_K-Production_of_492-498__COVER.png
Size:
568.79 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: