Homogenization of subwavelength free stratified edge of viscoelastic media including finite size effect

dc.citation.epage29
dc.citation.issue1
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage10
dc.contributor.affiliationУніверситет Хасана ІІ Касабланки
dc.contributor.affiliationУніверситет Мохаммеда V
dc.contributor.affiliationПолітехнічна школа
dc.contributor.affiliationUniversity Hassan II of Casablanca
dc.contributor.affiliationUniversity Mohammed V
dc.contributor.affiliationEcole Polytechnique
dc.contributor.authorБелемоу, Р.
dc.contributor.authorСбітті, А.
dc.contributor.authorМаріго, Ж.-Ж.
dc.contributor.authorЦулі, А.
dc.contributor.authorBelemou, R.
dc.contributor.authorSbitti, A.
dc.contributor.authorMarigo, J.-J.
dc.contributor.authorTsouli, A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:54:51Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цій статті пропонується гомогенізація стратифікованого в’язкопружного середовища з вільним краєм. Розглядається вплив двовимірної періодично стратифікованої плити на напівнескінченним в’язкопружним ґрунтом на поширення зсувних хвиль, що падають на поверхню розділу. У межах гармонічного режиму для отримання еквівалентної анізотропної плити, пов’язаної з ефективними граничними умовами та умовами стрибка для зміщення та нормального напруження на межі поділу, використовується метод гомогенізації другого порядку та узгоджених асимптотичних розвинень. Коефіцієнти відбиття та поля переміщень отримані в замкнених формах, і їх достовірність перевіряється шляхом порівняння з прямими числами у випадку шарів, які пов’язані з граничними умовами Неймана.
dc.description.abstractThis paper proposes the homogenization for a stratified viscoelastic media with free edge. We consider the effect of two-dimensional periodically stratified slab over a semi-infinite viscoelastic ground on the propagation of shear waves hitting the interface. Within the harmonic regime, the second order homogenization and matched-asymptotic expansions method is employed to derive an equivalent anisotropic slab associated with effective boundary and jump conditions for the displacement and the normal stress across an interface. The reflection coefficients and the displacement fields are obtained in closed forms and their validity is inspected by comparison with direct numerics in the case of layers associated with Neumann boundary conditions.
dc.format.extent10-29
dc.format.pages20
dc.identifier.citationHomogenization of subwavelength free stratified edge of viscoelastic media including finite size effect / R. Belemou, A. Sbitti, J.-J. Marigo, A. Tsouli // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 10–29.
dc.identifier.citationenHomogenization of subwavelength free stratified edge of viscoelastic media including finite size effect / R. Belemou, A. Sbitti, J.-J. Marigo, A. Tsouli // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 10–29.
dc.identifier.doi10.23939/mmc2023.01.010
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63495
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 1 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 1 (10), 2023
dc.relation.references[1] Cioranescu D., Donato P. An Introduction to Homogenization. No. 17 in Oxford Lecture Series in Mathematics and Its Applications. Oxford, New York, Oxford University Press (1999).
dc.relation.references[2] Li Q., Chen W., Liu S., Wang J. A novel implementation of asymptotic homogenization for viscoelastic composites with periodic microstructures. Composite Structures. 208, 276–286 (2019).
dc.relation.references[3] Marigo J.-J., Maurel A. Homogenization models for thin rigid structured surfaces and films. The Journal of the Acoustical Society of America. 140 (1), 260–273 (2016).
dc.relation.references[4] Marigo J.-J., Pideri C. The Effective Behavior of Elastic Bodies Containing Microcracks or Microholes Localized on a Surface. International Journal of Damage Mechanics. 20 (8), 1151–1177 (2011).
dc.relation.references[5] Marigo J.-J., Maurel A, Pham K., Sbitti A. Effective Dynamic Properties of a Row of Elastic Inclusions: The Case of Scalar Shear Waves. Journal of Elasticity. 128 (2), 265–289 (2017).
dc.relation.references[6] Delourme B. High-order asymptotics for the electromagnetic scattering by thin periodic layers. Mathematical Methods in the Applied Sciences. 38 (5), 811–833 (2015).
dc.relation.references[7] Delourme B., Haddar H., Joly P. Approximate Models for Wave Propagation across Thin Periodic Interfaces. Journal de Math´ematiques Pures et Appliqu´ees. 98 (1), 28–71 (2012).
dc.relation.references[8] Bonnet–Bendhia A. S., Drissi D., Gmati N. Simulation of Muffler’s Transmission Losses by a Homogenized Finite Element Method. Journal of Computational Acoustics. 12 (03), 447–474 (2004).
dc.relation.references[9] Marigo J.-J., Maurel A. Second Order Homogenization of Subwavelength Stratified Media Including Finite Size Effect. SIAM Journal on Applied Mathematics. 77 (2), 721–743 (2017).
dc.relation.references[10] Marigo J.-J., Maurel A. Supplementary Materials: Second Order Homogenization of Subwavelength Stratified Media Including Finite Size Effect. 13 (2017).
dc.relation.references[11] Borcherdt R. D. Viscoelastic Waves in Layered Media. Cambridge, Cambridge University Press (2009).
dc.relation.references[12] Maurel A., Pham K. Multimodal method for the scattering by an array of plates connected to an elastic half-space. The Journal of the Acoustical Society of America. 146 (6), 4402–4412 (2019).
dc.relation.references[13] Gumerov N. A., Duraiswami R. Fast Multipole Methods for the Helmholtz Equation in Three Dimensions. Elsevier Series in Electromagnetism. 171–223 (2004).
dc.relation.references[14] Marigo J.-J., Maurel A. An Interface Model for Homogenization of Acoustic Metafilms. World Scientific Handbook of Metamaterials and Plasmonics. 599–645 (2017).
dc.relation.references[15] Petit R. A Tutorial Introduction. In: Petit R. (eds) Electromagnetic Theory of Gratings. Topics in Current Physics, vol. 22. Springer, Berlin, Heidelberg (1980). Petit R, (auth.), Petit P. R. (eds.).
dc.relation.references[16] Maurel A., F´elix S., Mercier J.-F., Ourir A. Effective birefringence to analyze sound transmission through a layer with subwavelength slits. Comptes Rendus M´ecanique. 343 (12), 612–621 (2015).
dc.relation.references[17] Lalanne P., Lemercier-Lalanne D. Depth dependence of the effective properties of subwavelength gratings. Journal of the Optical Society of America A. 14 (2), 450–459 (1997).
dc.relation.references[18] Abdelmoula R., Marigo J.-J. The effective behavior of a fiber bridged crack. Journal of the Mechanics and Physics of Solids. 48 (11), 2419–2444 (2000).
dc.relation.references[19] David M., Marigo J.-J., Pideri C. Homogenized Interface Model Describing Inhomogeneities Located on a Surface. Journal of Elasticity. 109 (2), 153–187 (2012).
dc.relation.referencesen[1] Cioranescu D., Donato P. An Introduction to Homogenization. No. 17 in Oxford Lecture Series in Mathematics and Its Applications. Oxford, New York, Oxford University Press (1999).
dc.relation.referencesen[2] Li Q., Chen W., Liu S., Wang J. A novel implementation of asymptotic homogenization for viscoelastic composites with periodic microstructures. Composite Structures. 208, 276–286 (2019).
dc.relation.referencesen[3] Marigo J.-J., Maurel A. Homogenization models for thin rigid structured surfaces and films. The Journal of the Acoustical Society of America. 140 (1), 260–273 (2016).
dc.relation.referencesen[4] Marigo J.-J., Pideri C. The Effective Behavior of Elastic Bodies Containing Microcracks or Microholes Localized on a Surface. International Journal of Damage Mechanics. 20 (8), 1151–1177 (2011).
dc.relation.referencesen[5] Marigo J.-J., Maurel A, Pham K., Sbitti A. Effective Dynamic Properties of a Row of Elastic Inclusions: The Case of Scalar Shear Waves. Journal of Elasticity. 128 (2), 265–289 (2017).
dc.relation.referencesen[6] Delourme B. High-order asymptotics for the electromagnetic scattering by thin periodic layers. Mathematical Methods in the Applied Sciences. 38 (5), 811–833 (2015).
dc.relation.referencesen[7] Delourme B., Haddar H., Joly P. Approximate Models for Wave Propagation across Thin Periodic Interfaces. Journal de Math´ematiques Pures et Appliqu´ees. 98 (1), 28–71 (2012).
dc.relation.referencesen[8] Bonnet–Bendhia A. S., Drissi D., Gmati N. Simulation of Muffler’s Transmission Losses by a Homogenized Finite Element Method. Journal of Computational Acoustics. 12 (03), 447–474 (2004).
dc.relation.referencesen[9] Marigo J.-J., Maurel A. Second Order Homogenization of Subwavelength Stratified Media Including Finite Size Effect. SIAM Journal on Applied Mathematics. 77 (2), 721–743 (2017).
dc.relation.referencesen[10] Marigo J.-J., Maurel A. Supplementary Materials: Second Order Homogenization of Subwavelength Stratified Media Including Finite Size Effect. 13 (2017).
dc.relation.referencesen[11] Borcherdt R. D. Viscoelastic Waves in Layered Media. Cambridge, Cambridge University Press (2009).
dc.relation.referencesen[12] Maurel A., Pham K. Multimodal method for the scattering by an array of plates connected to an elastic half-space. The Journal of the Acoustical Society of America. 146 (6), 4402–4412 (2019).
dc.relation.referencesen[13] Gumerov N. A., Duraiswami R. Fast Multipole Methods for the Helmholtz Equation in Three Dimensions. Elsevier Series in Electromagnetism. 171–223 (2004).
dc.relation.referencesen[14] Marigo J.-J., Maurel A. An Interface Model for Homogenization of Acoustic Metafilms. World Scientific Handbook of Metamaterials and Plasmonics. 599–645 (2017).
dc.relation.referencesen[15] Petit R. A Tutorial Introduction. In: Petit R. (eds) Electromagnetic Theory of Gratings. Topics in Current Physics, vol. 22. Springer, Berlin, Heidelberg (1980). Petit R, (auth.), Petit P. R. (eds.).
dc.relation.referencesen[16] Maurel A., F´elix S., Mercier J.-F., Ourir A. Effective birefringence to analyze sound transmission through a layer with subwavelength slits. Comptes Rendus M´ecanique. 343 (12), 612–621 (2015).
dc.relation.referencesen[17] Lalanne P., Lemercier-Lalanne D. Depth dependence of the effective properties of subwavelength gratings. Journal of the Optical Society of America A. 14 (2), 450–459 (1997).
dc.relation.referencesen[18] Abdelmoula R., Marigo J.-J. The effective behavior of a fiber bridged crack. Journal of the Mechanics and Physics of Solids. 48 (11), 2419–2444 (2000).
dc.relation.referencesen[19] David M., Marigo J.-J., Pideri C. Homogenized Interface Model Describing Inhomogeneities Located on a Surface. Journal of Elasticity. 109 (2), 153–187 (2012).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectгомогенізація
dc.subjectузгоджене асимптотичне розвинення
dc.subjectвідбиття хвиль
dc.subjectв’язкопружне
dc.subjectстратифіковане середовище
dc.subjectумови ефективного стрибка
dc.subjecthomogenization
dc.subjectmatched asymptotic expansion
dc.subjectreflection of waves
dc.subjectviscoelastic
dc.subjectstratified media
dc.subjecteffective jump conditions
dc.titleHomogenization of subwavelength free stratified edge of viscoelastic media including finite size effect
dc.title.alternativeГомогенізація субхвильового вільного стратифікованого краю в’язкопружного середовища з врахуванням скінченно-розмірного ефекту
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n1_Belemou_R-Homogenization_of_subwavelength_10-29.pdf
Size:
3.01 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n1_Belemou_R-Homogenization_of_subwavelength_10-29__COVER.png
Size:
437.13 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: