Entropy calculation for networks with determined values of flows in nodes
dc.citation.epage | 944 | |
dc.citation.issue | 4 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 936 | |
dc.contributor.affiliation | Чернівецький національний університет імені Юрія Федьковича | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Львівський національний медичний університет імені Данила Галицького | |
dc.contributor.affiliation | Yuriy Fedkovych Chernivtsi National University | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Danylo Halytsky Lviv National Medical University | |
dc.contributor.author | Політанський, Р. Л. | |
dc.contributor.author | Бобало, Ю. Я. | |
dc.contributor.author | Зарицька, О. Л. | |
dc.contributor.author | Киселичник, М. Д. | |
dc.contributor.author | Вістак, М. В. | |
dc.contributor.author | Politanskyi, R. L. | |
dc.contributor.author | Bobalo, Y. Y. | |
dc.contributor.author | Zarytska, O. L. | |
dc.contributor.author | Kiselychnyk, M. D. | |
dc.contributor.author | Vistak, M. V. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-24T09:14:08Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | У роботі проводиться аналіз мережі із заданими вхідними та вихідними потоками у кожному її вузлі. Основою цього аналізу є алгоритм визначення множини розв’язків системи лінійних рівнянь, оснований на методі Гауса. Потужність множини визначає структурну ентропію системи. Шляхом введення невизначеності у значення частини інформаційних потоків моделюється відхилення мережі від її рівноважного стану. Множина потенційних розв’язків, які є частиною загальної множини розв’язків системи, визначає статистичну ентропію системи. Імовірнісна ентропія розрахована для мережі із чотирма вузлами та сумарним потоком, який становить 10 ерлангів із кроком дискретизації 1 ерланг. Обчислені значення ентропії для 1, 2, 3 та 4 невизначених потоків із загальної кількості 16 потоків, які передаються між вузлами повнозв’язної мережі. У результаті проведеного статистичного аналізу значень ентропії визначена оптимальна кількість статистичних інтервалів для значень ентропії: 4, 11, 24 і 43 інтервали для 1, 2, 3 та 4 невизначених потоків відповідно. Це дозволяє виділити множини потоків у системі, що мають найбільший влив на значення ентропії у системі. Одержані результати мають практичне значення, оскільки уможливлюють виявлення відхилень мережі від її рівноважного стану шляхом контролю за проходженням трафіку на окремих ділянках складної телекомунікаційної мережі. Оскільки, як показано у наших попередніх роботах, задача визначення повної множини розв’язків системи для кількості вузлів більше 4 має значну обчислювальну складність, то застосування алгоритму до таких мереж потребує збільшення кроку дискретизації значень інформаційних потоків у мережі. Іншим способом зменшення обчислювальної складності може бути зменшення множини аналізованих розв’язків до підмножини розв’язків, що наближені до рівноважного стану системи. | |
dc.description.abstract | The paper analyses a network with given input and output flows in each of its nodes. The basis of this analysis is the algorithm for determining the set of solutions of the linear equations system, using the Gaussian method. The power of the set determines the structural entropy of the system. By introducing uncertainty into the value of part of the information flows, the deviation of the network from its equilibrium state is simulated. The set of potential solutions, as a part of the total set of the system solutions, determines the statistical entropy of the system. The probability entropy is calculated for a network with four nodes and a total flow of 10 erlangs with a sampling step of 1 erlang. Calculated entropy values for 1, 2, 3, and 4 uncertain flows out of a total of 16 flows that are transmitted between nodes of the fully connected network. As a result of the conducted statistical analysis of entropy values, the optimal number of statistical intervals for entropy values is determined: 4, 11, 24, and 43 intervals for 1, 2, 3, and 4 uncertain flows, respectively. This makes it possible to highlight the set of flows in the system that have the greatest influence on the entropy value in the system. The obtained results are of practical importance, as they enable the detection of deviations of the network from its equilibrium state by monitoring the passage of traffic on individual branches of a complex telecommunication network. Since, as shown in our previous works, the task of determining the complete set of solutions of the system for the number of nodes greater than 4 has a significant computational complexity, the application of the algorithm to such networks requires an increase in the discretization step of the values of information flows in the network. Another way to reduce computational complexity can be to reduce the set of analysed solutions to a subset of solutions close to the equilibrium state of the system. | |
dc.format.extent | 936-944 | |
dc.format.pages | 9 | |
dc.identifier.citation | Entropy calculation for networks with determined values of flows in nodes / R. L. Politanskyi, Y. Y. Bobalo, O. L. Zarytska, M. D. Kiselychnyk, M. V. Vistak // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 4. — P. 936–944. | |
dc.identifier.citationen | Entropy calculation for networks with determined values of flows in nodes / R. L. Politanskyi, Y. Y. Bobalo, O. L. Zarytska, M. D. Kiselychnyk, M. V. Vistak // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 4. — P. 936–944. | |
dc.identifier.doi | doi.org/10.23939/mmc2022.04.936 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64230 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 4 (9), 2022 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 4 (9), 2022 | |
dc.relation.references | [1] Lemeshko O., Yeremenko O. Enhanced method of fast re-routing with load balancing in software-defined networks. Journal of Electrical Engineering. 68 (6), 444–454(2017). | |
dc.relation.references | [2] Venugopal A., Leib H. A Tensor Based Framework for Multi-Domain Communication Systems. IEEE Open Journal of the Communications Society. 1, 606–633(2020). | |
dc.relation.references | [3] Kerner B. S. Introduction to Modern Traffic Flow Theory and Control. Springer (2009). | |
dc.relation.references | [4] Andrushchak V., Maksymyuk T., Kaidan M., Andrukhiv T. Intelligent payload and energy balancing in optical transport network using graph neural network. 2021 IEEE 16th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). 27–30 (2021). | |
dc.relation.references | [5] Kirichenko L., Abed S., Radivilova T. Generalized Approach to Analysis of Multifractal Properties from Short Time Series. International Journal of Advanced Computer Science and Applications. 11 (5), 183–198 (2020). | |
dc.relation.references | [6] Lemeshko O., Yeremenko O., Yevdokymenko M., Radivilova T., Ageyev D. Secure based traffic engineering model in softwarized networks. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT). 143–147 (2020). | |
dc.relation.references | [7] Politanskyi R., Lesinsky V., Kachur V., Vistak M. Theoretical studies of the information capacity of complex signals generated by the method of their decomposition in two-dimensional space. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). 01–06 (2022). | |
dc.relation.references | [8] Politanskyi R., Veryga A., Vistak M. Analyze of Scientific Problems Facing Developers of Modern Telecommunication Technologies. 2020 IEEE International Conference on Problems of Infocommunications, Science and Technology (PIC S&T). 533–536 (2020). | |
dc.relation.references | [9] Veryga A., Politanskyi R., Lesinskyi V., Ruda T. Analysis of Using of Fractal Signals for Noise Immune Information Transmission Systems. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). 162–165 (2020). | |
dc.relation.references | [10] Tanyimboth T., Templeman A. Calculation Maximum Entropy Flows in Networks. Journal of the Operational Research Society. 44 (4), 383–396 (1993). | |
dc.relation.references | [11] Almog A., Shmueli E. Structural entropy: monitoring correlation-based networks over time with application to financial markets. Scientific Reports. 9 (1), 10832 (2019). | |
dc.relation.references | [12] Lesinskyi V., Yemelyanov O., Zarytska O., Symak A., Petrushka T. Development of a toolkit for assesing and overcoming barriers to the implementation of energy saving projects. Eastern-European Journal of Enterprise Technologies. 5/3 (307), 24–38 (2020). | |
dc.relation.references | [13] Long C., Kehe W., Yi L. A Load Balancing Algorithm Based on Maximum Entropy Methods in Homogeneous Clusters. Entropy. 16 (11), 5677–5697 (2014). | |
dc.relation.references | [14] Niven R., Abel M., Schlegel M., Waldrip S. Maximum Entropy Analysis of Flow Networks: Theoretical Foundation and Applications. Entropy. 21 (8), 776 (2019). | |
dc.relation.references | [15] Pennini F., Plastino A., Ferri G., Plastino A. Energetic Cost of Statistical Order-Degree Change in a Fermions’ Set. Entropy. 24 (6), 752 (2022). | |
dc.relation.references | [16] Hylton T. Thermodynamic State Machine Network. Entropy. 24 (6), 744 (2022). | |
dc.relation.references | [17] Politanskyi R., Zarytska O., Vistak M., Vlasenko V. Research of distribution of information flows in a network by methods of linear algebra. Mathematical Modeling and Computing. 8 (4), 821–829 (2021). | |
dc.relation.references | [18] Woods J. Multidimensional Signal, Image, and Video Processing and Coding. Elsevier (2011). | |
dc.relation.referencesen | [1] Lemeshko O., Yeremenko O. Enhanced method of fast re-routing with load balancing in software-defined networks. Journal of Electrical Engineering. 68 (6), 444–454(2017). | |
dc.relation.referencesen | [2] Venugopal A., Leib H. A Tensor Based Framework for Multi-Domain Communication Systems. IEEE Open Journal of the Communications Society. 1, 606–633(2020). | |
dc.relation.referencesen | [3] Kerner B. S. Introduction to Modern Traffic Flow Theory and Control. Springer (2009). | |
dc.relation.referencesen | [4] Andrushchak V., Maksymyuk T., Kaidan M., Andrukhiv T. Intelligent payload and energy balancing in optical transport network using graph neural network. 2021 IEEE 16th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). 27–30 (2021). | |
dc.relation.referencesen | [5] Kirichenko L., Abed S., Radivilova T. Generalized Approach to Analysis of Multifractal Properties from Short Time Series. International Journal of Advanced Computer Science and Applications. 11 (5), 183–198 (2020). | |
dc.relation.referencesen | [6] Lemeshko O., Yeremenko O., Yevdokymenko M., Radivilova T., Ageyev D. Secure based traffic engineering model in softwarized networks. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT). 143–147 (2020). | |
dc.relation.referencesen | [7] Politanskyi R., Lesinsky V., Kachur V., Vistak M. Theoretical studies of the information capacity of complex signals generated by the method of their decomposition in two-dimensional space. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). 01–06 (2022). | |
dc.relation.referencesen | [8] Politanskyi R., Veryga A., Vistak M. Analyze of Scientific Problems Facing Developers of Modern Telecommunication Technologies. 2020 IEEE International Conference on Problems of Infocommunications, Science and Technology (PIC S&T). 533–536 (2020). | |
dc.relation.referencesen | [9] Veryga A., Politanskyi R., Lesinskyi V., Ruda T. Analysis of Using of Fractal Signals for Noise Immune Information Transmission Systems. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). 162–165 (2020). | |
dc.relation.referencesen | [10] Tanyimboth T., Templeman A. Calculation Maximum Entropy Flows in Networks. Journal of the Operational Research Society. 44 (4), 383–396 (1993). | |
dc.relation.referencesen | [11] Almog A., Shmueli E. Structural entropy: monitoring correlation-based networks over time with application to financial markets. Scientific Reports. 9 (1), 10832 (2019). | |
dc.relation.referencesen | [12] Lesinskyi V., Yemelyanov O., Zarytska O., Symak A., Petrushka T. Development of a toolkit for assesing and overcoming barriers to the implementation of energy saving projects. Eastern-European Journal of Enterprise Technologies. 5/3 (307), 24–38 (2020). | |
dc.relation.referencesen | [13] Long C., Kehe W., Yi L. A Load Balancing Algorithm Based on Maximum Entropy Methods in Homogeneous Clusters. Entropy. 16 (11), 5677–5697 (2014). | |
dc.relation.referencesen | [14] Niven R., Abel M., Schlegel M., Waldrip S. Maximum Entropy Analysis of Flow Networks: Theoretical Foundation and Applications. Entropy. 21 (8), 776 (2019). | |
dc.relation.referencesen | [15] Pennini F., Plastino A., Ferri G., Plastino A. Energetic Cost of Statistical Order-Degree Change in a Fermions’ Set. Entropy. 24 (6), 752 (2022). | |
dc.relation.referencesen | [16] Hylton T. Thermodynamic State Machine Network. Entropy. 24 (6), 744 (2022). | |
dc.relation.referencesen | [17] Politanskyi R., Zarytska O., Vistak M., Vlasenko V. Research of distribution of information flows in a network by methods of linear algebra. Mathematical Modeling and Computing. 8 (4), 821–829 (2021). | |
dc.relation.referencesen | [18] Woods J. Multidimensional Signal, Image, and Video Processing and Coding. Elsevier (2011). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | ентропія | |
dc.subject | розв’язки системи лінійних рівнянь | |
dc.subject | самоподібність | |
dc.subject | мультифрактальність | |
dc.subject | entropy | |
dc.subject | solution of a system of linear equations | |
dc.subject | self-similarity | |
dc.subject | multifractality | |
dc.title | Entropy calculation for networks with determined values of flows in nodes | |
dc.title.alternative | Розрахунок ентропії у мережах з інформаційними потоками | |
dc.type | Article |
Files
License bundle
1 - 1 of 1