High-Viscosity Crude Oil. A Review
dc.citation.epage | 202 | |
dc.citation.issue | 1 | |
dc.citation.spage | 195 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Yarmola, Tetiana | |
dc.contributor.author | Topilnytskyy, Petro | |
dc.contributor.author | Romanchuk, Victoria | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T10:29:38Z | |
dc.date.available | 2024-02-09T10:29:38Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Розглянуто актуальну проблему видобутку та переробки важких високов’язких нафт в Україні та світі. Встановлено, що основні запаси важких високов’язких нафт у світі розміщені в Південній і Північній Америці, на Близькому Сході, а в Україні – у східних регіонах. Проаналізовано різноманітні класифікації важких високов’язких нафт, які використовують як в Україні, так і у світі. Розглянуто основні способи видобування важких високов’язких нафт, зокрема кар’єрний, шахтний і свердловинний. Здійснено огляд технологічних процесів переробки важких високов’язких нафт. | |
dc.description.abstract | The current problem of the production and processing of heavy high-viscosity oils in Ukraine and the world has been considered. It has been established that the main reserves of heavy high-viscosity crude oils in the world are located in South and North America, in the Middle East, as well as in Ukraine in the eastern regions. An analysis of various classifications of heavy high-viscosity oils, which are used both in Ukraine and in the world, was carried out. The main extraction methods of heavy high-viscosity oils were considered, in particular, quarry, mine, and well extraction methods. An overview of the technological processes of heavy high-viscosity oil processing was carried out. | |
dc.format.extent | 195-202 | |
dc.format.pages | 8 | |
dc.identifier.citation | Yarmola T. High-Viscosity Crude Oil. A Review / Tetiana Yarmola, Petro Topilnytskyy, Victoria Romanchuk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 195–202. | |
dc.identifier.citationen | Yarmola T. High-Viscosity Crude Oil. A Review / Tetiana Yarmola, Petro Topilnytskyy, Victoria Romanchuk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 195–202. | |
dc.identifier.doi | doi.org/10.23939/chcht17.01.195 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61221 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (17), 2023 | |
dc.relation.references | [1] Souas, F.; Safri, A.; Benmounah, A. A Review on the Rheology of Heavy Crude Oil for Pipeline Transportation. Petroleum Research 2021, 6, 116-136. https://doi.org/10.1016/j.ptlrs.2020.11.001 | |
dc.relation.references | [2] Rana, M.S.; Sámano, V.; Ancheyta, J.; Diaz, J.A.I. A Review of Recent Advances on Process Technologies for Upgrading of Heavy Oils and Residua. Fuel 2007, 86, 1216-1231. https://doi.org/10.1016/j.fuel.2006.08.004 | |
dc.relation.references | [3] Topilnytskyy, P.I.; Romanchuk, V.V.; Yarmola, T.V.; Zin-chenko, D.V. Fizyko-khimichni vlastyvosti vazhkykh naft Yablu-nivsʹkoho rodovyshcha z vysokym vmistom sirky. Visnyk NU “Lʹvivsʹka politekhnika”: Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya 2020, 3, 75-82. https://doi.org/10.23939/ctas2020.01.075 | |
dc.relation.references | [4] Prasad, S.K.; Kakati, A.; Sangwai, J.S. Rheology of Heavy Crude Oil and Asphaltene-Polymer Composite Blends. In Rheology of Polymer Blends and Nanocomposites; Thomas, S.; Sarathchan-dran, C.; Chandran, N., Eds.; Elsevier Inc., 2020; pp 161–192. https://doi.org/10.1016/B978-0-12-816957-5.00008-2 | |
dc.relation.references | [5] Merola, M.C.; Carotenuto, C.; Gargiulo, V.; Stanzione, F.; Ciajolo, A.; Minale, M. Chemical–Physical Analysis of Rheologically Different Samples of a Heavy Crude Oil. Fuel Process. Technol. 2016, 148, 236–247. https://doi.org/10.1016/j.fuproc.2016.03.001 | |
dc.relation.references | [6] Meyer, R.F, Attanasi, E.D. Heavy Oil and Natural Bitumen – Strategic Petroleum Resources. USGS Fact Sheet 2003, 3. https://doi.org/10.3133/fs0700 | |
dc.relation.references | [7] Santos, R.G.; Loh, W.; Bannwart, A.C.; Trevisan, O.V. An Overview of Heavy Oil Properties and its Recovery and Transportation Methods. Braz. J. Chem. Eng. 2014, 31, 571-590. https://doi.org/10.1590/0104-6632.20140313s00001853 | |
dc.relation.references | [8] Ashrafizadeh, S.N.; Motaee, E.; Hoshyargar, V. Emulsification of Heavy Crude Oil in Water by Natural Surfactants. J. Pet. Sci. Eng. 2012, 86-87, 137-143. https://doi.org/10.1016/j.petrol.2012.03.026 | |
dc.relation.references | [9] Taborda, E.A.; Franco, C.A.; Lopera, S.H.; Alvarado, V.; Cortés, F.B. Effect of Nanoparticles/Nanofluids on the Rheology of Heavy Crude Oil and its Mobility on Porous Media at Reservoir Conditions. Fuel 2016, 184, 222-232. https://doi.org/10.1016/j.fuel.2016.07.013 | |
dc.relation.references | [10] Emadi, A.; Sohrabi, M.; Jamiolahmady, M.; Ireland, S.; Robertson, G. Reducing Heavy Oil Carbon Footprint and Enhancing Production through CO2 Injection. Chem. Eng. Res. Des. 2011, 89, 1783-1793. https://doi.org/10.1016/j.cherd.2010.08.008 | |
dc.relation.references | [11] Hasan, S.W.; Ghannam, M.T.; Esmail, N. Heavy Crude Oil Viscosity Reduction and Rheology for Pipeline Transportation. Fuel 2010, 89, 1095-1100. https://doi.org/10.1016/j.fuel.2009.12.021 | |
dc.relation.references | [12] Top heavy crude producers globally. REUTERS GRAPHICS. https://fingfx.thomsonreuters.com/gfx/editorcharts/VENEZUELA-POLITICS-US... (accessed 2022-11-01) | |
dc.relation.references | [13] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461 | |
dc.relation.references | [14] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T.; Stebelska H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14, 412-419. https://doi.org/10.23939/chcht14.03.412 | |
dc.relation.references | [15] Topilnytskyy, P.; Paiuk, S.; Stebelska, H.; Romanchuk, V.; Yarmola, T. Technological Features of High-Sulfur Heavy Crude Oils Processing. Chem. Chem. Technol. 2019, 13, 503-509. https://doi.org/10.23939/chcht13.04.503 | |
dc.relation.references | [16] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15, 423-431. https://doi.org/10.23939/chcht15.03.423 | |
dc.relation.references | [17] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T. Production of Corrosion Inhibitors for Oil Refining Equipment Using Natural Components. Chem. Chem. Technol. 2018, 12 , 400-404. https://doi.org/10.23939/chcht12.03.400 | |
dc.relation.references | [18] Pyshyev, S; Gunka V.; Grytsenko Y.; Bratychak, M. Polymer Modified Bitumen: Review. Chem. Chem. Technol. 2016, 10, 631-636. https://doi.org/10.23939/chcht10.04si.631 | |
dc.relation.references | [19] Gunka, V.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Prysiazh-nyi, Y.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Tem-perature Effect on the Chemical Modification of Bitumen with Maleic Anhydride. Chem. Chem. Technol. 2022, 16, 475-483. https://doi.org/10.23939/chcht16.03.475 | |
dc.relation.references | [20] Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295-302. https://doi.org/10.23939/chcht16.02.295 | |
dc.relation.references | [21] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved. M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429. | |
dc.relation.references | [22] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.references | [23] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.references | [24] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Dem-chuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443 | |
dc.relation.references | [25] ENI 9M 2022 RESULTS. https://www.eni.com/assets/documents/eng/investor/presentations/2022/202... | |
dc.relation.references | [26] Vytvytsʹkyy, YA.S.; Pilka, M.S. Analiz resursnoho potentsialu ta ekonomichnykh problem naftodobuvannya v Ukrayini iz rodovyshch vuhlevodniv, zapasy yakykh vidnosyat’sya do katehoriyi vazhkovydobuvnykh. Naukovyy visnyk IFNTUNH: Ekonomika ta upravlinnya v naftoviy i hazoviy promyslovosti 2016, 1, 30-35. | |
dc.relation.references | [27] Wim Teugels Wilfredo Salas An overview of the handling of extra heavy crude oil. 2018, 435. https://www.researchgate.net/publication/344275049_An_overview_of_the_ha... | |
dc.relation.references | [28] Stebelska, H. Novyy pohlyad na problemu klasyfikatsiyi naft. Visnyk Kharkivsʹkoho natsionalʹnoho universytetu im. V.N. Karazina: Heolohiya. Heohrafiya. Ekolohiya 2017, 46, 50-56. | |
dc.relation.references | [29] Processing of Heavy Crude Oils – Challenges and Opportunities. Ramasamy Marappa Gounder, Ed.; London, 2019. http://dx.doi.org/10.5772/intechopen.74912 | |
dc.relation.references | [30] Alaei, M.; Bazmi, M.; Rashidi, A.; Rahimi, A. Heavy Crude Oil Upgrading Using Homogenous Nanocatalyst. J. Pet. Sci. Eng. 2017, 158, 47-55. http://dx.doi.org/10.1016/j.petrol.2017.08.031 | |
dc.relation.references | [31] Mozafari, M.; Nasri, Z. Operational Conditions Effects on Iranian Heavy Oil Upgrading Using Microwave Irradiation. J. Pet. Sci. Eng. 2017, 151, 40-48. https://doi.org/10.1016/j.petrol.2017.01.028 | |
dc.relation.references | [32] Mansouri, H.; Mohammadidoust, A.; Mohammadi, F. An Optimization Study on Quality Promotion of Heavy Crude Oil Exposed Ultrasonic Waves and Magnetic Nanoparticles Addition. Chem. Eng. Process.: Process Intensif. 2021, 167, 108542. https://doi.org/10.1016/j.cep.2021.108542 | |
dc.relation.references | [33] Ilyin, S.O.; Ignatenko, V.Y.; Kostyuk, A.V.; Levin, I.S.; Bondarenko, G.N. Deasphalting of Heavy Crude Oil by Hexame-thyldisiloxane: The Effect of a Solvent/Oil Ratio on the Structure, Composition, and Properties of Precipitated Asphaltenes. J. Pet. Sci. Eng. 2022, 208, 109329. https://doi.org/10.1016/j.petrol.2021.109329 | |
dc.relation.references | [34] Afzalinia, A.; Mirzaie, A.; Nikseresht, A.; Musabeygi, T. Ultrasound-Assisted Oxidative Desulfurization Process of Liquid Fuel by Phosphotungstic Acid Encapsulated in a Interpenetrating Amine-Functionalized Zn(II)-based MOF as Catalyst. Ultrason. Sonochem. 2017, 34, 713-720. https://doi.org/10.1016/j.ultsonch.2016.07.006 | |
dc.relation.references | [35] Ghahremani, H.; Nasri, Z.; Eikani, M.H. Ultrasound-Assisted Oxidative Desulfurization (UAOD) of Iranian Heavy Crude Oil: Investigation of Process Variables. J. Pet. Sci. Eng. 2021, 204, 108709. https://doi.org/10.1016/j.petrol.2021.108709 | |
dc.relation.references | [36] Al-Bidry, M.A.; Azeez, R.A. Removal Sulfur Components from Heavy Crude Oil by Natural Clay. Ain Shams Eng. J. 2020, 11, 1265-1273. https://doi.org/10.1016/j.asej.2020.03.010 | |
dc.relation.references | [37] Lam-Maldonado, M.; Melo-Banda, J.A.; Macias-Ferrer, D.; Schacht, P.; Mata-Padilla, J.M.; de la Torre, A.I.R.; Meraz-Melo, M.A.; Domínguez J.M. NiFe Nanocatalysts for the Hydrocracking Heavy Crude Oil. Catal. Today 2020, 349, 17-25. https://doi.org/10.1016/j.cattod.2018.08.005 | |
dc.relation.references | [38] Rana, M.S.; Ancheyta, J.; Maity, S.K.; Rayo, P. Heavy Crude Oil Hydroprocessing: A Zeolite-Based CoMo Catalyst and its Spent Catalyst Characterization. Catal. Today 2008, 130, 411-420. https://doi.org/10.1016/j.cattod.2007.10.106 | |
dc.relation.referencesen | [1] Souas, F.; Safri, A.; Benmounah, A. A Review on the Rheology of Heavy Crude Oil for Pipeline Transportation. Petroleum Research 2021, 6, 116-136. https://doi.org/10.1016/j.ptlrs.2020.11.001 | |
dc.relation.referencesen | [2] Rana, M.S.; Sámano, V.; Ancheyta, J.; Diaz, J.A.I. A Review of Recent Advances on Process Technologies for Upgrading of Heavy Oils and Residua. Fuel 2007, 86, 1216-1231. https://doi.org/10.1016/j.fuel.2006.08.004 | |
dc.relation.referencesen | [3] Topilnytskyy, P.I.; Romanchuk, V.V.; Yarmola, T.V.; Zin-chenko, D.V. Fizyko-khimichni vlastyvosti vazhkykh naft Yablu-nivsʹkoho rodovyshcha z vysokym vmistom sirky. Visnyk NU "Lʹvivsʹka politekhnika": Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya 2020, 3, 75-82. https://doi.org/10.23939/ctas2020.01.075 | |
dc.relation.referencesen | [4] Prasad, S.K.; Kakati, A.; Sangwai, J.S. Rheology of Heavy Crude Oil and Asphaltene-Polymer Composite Blends. In Rheology of Polymer Blends and Nanocomposites; Thomas, S.; Sarathchan-dran, C.; Chandran, N., Eds.; Elsevier Inc., 2020; pp 161–192. https://doi.org/10.1016/B978-0-12-816957-5.00008-2 | |
dc.relation.referencesen | [5] Merola, M.C.; Carotenuto, C.; Gargiulo, V.; Stanzione, F.; Ciajolo, A.; Minale, M. Chemical–Physical Analysis of Rheologically Different Samples of a Heavy Crude Oil. Fuel Process. Technol. 2016, 148, 236–247. https://doi.org/10.1016/j.fuproc.2016.03.001 | |
dc.relation.referencesen | [6] Meyer, R.F, Attanasi, E.D. Heavy Oil and Natural Bitumen – Strategic Petroleum Resources. USGS Fact Sheet 2003, 3. https://doi.org/10.3133/fs0700 | |
dc.relation.referencesen | [7] Santos, R.G.; Loh, W.; Bannwart, A.C.; Trevisan, O.V. An Overview of Heavy Oil Properties and its Recovery and Transportation Methods. Braz. J. Chem. Eng. 2014, 31, 571-590. https://doi.org/10.1590/0104-6632.20140313s00001853 | |
dc.relation.referencesen | [8] Ashrafizadeh, S.N.; Motaee, E.; Hoshyargar, V. Emulsification of Heavy Crude Oil in Water by Natural Surfactants. J. Pet. Sci. Eng. 2012, 86-87, 137-143. https://doi.org/10.1016/j.petrol.2012.03.026 | |
dc.relation.referencesen | [9] Taborda, E.A.; Franco, C.A.; Lopera, S.H.; Alvarado, V.; Cortés, F.B. Effect of Nanoparticles/Nanofluids on the Rheology of Heavy Crude Oil and its Mobility on Porous Media at Reservoir Conditions. Fuel 2016, 184, 222-232. https://doi.org/10.1016/j.fuel.2016.07.013 | |
dc.relation.referencesen | [10] Emadi, A.; Sohrabi, M.; Jamiolahmady, M.; Ireland, S.; Robertson, G. Reducing Heavy Oil Carbon Footprint and Enhancing Production through CO2 Injection. Chem. Eng. Res. Des. 2011, 89, 1783-1793. https://doi.org/10.1016/j.cherd.2010.08.008 | |
dc.relation.referencesen | [11] Hasan, S.W.; Ghannam, M.T.; Esmail, N. Heavy Crude Oil Viscosity Reduction and Rheology for Pipeline Transportation. Fuel 2010, 89, 1095-1100. https://doi.org/10.1016/j.fuel.2009.12.021 | |
dc.relation.referencesen | [12] Top heavy crude producers globally. REUTERS GRAPHICS. https://fingfx.thomsonreuters.com/gfx/editorcharts/VENEZUELA-POLITICS-US... (accessed 2022-11-01) | |
dc.relation.referencesen | [13] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461 | |
dc.relation.referencesen | [14] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T.; Stebelska H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14, 412-419. https://doi.org/10.23939/chcht14.03.412 | |
dc.relation.referencesen | [15] Topilnytskyy, P.; Paiuk, S.; Stebelska, H.; Romanchuk, V.; Yarmola, T. Technological Features of High-Sulfur Heavy Crude Oils Processing. Chem. Chem. Technol. 2019, 13, 503-509. https://doi.org/10.23939/chcht13.04.503 | |
dc.relation.referencesen | [16] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15, 423-431. https://doi.org/10.23939/chcht15.03.423 | |
dc.relation.referencesen | [17] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T. Production of Corrosion Inhibitors for Oil Refining Equipment Using Natural Components. Chem. Chem. Technol. 2018, 12 , 400-404. https://doi.org/10.23939/chcht12.03.400 | |
dc.relation.referencesen | [18] Pyshyev, S; Gunka V.; Grytsenko Y.; Bratychak, M. Polymer Modified Bitumen: Review. Chem. Chem. Technol. 2016, 10, 631-636. https://doi.org/10.23939/chcht10.04si.631 | |
dc.relation.referencesen | [19] Gunka, V.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Prysiazh-nyi, Y.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Tem-perature Effect on the Chemical Modification of Bitumen with Maleic Anhydride. Chem. Chem. Technol. 2022, 16, 475-483. https://doi.org/10.23939/chcht16.03.475 | |
dc.relation.referencesen | [20] Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295-302. https://doi.org/10.23939/chcht16.02.295 | |
dc.relation.referencesen | [21] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved. M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429. | |
dc.relation.referencesen | [22] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.referencesen | [23] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.referencesen | [24] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Dem-chuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443 | |
dc.relation.referencesen | [25] ENI 9M 2022 RESULTS. https://www.eni.com/assets/documents/eng/investor/presentations/2022/202... | |
dc.relation.referencesen | [26] Vytvytsʹkyy, YA.S.; Pilka, M.S. Analiz resursnoho potentsialu ta ekonomichnykh problem naftodobuvannya v Ukrayini iz rodovyshch vuhlevodniv, zapasy yakykh vidnosyat’sya do katehoriyi vazhkovydobuvnykh. Naukovyy visnyk IFNTUNH: Ekonomika ta upravlinnya v naftoviy i hazoviy promyslovosti 2016, 1, 30-35. | |
dc.relation.referencesen | [27] Wim Teugels Wilfredo Salas An overview of the handling of extra heavy crude oil. 2018, 435. https://www.researchgate.net/publication/344275049_An_overview_of_the_ha... | |
dc.relation.referencesen | [28] Stebelska, H. Novyy pohlyad na problemu klasyfikatsiyi naft. Visnyk Kharkivsʹkoho natsionalʹnoho universytetu im. V.N. Karazina: Heolohiya. Heohrafiya. Ekolohiya 2017, 46, 50-56. | |
dc.relation.referencesen | [29] Processing of Heavy Crude Oils – Challenges and Opportunities. Ramasamy Marappa Gounder, Ed.; London, 2019. http://dx.doi.org/10.5772/intechopen.74912 | |
dc.relation.referencesen | [30] Alaei, M.; Bazmi, M.; Rashidi, A.; Rahimi, A. Heavy Crude Oil Upgrading Using Homogenous Nanocatalyst. J. Pet. Sci. Eng. 2017, 158, 47-55. http://dx.doi.org/10.1016/j.petrol.2017.08.031 | |
dc.relation.referencesen | [31] Mozafari, M.; Nasri, Z. Operational Conditions Effects on Iranian Heavy Oil Upgrading Using Microwave Irradiation. J. Pet. Sci. Eng. 2017, 151, 40-48. https://doi.org/10.1016/j.petrol.2017.01.028 | |
dc.relation.referencesen | [32] Mansouri, H.; Mohammadidoust, A.; Mohammadi, F. An Optimization Study on Quality Promotion of Heavy Crude Oil Exposed Ultrasonic Waves and Magnetic Nanoparticles Addition. Chem. Eng. Process., Process Intensif. 2021, 167, 108542. https://doi.org/10.1016/j.cep.2021.108542 | |
dc.relation.referencesen | [33] Ilyin, S.O.; Ignatenko, V.Y.; Kostyuk, A.V.; Levin, I.S.; Bondarenko, G.N. Deasphalting of Heavy Crude Oil by Hexame-thyldisiloxane: The Effect of a Solvent/Oil Ratio on the Structure, Composition, and Properties of Precipitated Asphaltenes. J. Pet. Sci. Eng. 2022, 208, 109329. https://doi.org/10.1016/j.petrol.2021.109329 | |
dc.relation.referencesen | [34] Afzalinia, A.; Mirzaie, A.; Nikseresht, A.; Musabeygi, T. Ultrasound-Assisted Oxidative Desulfurization Process of Liquid Fuel by Phosphotungstic Acid Encapsulated in a Interpenetrating Amine-Functionalized Zn(II)-based MOF as Catalyst. Ultrason. Sonochem. 2017, 34, 713-720. https://doi.org/10.1016/j.ultsonch.2016.07.006 | |
dc.relation.referencesen | [35] Ghahremani, H.; Nasri, Z.; Eikani, M.H. Ultrasound-Assisted Oxidative Desulfurization (UAOD) of Iranian Heavy Crude Oil: Investigation of Process Variables. J. Pet. Sci. Eng. 2021, 204, 108709. https://doi.org/10.1016/j.petrol.2021.108709 | |
dc.relation.referencesen | [36] Al-Bidry, M.A.; Azeez, R.A. Removal Sulfur Components from Heavy Crude Oil by Natural Clay. Ain Shams Eng. J. 2020, 11, 1265-1273. https://doi.org/10.1016/j.asej.2020.03.010 | |
dc.relation.referencesen | [37] Lam-Maldonado, M.; Melo-Banda, J.A.; Macias-Ferrer, D.; Schacht, P.; Mata-Padilla, J.M.; de la Torre, A.I.R.; Meraz-Melo, M.A.; Domínguez J.M. NiFe Nanocatalysts for the Hydrocracking Heavy Crude Oil. Catal. Today 2020, 349, 17-25. https://doi.org/10.1016/j.cattod.2018.08.005 | |
dc.relation.referencesen | [38] Rana, M.S.; Ancheyta, J.; Maity, S.K.; Rayo, P. Heavy Crude Oil Hydroprocessing: A Zeolite-Based CoMo Catalyst and its Spent Catalyst Characterization. Catal. Today 2008, 130, 411-420. https://doi.org/10.1016/j.cattod.2007.10.106 | |
dc.relation.uri | https://doi.org/10.1016/j.ptlrs.2020.11.001 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2006.08.004 | |
dc.relation.uri | https://doi.org/10.23939/ctas2020.01.075 | |
dc.relation.uri | https://doi.org/10.1016/B978-0-12-816957-5.00008-2 | |
dc.relation.uri | https://doi.org/10.1016/j.fuproc.2016.03.001 | |
dc.relation.uri | https://doi.org/10.3133/fs0700 | |
dc.relation.uri | https://doi.org/10.1590/0104-6632.20140313s00001853 | |
dc.relation.uri | https://doi.org/10.1016/j.petrol.2012.03.026 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2016.07.013 | |
dc.relation.uri | https://doi.org/10.1016/j.cherd.2010.08.008 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2009.12.021 | |
dc.relation.uri | https://fingfx.thomsonreuters.com/gfx/editorcharts/VENEZUELA-POLITICS-US.. | |
dc.relation.uri | https://doi.org/10.23939/chcht16.03.461 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.03.412 | |
dc.relation.uri | https://doi.org/10.23939/chcht13.04.503 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.03.423 | |
dc.relation.uri | https://doi.org/10.23939/chcht12.03.400 | |
dc.relation.uri | https://doi.org/10.23939/chcht10.04si.631 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.03.475 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.02.295 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.03.443 | |
dc.relation.uri | https://www.eni.com/assets/documents/eng/investor/presentations/2022/202.. | |
dc.relation.uri | https://www.researchgate.net/publication/344275049_An_overview_of_the_ha.. | |
dc.relation.uri | http://dx.doi.org/10.5772/intechopen.74912 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.petrol.2017.08.031 | |
dc.relation.uri | https://doi.org/10.1016/j.petrol.2017.01.028 | |
dc.relation.uri | https://doi.org/10.1016/j.cep.2021.108542 | |
dc.relation.uri | https://doi.org/10.1016/j.petrol.2021.109329 | |
dc.relation.uri | https://doi.org/10.1016/j.ultsonch.2016.07.006 | |
dc.relation.uri | https://doi.org/10.1016/j.petrol.2021.108709 | |
dc.relation.uri | https://doi.org/10.1016/j.asej.2020.03.010 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2018.08.005 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2007.10.106 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Yarmola T., Topilnytskyy P., Romanchuk V., 2023 | |
dc.subject | високов’язка нафта | |
dc.subject | важка нафта | |
dc.subject | видобуток важкої нафти | |
dc.subject | в’язкість | |
dc.subject | емульсія | |
dc.subject | high-viscosity oil | |
dc.subject | heavy oil | |
dc.subject | heavy oil recovery | |
dc.subject | viscosity | |
dc.subject | emulsion | |
dc.title | High-Viscosity Crude Oil. A Review | |
dc.title.alternative | Високов’язка нафта: огляд | |
dc.type | Article |
Files
License bundle
1 - 1 of 1