Physical modeling of thermal processes of the air solar collector with flow turbulators

dc.citation.epage16
dc.citation.issue1
dc.citation.journalTitleEnergy Engineering and Control Systems
dc.citation.spage9
dc.citation.volume4
dc.contributor.affiliationНаціональний університет «Львівська політехніка»
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЖелих, Василь
dc.contributor.authorКозак, Христина
dc.contributor.authorДзерин, Олександра
dc.contributor.authorПашкевич, Володимир
dc.contributor.authorZhelykh, Vasyl
dc.contributor.authorKozak, Khrystyna
dc.contributor.authorDzeryn, Olexandra
dc.contributor.authorPashkevych, Volodymyr
dc.coverage.placenameLviv
dc.date.accessioned2019-02-08T12:34:12Z
dc.date.available2019-02-08T12:34:12Z
dc.date.created2018-03-29
dc.date.issued2018-03-29
dc.description.abstractПроаналізовано існуючі системи сонячного повітряного теплопостачання. Представлено фізичну модель повітряного сонячного колектора (ПСК) із додатково встановленими турбулізаторами потоку, які розміщено у повітряному каналі сонячного колектора для покращення його теплових характеристик та ефективного використання у регіонах з помірним кліматом. Наведено енергетичні баланси для п’яти ключових елементів ПСК та записано систему балансових рівнянь. Для визначення геометричних та теплотехнічних параметрів турбулізаторів потоку записано ряд графічних залежностей. Визначено, що в повітряному каналі сонячного колектора спостерігається перехідний рух теплоносія, а максимальний коефіцієнт конвективного теплообміну між турбулізатором потоку та повітрям спостерігається за кута нахилу теплопоглинача 45 градусів. Здійснено комп’ютерне моделювання теплових процесів, які відбуваються у повітряному каналі сонячного колектора і отримано, що потужність запропонованого ПСК зросла на 23 % порівняно із сонячним колектором з плоскою теплопоглинальною пластиною.
dc.description.abstractThe analysis of existing systems of solar air heating has been carried out. The physical model of the solar air collector (SAC) with additionally installed flow turbulators, which are located in the air channel of the solar collector, is presented to improve its thermal characteristics and efficient use in temperate climates. The energy balances for the five key elements of the SAC have been presented and the balance equations system has been written. To determine the geometrical and heat engineering parameters of the flow turbulators, a number of graphical dependencies have been recorded. We found out that in the air channel of the solar collector there is a transitional movement of the heat carrier, and the maximum coefficient of convective heat exchange between the turbulator of flow and air is observed at the angle of inclination of the heat absorber of 45 deg. The computer simulation of thermal processes occurring in the air channel of the solar collector was carried out and we discovered that the power of the proposed SAC increased by 23 % compared to the solar collector with a flat heat-absorbing plate.
dc.format.extent9-16
dc.format.pages8
dc.identifier.citationPhysical modeling of thermal processes of the air solar collector with flow turbulators / Vasyl Zhelykh, Khrystyna Kozak, Olexandra Dzeryn, Volodymyr Pashkevych // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 9–16.
dc.identifier.citationenPhysical modeling of thermal processes of the air solar collector with flow turbulators / Vasyl Zhelykh, Khrystyna Kozak, Olexandra Dzeryn, Volodymyr Pashkevych // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 9–16.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/44101
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (4), 2018
dc.relation.references[1] Shapoval S. P., Venhryn I. I. (2014) The future viability of solar energy in Ukraine. Magazine Plumbing, Heating, Air Conditioning, 8, p. 1–4. (in Ukrainian)
dc.relation.references[2] Butuzov V. A. (2013) Solar Heat Supply in theWorld and in Russia. Magazine Plumbing, Heating, Air Conditioning, 8, p. 1–4. (in Russian)
dc.relation.references[3] Butuzov V. A. (2013) Air Solar Collectors. Magazine Plumbing, Heating, Air Conditioning, 7, p. 1–5. (in Russian)
dc.relation.references[4] Fakhretdinova E. M. (1984) Development and research of solar installations for the drying of agricultural products: Undergraduate thesis:05.14.05. Scientific and Production Association “The Sun”, Ashgabat, 147 p. (in Russian)
dc.relation.references[5] Kozak Ch., Savchenko O., Zhelykh V. (2016) Analysis of Heat Flow Distribution in the Room with Installed Solar Air Heater. Thermal Engineering, Heat Supply, Ventilation: proceedings of Polish Association of Sanitary Engineers and Technicians, Vol. 45, No. 9, p. 359–362. doi: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-8832c7f0-5cc3-4438-81d4-fe023558704d.
dc.relation.references[6] Zhelykh V. M., Lesyk Ch. (2012) Thermosyphon Solar Collector. Patent for utility model of Ukraine No. 68773 UA MPK F24J 2. Industrial Property, No. 7; stated. 09/26/2011; has published Apr 10, 2012, Bul. No. 7 (in Ukrainian).
dc.relation.references[7] Fabio S. (2008) Analysis of a Flat–plate Solar Collector. Heat and Mass Transport, Lund, Sweden, p. 1–4.
dc.relation.references[8] Ahmad M. Saleh. (2012) Modeling Of Flat–Plate Solar Collector Operation In Transient States. Purdue University, Fort Wayne, Indiana,73 p.
dc.relation.references[9] Duffie J. A., Beckman W. A. (2013) Solar Engineering of Thermal Processes. Solar Energy Laboratory University of Wisconsin-Madison,4th edition, 928 p.
dc.relation.references[10] Bennamoun L. (2012) An Overview on Application of Exergy and Energy for Determination of Solar Drying Efficiency. International Journal of Energy Engineering, Vol. 2(5), p. 184–189.
dc.relation.references[11] Vysotskaya N. N, Jerusalem A. M., Nevelson R. A., Fedorenko V. A. (1968) Technical scans of sheet metal products. Mechanical Engineering, 272 p. (in Russian).
dc.relation.references[12] Yurkevych Y. S, Savchenko O. O., Kasynets M. Y (2012) Improving of the room heat regime at the solar panel using. Motrol. Automotive and Power Industry of Agriculture, Vol. 14(6), p. 3–6.
dc.relation.referencesen[1] Shapoval S. P., Venhryn I. I. (2014) The future viability of solar energy in Ukraine. Magazine Plumbing, Heating, Air Conditioning, 8, p. 1–4. (in Ukrainian)
dc.relation.referencesen[2] Butuzov V. A. (2013) Solar Heat Supply in theWorld and in Russia. Magazine Plumbing, Heating, Air Conditioning, 8, p. 1–4. (in Russian)
dc.relation.referencesen[3] Butuzov V. A. (2013) Air Solar Collectors. Magazine Plumbing, Heating, Air Conditioning, 7, p. 1–5. (in Russian)
dc.relation.referencesen[4] Fakhretdinova E. M. (1984) Development and research of solar installations for the drying of agricultural products: Undergraduate thesis:05.14.05. Scientific and Production Association "The Sun", Ashgabat, 147 p. (in Russian)
dc.relation.referencesen[5] Kozak Ch., Savchenko O., Zhelykh V. (2016) Analysis of Heat Flow Distribution in the Room with Installed Solar Air Heater. Thermal Engineering, Heat Supply, Ventilation: proceedings of Polish Association of Sanitary Engineers and Technicians, Vol. 45, No. 9, p. 359–362. doi: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-8832c7f0-5cc3-4438-81d4-fe023558704d.
dc.relation.referencesen[6] Zhelykh V. M., Lesyk Ch. (2012) Thermosyphon Solar Collector. Patent for utility model of Ukraine No. 68773 UA MPK F24J 2. Industrial Property, No. 7; stated. 09/26/2011; has published Apr 10, 2012, Bul. No. 7 (in Ukrainian).
dc.relation.referencesen[7] Fabio S. (2008) Analysis of a Flat–plate Solar Collector. Heat and Mass Transport, Lund, Sweden, p. 1–4.
dc.relation.referencesen[8] Ahmad M. Saleh. (2012) Modeling Of Flat–Plate Solar Collector Operation In Transient States. Purdue University, Fort Wayne, Indiana,73 p.
dc.relation.referencesen[9] Duffie J. A., Beckman W. A. (2013) Solar Engineering of Thermal Processes. Solar Energy Laboratory University of Wisconsin-Madison,4th edition, 928 p.
dc.relation.referencesen[10] Bennamoun L. (2012) An Overview on Application of Exergy and Energy for Determination of Solar Drying Efficiency. International Journal of Energy Engineering, Vol. 2(5), p. 184–189.
dc.relation.referencesen[11] Vysotskaya N. N, Jerusalem A. M., Nevelson R. A., Fedorenko V. A. (1968) Technical scans of sheet metal products. Mechanical Engineering, 272 p. (in Russian).
dc.relation.referencesen[12] Yurkevych Y. S, Savchenko O. O., Kasynets M. Y (2012) Improving of the room heat regime at the solar panel using. Motrol. Automotive and Power Industry of Agriculture, Vol. 14(6), p. 3–6.
dc.relation.urihttp://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-8832c7f0-5cc3-4438-81d4-fe023558704d
dc.rights.holder© Національний університет „Львівська політехніка“, 2018
dc.rights.holder© 2018 The Authors. Published by Lviv Polytechnic National University
dc.subjectповітряний сонячний колектор
dc.subjectфізична модель
dc.subjectтурбулізатор потоку
dc.subjectтеплоносій
dc.subjectповітряний канал
dc.subjectsolar air collector
dc.subjectphysical model
dc.subjectflow turbulator
dc.subjectcoolant (transfer medium)
dc.subjectair duct
dc.titlePhysical modeling of thermal processes of the air solar collector with flow turbulators
dc.title.alternativeФізичне моделювання теплових процесів повітряного сонячного колектора із турбулізаторами потоку
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2018v4n1_Zhelykh_V-Physical_modeling_of_thermal_9-16.pdf
Size:
471.87 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2018v4n1_Zhelykh_V-Physical_modeling_of_thermal_9-16__COVER.png
Size:
426.52 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Plain Text
Description: