Earth’s figure changes – geodynamic factor of stressed-deformed litosphere state

dc.citation.epage42
dc.citation.issue1 (26)
dc.citation.journalTitleГеодинаміка : науковий журнал
dc.citation.spage28
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЦерклевич, А. Л.
dc.contributor.authorШило, Є. О.
dc.contributor.authorШило, О. М.
dc.contributor.authorTserklevych, A. L.
dc.contributor.authorShylo, Ye. O.
dc.contributor.authorShylo, O. M.
dc.coverage.placenameЛьвів
dc.date.accessioned2020-02-19T13:04:11Z
dc.date.available2020-02-19T13:04:11Z
dc.date.created2019-06-26
dc.date.issued2019-06-26
dc.description.abstractМета цієї роботи – показати, як у процесі еволюційного саморозвитку планети в результаті дії гравітаційно-ротаційних та ендогенних сил відбувається перерозподіл мас, що приводить до трансформації фігури літосфери від сфери до двовісного та тривісного еліпсоїдів і навпаки, зміни сплющеності та переміщення полюса в геологічному часі. Визначити деформації фігури літосфери внаслідок переорієнтації полюса фігури. Методика. Фігура поверхні літосфери геометрично повернута відносно фігури геоїда і в геологічному часі орієнтація цих фігур і параметри еліпсоїдів, які їх апроксимують, змінювались. Таке розміщення фігури літосфери і фігури геоїда може створювати напруження, яке направлене на приведення розподілу мас літосфери у відповідність з фігурою геоїда. Обчислення параметрів двовісного і тривісного еліпсоїдів виконувалося на основі даних цифрової моделі поверхні Землі ETOPO1. Для моделювання трансформації фігури Землі і оцінки впливу її переорієнтації на напружено-деформований стан літосфери в далекі геологічні епохи використані дані цифрового моделювання рельєфу paleoDEM, отримані в роботі К. Скотези і Н. Врайта. Результати. Обчислені параметри двовісного і тривісного еліпсоїдів на фіксовані моменти геологічного часу. Проведений порівняльний аналіз результатів зміни фігури Землі за paleoDEM та створеними на основі растрових зображень ЦМР, побудованими за палеогеологічними даними Р. Блекі і К. Скотези. Наведені формули для обчислення зміщень і деформацій, які пов’язані з трансформацією фігури і орієнтацією верхньої оболонки планети. Приведена інтерпретація отриманих результатів досліджень планетарної динаміки фігури літосфери Землі та глобального деформаційного стану. Наукова новизна. Отримані характеристики напружено-деформаційного стану літосфери Землі за даними моделювання геопалеоре- конструкцій в геологічному часі. Така інтерпретація ролі гравітаційно-ротаційних сил у формуванні глобального поля деформацій і напружень як наслідок трансформації фігури поверхні літосфери Землі. Практична значущість. Подані результати будуть використовуватись у подальших дослідженнях, які спрямовані на вивчення планетарних характеристик нашої планети, динаміки їх змін у часі та глобального напружено-деформованого стану.
dc.description.abstractThe purpose of this work is to show how redistribution of masses occurs as a result of gravityrotational and endogenous forces in the evolutionary self-development of the planet, which leads to the transformation of the lithosphere from the sphere to the biaxial and then to triaxial ellipsoid, and vice versa; and changes in compression and the movement of the pole in geological time. Determine the deformation of the figure of the lithosphere due to the reorientation of the figure’s pole. Methodology. The figure of the lithospheric surface is geometrically rotated relative to the figure of the geoid. The orientation of these figures and the parameters of the ellipsoids that approximate them, have changed during the geological time. Such placement of the lithospheric figure and of the geoid figure can create a stress aimed at bringing the distribution of the lithosphere masses into conformity with the figure of the geoid. The calculation of the parameters of biaxial and triaxial ellipsoids was performed based on the data of the digital Earth surface model ETOPO1. Data from the digital modeling of the paleoDEM relief, obtained in the work of K. Skotese and N. Wright have been used for modelling the transformation of the Earth’s figure and in the estimation of the impact of its reorientation on the stress-strain state of the lithosphere in the ancient geological epochs. Results The parameters of biaxial and triaxial ellipsoids were calculated for fixed moments of geological time. A comparative analysis of the results of changes in the Earth’s figure for paleoDEM and created on the basis of raster images of DSMs, built on palaeogeological data by R. Blakey and K. Skotese, were carried out. The formulas for calculation of displacements and deformations, which are related to the transformation of the figure and the orientation of the upper shell of the planet, are given. The interpretation of the research results of planetary dynamics of the Earth’s lithosphere figure and the global deformation state are presented. Scientific novelty. The characteristics of the deformation state of the Earth’s lithosphere according to modeling of geopaleo-reconstruction in geological time are obtained. Given is the interpretation of the role of gravity-rotational forces in the formation of the global field of stress and the transformation of the lithospheric figure. Practical significance. The results will be used in further researches aimed at studying the planetary characteristics of our planet, the dynamics of its changes in time, and the global tension.
dc.format.extent28-42
dc.format.pages15
dc.identifier.citationTserklevych A. L. Earth’s figure changes – geodynamic factor of stressed-deformed litosphere state / A. L. Tserklevych, Ye. O. Shylo, O. M. Shylo // Geodynamics : scientific journal. — Lviv : Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 28–42.
dc.identifier.citationenTserklevych A. L. Earth’s figure changes – geodynamic factor of stressed-deformed litosphere state / A. L. Tserklevych, Ye. O. Shylo, O. M. Shylo // Geodynamics : scientific journal. — Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 28–42.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45872
dc.language.isoen
dc.publisherLviv Polytechnic Publishing House
dc.relation.ispartofГеодинаміка : науковий журнал, 1 (26), 2019
dc.relation.ispartofGeodynamics : scientific journal, 1 (26), 2019
dc.relation.referencesAmante, C., & Eakins, B. W. (2009). ETOPO1 arcminute
dc.relation.referencesglobal relief model: procedures, data
dc.relation.referencessources and analysis.
dc.relation.referencesBlakey R. (2016). Global Paleogeography. Retrieved
dc.relation.referencesfrom https://www2.nau.edu/rcb7/
dc.relation.referencesHofmann-Wellenhof, B., and Moritz H. (2007). “Physical
dc.relation.referencessurveying.” M.: MIIGAiK.
dc.relation.referencesKhain, V. E. (2010). Constructing a truly global
dc.relation.referencesmodel of Earth’s dynamics: basic principles. Geology
dc.relation.referencesand Geophysics, 51(6), 753–760. Retrieved
dc.relation.referencesfrom http://www.sibran.ru/upload/iblock/074/074591d1edc11bd8e6d97ad317f48974.pdf
dc.relation.referencesKrasovsky, F. N. (1947). On some scientific problems
dc.relation.referencesof astronomical geodesy in connection with the
dc.relation.referencesstudy of the structure of the hard shell of the
dc.relation.referencesEarth. Fav. cit, 1, 251–269.
dc.relation.referencesKrasovsky, F. N. (1955). Selected works. In 4 volumes. T. Iv.
dc.relation.referencesLevin, B. V. (2001). The role of the movements of the
dc.relation.referencesinner core of the Earth in tectonic processes.
dc.relation.referencesFundamental problems of general tectonics. M.:
dc.relation.referencesScientific world, 444–460.
dc.relation.referencesMank, W., MacDonald, G., (1964). Rotating the Earth: World.
dc.relation.referencesMarchenko, O. M., Tretiak K. R., & Yarema N. P. (2013). Reference systems in geodesy. Lviv
dc.relation.referencesPolytechnic Publishing House.
dc.relation.referencesMashimov, M. M. (1999). Essay on subject areas and
dc.relation.referencesinterpenetration of geodesy, iconometry and cartography
dc.relation.referencesof modern times (as a matter of discussion).
dc.relation.referencesProceedings of higher educational institutions.
dc.relation.referencesGeodesy and aerial photography, (3), 44–58.
dc.relation.referencesMashimov, M. M. (1999). Physical geodesy: the
dc.relation.referencesmetamorphosis at the beginning of the path, the
dc.relation.referencesrevival of Krasovsky’s teachings in modern times
dc.relation.references(as a matter of discussion). Proceedings of higher
dc.relation.referenceseducational institutions. Geodesy and aerial photography, (6), 63–76.
dc.relation.referencesMolodensky, M. S. (1945). The role of geophysics
dc.relation.referencesand geology in the study of the figure of the Earth.
dc.relation.referencesSat scientific and technical and manuf. articles on
dc.relation.referencesgeodesy, cartography, topography, aerial survey
dc.relation.referencesand gravimetry, (8), 24.
dc.relation.referencesMolodensky, M. S. (1958). Current tasks of studying
dc.relation.referencesthe figure of the Earth. Geodesy and cartography, (7), 3–5.
dc.relation.referencesMoritz, H. (1994). Figure of the Earth: Theoretical
dc.relation.referencesgeodesy and the internal structure of the Earth.
dc.relation.referencesKiev: Publishing House of the National Academy
dc.relation.referencesof Sciences of Ukraine.
dc.relation.referencesOdesskyi, I. A. (2004). Rotational-pulsation regime of
dc.relation.referencesthe Earth and its geological studies.
dc.relation.referencesRashevsky P. K. (1967) Riemannian geometry and tensor analysis. M.: Science.
dc.relation.referencesRebetskii, Y. L. (2009, October). Estimation of stress
dc.relation.referencesvalues in the method of cataclastic analysis of shear
dc.relation.referencesfractures. In Doklady Earth Sciences (Vol. 428, No. 1, pp. 1202–1207). MAIK Nauka/ Interperiodica.
dc.relation.referencesRebetskii, Y. L. (2016, July). Estimation of the
dc.relation.referencesinfluence of daily rotation of the earth on the
dc.relation.referencesstress state of the continental crust. In Doklady
dc.relation.referencesEarth Sciences (Vol. 469, No. 1, pp. 743–747). Pleiades Publishing.
dc.relation.referencesRebetsky, Y. L. (2015). On the specific state of
dc.relation.referencescrustal stresses in intracontinental orogens.
dc.relation.referencesGeodynamics & Tectonophysics, 6(4), 437-466.
dc.relation.referencesRebetsky, Y. L., & Marinin, A. V. (2006). Preseismic
dc.relation.referencesstress field before the Sumatra-Andaman
dc.relation.referencesearthquake of 26.12. 2004: a model of metastable
dc.relation.referencesstate of rocks. Russian Geology and Geophysics, 47(11), 1173–1185.
dc.relation.referencesRebetsky, Y. L., & Tatevossian, R. E. (2013). Rupture
dc.relation.referencespropagation in strong earthquake sources and
dc.relation.referencestectonic stress field. Bulletin de la Societe
dc.relation.referencesGeologique de France, 184(4-5), 335–346.
dc.relation.referencesScheidegger, A. (1987). Fundamentals of Geodynamics
dc.relation.references(a Russian translation), 384 pp. Nedra,Moscow.
dc.relation.referencesScotese, C. R. (2017). PALEOMAP Project.
dc.relation.referencesRetrieved from http://www.scotese.com/
dc.relation.referencesScotese, C. R., & Wright, N. (2018). PALEOMAP
dc.relation.referencesPaleodigital Elevation Models (PaleoDEMS) for
dc.relation.referencesthe Phanerozoic PALEOMAP Project, https://www.earthbyte.org/paleodemresourcescotese-and-wright-2018/
dc.relation.referencesStovas, M. V. (1975). Selected Works. Nedra, Moscow, 155 p.
dc.relation.referencesTadyeyev, O. (2017). Estimating three-dimensional
dc.relation.referencesearth deformation fields by methods of the
dc.relation.referencesprojective differential geometry. Earth dilatation
dc.relation.referencesfields. Modern achievements in geodesic science
dc.relation.referencesand industry. 1(33), 53–60. Retrieved from
dc.relation.referenceshttp://ena.lp.edu.ua/bitstream/ntb/41367/2/2017v1__33__Tadyeyev_OEstimating_three_dimensional_53-60.pdf
dc.relation.referencesTserklevych, A. L., Zayats, O. S., & Shylo, Y. O. (2016). Approximation of the physical surface of
dc.relation.referencesthe earth by biaxial and triaxial ellipsoid. Geodynamics, (1), 40-49.
dc.relation.referencesTserklevych, A. L., Zayats, O. S., & Shylo, Y. O. (2017). Dynamics of the Earth shape
dc.relation.referencestransformation. Kinematics and Physics of Celestial Bodies, 33(3), 130-141.
dc.relation.referencesTserklevych, A. L., Zayats, O. S., Shylo, Y. O., &
dc.relation.referencesShylo, O. M. (2018). Generation of the Stressed
dc.relation.referencesState of the Lithosphere of the Earth and Mars
dc.relation.referencesCaused by the Reorientation of Their Figures.
dc.relation.referencesKinematics and Physics of Celestial Bodies, 34(1), 19-36.
dc.relation.referencesTserklevych, A. L. & Shylo, Y. O. (2018). Shape of
dc.relation.referencesEarth’s lithosphere and geotectonics. Dopov. Nac.
dc.relation.referencesakad. nauk Ukr. doi: https://doi.org/10.15407/dopovidi2018.01.067
dc.relation.referencesTyapkin, K. F., & Dovbnich M. M. (2009). New
dc.relation.referencesrotational hypothesis of structure formation and its
dc.relation.referencesgeological and mathematical justification.
dc.relation.referencesDonetsk: “Noulidzh”. Retrieved from http://www.evgengusev.narod.ru/fluidolit/tyapkin-2009.html
dc.relation.referencesZharkov, V. N., & Trubitsyn, V. P. (1980). Physics of planetary subsoil.
dc.relation.referencesenAmante, C., & Eakins, B. W. (2009). ETOPO1 arcminute
dc.relation.referencesenglobal relief model: procedures, data
dc.relation.referencesensources and analysis.
dc.relation.referencesenBlakey R. (2016). Global Paleogeography. Retrieved
dc.relation.referencesenfrom https://www2.nau.edu/rcb7/
dc.relation.referencesenHofmann-Wellenhof, B., and Moritz H. (2007). "Physical
dc.relation.referencesensurveying." M., MIIGAiK.
dc.relation.referencesenKhain, V. E. (2010). Constructing a truly global
dc.relation.referencesenmodel of Earth’s dynamics: basic principles. Geology
dc.relation.referencesenand Geophysics, 51(6), 753–760. Retrieved
dc.relation.referencesenfrom http://www.sibran.ru/upload/iblock/074/074591d1edc11bd8e6d97ad317f48974.pdf
dc.relation.referencesenKrasovsky, F. N. (1947). On some scientific problems
dc.relation.referencesenof astronomical geodesy in connection with the
dc.relation.referencesenstudy of the structure of the hard shell of the
dc.relation.referencesenEarth. Fav. cit, 1, 251–269.
dc.relation.referencesenKrasovsky, F. N. (1955). Selected works. In 4 volumes. T. Iv.
dc.relation.referencesenLevin, B. V. (2001). The role of the movements of the
dc.relation.referenceseninner core of the Earth in tectonic processes.
dc.relation.referencesenFundamental problems of general tectonics. M.:
dc.relation.referencesenScientific world, 444–460.
dc.relation.referencesenMank, W., MacDonald, G., (1964). Rotating the Earth: World.
dc.relation.referencesenMarchenko, O. M., Tretiak K. R., & Yarema N. P. (2013). Reference systems in geodesy. Lviv
dc.relation.referencesenPolytechnic Publishing House.
dc.relation.referencesenMashimov, M. M. (1999). Essay on subject areas and
dc.relation.referenceseninterpenetration of geodesy, iconometry and cartography
dc.relation.referencesenof modern times (as a matter of discussion).
dc.relation.referencesenProceedings of higher educational institutions.
dc.relation.referencesenGeodesy and aerial photography, (3), 44–58.
dc.relation.referencesenMashimov, M. M. (1999). Physical geodesy: the
dc.relation.referencesenmetamorphosis at the beginning of the path, the
dc.relation.referencesenrevival of Krasovsky’s teachings in modern times
dc.relation.referencesen(as a matter of discussion). Proceedings of higher
dc.relation.referenceseneducational institutions. Geodesy and aerial photography, (6), 63–76.
dc.relation.referencesenMolodensky, M. S. (1945). The role of geophysics
dc.relation.referencesenand geology in the study of the figure of the Earth.
dc.relation.referencesenSat scientific and technical and manuf. articles on
dc.relation.referencesengeodesy, cartography, topography, aerial survey
dc.relation.referencesenand gravimetry, (8), 24.
dc.relation.referencesenMolodensky, M. S. (1958). Current tasks of studying
dc.relation.referencesenthe figure of the Earth. Geodesy and cartography, (7), 3–5.
dc.relation.referencesenMoritz, H. (1994). Figure of the Earth: Theoretical
dc.relation.referencesengeodesy and the internal structure of the Earth.
dc.relation.referencesenKiev: Publishing House of the National Academy
dc.relation.referencesenof Sciences of Ukraine.
dc.relation.referencesenOdesskyi, I. A. (2004). Rotational-pulsation regime of
dc.relation.referencesenthe Earth and its geological studies.
dc.relation.referencesenRashevsky P. K. (1967) Riemannian geometry and tensor analysis. M., Science.
dc.relation.referencesenRebetskii, Y. L. (2009, October). Estimation of stress
dc.relation.referencesenvalues in the method of cataclastic analysis of shear
dc.relation.referencesenfractures. In Doklady Earth Sciences (Vol. 428, No. 1, pp. 1202–1207). MAIK Nauka/ Interperiodica.
dc.relation.referencesenRebetskii, Y. L. (2016, July). Estimation of the
dc.relation.referenceseninfluence of daily rotation of the earth on the
dc.relation.referencesenstress state of the continental crust. In Doklady
dc.relation.referencesenEarth Sciences (Vol. 469, No. 1, pp. 743–747). Pleiades Publishing.
dc.relation.referencesenRebetsky, Y. L. (2015). On the specific state of
dc.relation.referencesencrustal stresses in intracontinental orogens.
dc.relation.referencesenGeodynamics & Tectonophysics, 6(4), 437-466.
dc.relation.referencesenRebetsky, Y. L., & Marinin, A. V. (2006). Preseismic
dc.relation.referencesenstress field before the Sumatra-Andaman
dc.relation.referencesenearthquake of 26.12. 2004: a model of metastable
dc.relation.referencesenstate of rocks. Russian Geology and Geophysics, 47(11), 1173–1185.
dc.relation.referencesenRebetsky, Y. L., & Tatevossian, R. E. (2013). Rupture
dc.relation.referencesenpropagation in strong earthquake sources and
dc.relation.referencesentectonic stress field. Bulletin de la Societe
dc.relation.referencesenGeologique de France, 184(4-5), 335–346.
dc.relation.referencesenScheidegger, A. (1987). Fundamentals of Geodynamics
dc.relation.referencesen(a Russian translation), 384 pp. Nedra,Moscow.
dc.relation.referencesenScotese, C. R. (2017). PALEOMAP Project.
dc.relation.referencesenRetrieved from http://www.scotese.com/
dc.relation.referencesenScotese, C. R., & Wright, N. (2018). PALEOMAP
dc.relation.referencesenPaleodigital Elevation Models (PaleoDEMS) for
dc.relation.referencesenthe Phanerozoic PALEOMAP Project, https://www.earthbyte.org/paleodemresourcescotese-and-wright-2018/
dc.relation.referencesenStovas, M. V. (1975). Selected Works. Nedra, Moscow, 155 p.
dc.relation.referencesenTadyeyev, O. (2017). Estimating three-dimensional
dc.relation.referencesenearth deformation fields by methods of the
dc.relation.referencesenprojective differential geometry. Earth dilatation
dc.relation.referencesenfields. Modern achievements in geodesic science
dc.relation.referencesenand industry. 1(33), 53–60. Retrieved from
dc.relation.referencesenhttp://ena.lp.edu.ua/bitstream/ntb/41367/2/2017v1__33__Tadyeyev_OEstimating_three_dimensional_53-60.pdf
dc.relation.referencesenTserklevych, A. L., Zayats, O. S., & Shylo, Y. O. (2016). Approximation of the physical surface of
dc.relation.referencesenthe earth by biaxial and triaxial ellipsoid. Geodynamics, (1), 40-49.
dc.relation.referencesenTserklevych, A. L., Zayats, O. S., & Shylo, Y. O. (2017). Dynamics of the Earth shape
dc.relation.referencesentransformation. Kinematics and Physics of Celestial Bodies, 33(3), 130-141.
dc.relation.referencesenTserklevych, A. L., Zayats, O. S., Shylo, Y. O., &
dc.relation.referencesenShylo, O. M. (2018). Generation of the Stressed
dc.relation.referencesenState of the Lithosphere of the Earth and Mars
dc.relation.referencesenCaused by the Reorientation of Their Figures.
dc.relation.referencesenKinematics and Physics of Celestial Bodies, 34(1), 19-36.
dc.relation.referencesenTserklevych, A. L. & Shylo, Y. O. (2018). Shape of
dc.relation.referencesenEarth’s lithosphere and geotectonics. Dopov. Nac.
dc.relation.referencesenakad. nauk Ukr. doi: https://doi.org/10.15407/dopovidi2018.01.067
dc.relation.referencesenTyapkin, K. F., & Dovbnich M. M. (2009). New
dc.relation.referencesenrotational hypothesis of structure formation and its
dc.relation.referencesengeological and mathematical justification.
dc.relation.referencesenDonetsk: "Noulidzh". Retrieved from http://www.evgengusev.narod.ru/fluidolit/tyapkin-2009.html
dc.relation.referencesenZharkov, V. N., & Trubitsyn, V. P. (1980). Physics of planetary subsoil.
dc.relation.urihttps://www2.nau.edu/rcb7/
dc.relation.urihttp://www.sibran.ru/upload/iblock/074/074591d1edc11bd8e6d97ad317f48974.pdf
dc.relation.urihttp://www.scotese.com/
dc.relation.urihttps://www.earthbyte.org/paleodemresourcescotese-and-wright-2018/
dc.relation.urihttp://ena.lp.edu.ua/bitstream/ntb/41367/2/2017v1__33__Tadyeyev_OEstimating_three_dimensional_53-60.pdf
dc.relation.urihttps://doi.org/10.15407/dopovidi2018.01.067
dc.relation.urihttp://www.evgengusev.narod.ru/fluidolit/tyapkin-2009.html
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2019
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2019
dc.rights.holder© Національний університет «Львівська політехніка», 2019
dc.rights.holder© A. L. Tserklevych, 28 Ye. О. Shylo, O. М. Shylo
dc.subjectдвовісний і тривісний еліпсоїд
dc.subjectцифрова модель рельєфу поверхні літосфери Землі
dc.subjectнапружений стан літосфери
dc.subjectдилатація
dc.subjectдеформація зсуву
dc.subjectbiaxial and triaxial ellipsoid
dc.subjectdigital model of the relief of the Earth’s lithosphere surface
dc.subjectstress state of the lithosphere
dc.subjectdilatation
dc.subjectdisplacement deformation
dc.subject.udc550.311
dc.titleEarth’s figure changes – geodynamic factor of stressed-deformed litosphere state
dc.title.alternativeЗміни фігури землі – геодинамічний фактор напружено-деформованого стану літосфери
dc.typeArticle

Files

License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Plain Text
Description: